TORSION INVARIANTS AND ACTIONS OF FINITE GROUPS

Douglas R. Anderson

Dedicated to the memory of my friend and colleague David L. Williams.

Let G be a finite group and X be a G-CW complex in the sense of T. Matumoto [5]
or S. Illman [4]. If X is a finite G-CW complex (i.e., X has only finitely many
G-cells), then Illman [4; Section 2] gives a geometric definition for an equivariant
Whitehead group Whg (X). Furthermore, he shows [4; Theorem 1.4] that if G is
abelian and each component of XH¥={xe€ X |hx=x for all h€ H} is simply con-
nected for all subgroups H of G, then Whg (X) is isomorphic to a direct sum of
ordinary (i.e., algebraically defined) Whitehead groups. A similar result has been
obtained by M. Rothenberg {6; Theorem 1.8].

In a somewhat parallel vein, J. Baglivo [1] considered the following problem. Let
X be a G-CW complex which is G-dominated by a finite G-CW complex Y. Does X
have the G-homotopy type of a finite G-CW complex? In the approach taken in [1],
Baglivo adopts the running hypotheses that X°#@ and that X is connected for all
subgroups H C G. Under these conditions, she shows that there exist groups, denoted

by N(H)/H in [1], and elements wg (X) GKOZ(W) such that X has the
homotopy type of a finite G-CW complex if and only if all the wy (X) =0.

Let X% be a subcomplex of X*. (In this paper XX will actually be a connectedness
component of X or a union of such.) Let G, = {g€ G|g(XH)=X"} and N(H) =
{g€ G|gHg ~'=H]) be the normalizer of H. In this paper, we introduce a group
I'(XH, G) which fits into a short exact sequence

l - m Xy 1 XH,G) - G,NN(H)/H — 1

and use these groups to generalize the results of [1], [4], and [6]. In particular, we
establish the following theorems:

THEOREM A. Let G be a finite group and X be a finite G-CW complex. Let
{H,|s€ S} be a set of representatives for the subgroups of G that are contained in
an isotropy subgroup of the action of G on X. Let {Xs|a € A,} be a set of repre-
sentatives for the connectedness components of X™s. Then there exists an iso-
morphism

®:Whg(X) — ¥ Y WhI'(x},G)

SES a€ A
THEOREM B. Let G be a finite group and X be a G-CW complex. Let {H|s€ S}

be a set of representatives for the set of isotropy subgroups of the action of G on X.

Let (XHs|a€ A;) be a set of representatives for the connectedness components of
XHs,
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i) If X is G-dominated by a finite G-CW complex, then there exists a family of
obstructions {wls(X) |s€ S, a € A} with wls(X) € RyZT'(XHs, G) such that X has
the G-homotopy type of a finite G-CW complex if and only if wHs(X) =0 for all s
and «.

ii) If X is a finite G-CW complex and {wls|s€ S, a € A} is any family of elements
with wi's€ KyZT' (Xs), then there exists a G-CW complex Y, G-dominated by a
finite G-CW complex, such that wis(Y)=wl,

We recall that if 8 is a set of subgroups of G, then ® is said to represent $ if each
subgroup in § is conjugate to a unique subgroup in ®R.

Similarly, if X is a G-CW complex and H is a subgroup of G, then (X7 |a€ A} is
a set of representatives for the connectedness components of X* if, for each com-
ponent X} of X", there exists a unique « € 4 such that gX§ = X¥ for some g € G.

If the action of G on X is free, then the only isotropy subgroup of the action is the
trivial group {1}; hence, the families { H;} of Theorems A and B consist of only the
trivial group. If X=X is also connected, the family {X*} reduces to just {X]}.
Finally, in this case we will show that T'(X!!}, G) ==, (X/G) where X/G is the orbit
space of the G-action on X. Hence, we obtain the following corollary:

COROLLARY C. Let G be a finite group and X be a G-CW complex which is con-
nected and on which G acts freely.

i) If X is finite, then there is an isomorphism ®: Wh; (X) — Whr, (X/G).

ii) If X is G-dominated by a finite G-CW complex, then there is a single obstruc-
tion w8 (X) € RyZw, (X/G) such that X has the G-homotopy type of a finite G-CW
complex if and only if wO(X) =0. Furthermore, any element wo € KyZ7(X/G) can
occur as this obstruction.

Corollary C is a reflection of the familiar, and expected, feeling that the orbit
space of a free action should capture all the information about the action. For a
general action, however, the orbit space does not capture all the information about
equivariant Whitehead torsions and equivariant finiteness obstructions even if one
stratifies X/G by orbit types. The groups I' (X’%s, G) that we introduce are designed
to circumvent this difficulty. In particular, they play the same algebraic role for
general equivariant torsion invariants that the fundamental group (or =, (X/G),
respectively) plays for ordinary torsion invariants (or torsion invariants of free
actions, respectively) and, in general, I' (X, G) is not isomorphic to 7, (X/G).

We have made an effort in this paper to present the proofs of Theorems A and B
as quickly as possible. In particular, we have given in section 1 only the statements of
the main results used in proving Theorems A and B and have suppressed the tedious
details of the proofs of those results to sections 5 and 6. Section 2 contains some
technical results that may be of some independent interest; while sections 3 and 4
contain the proofs of Theorems A and B.

After this paper was written, Soren Illman pointed out to the author that Henning
Hauschild had obtained a result similar to Theorem A in his paper [3]. Indeed, the
main result of [3, Satz IV.1], gives an algebraic description of Whg (X) valid for any
compact Lie group G, not just finite groups, in terms of certain Whitehead groups
Whr (EK, X K, Xf ), where we have changed the notation of [3] slightly so that it
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conforms with the notation of this paper. When we introduce the group I'(X?, G) in
section 2, we shall show that I' (XX, G) is isomorphic to m, (EK, Xk, Xf ). If is then
easy to see that Theorem A and [3, Satz IV.1] agree completely. Since the methods of
proof used in this paper differ from those of [3] and may be of some independent
interest, we include a full proof of Theorem A. The author would like to thank
Illman for bringing [3] to his attention.

1. The case of a relatively free action. The reader will find that the proofs of the
main results of this paper proceed essentially by induction. In this section we outline
the results that form the basis for the inductive steps of the main proofs. The proofs
of the results in this section are deferred until sections 5 and 6.

Let X be a connected G-CW and p: X — X be its universal cover. We define a
prototype, I'(X, G), of the groups I'(X?,G) by I'(X,G)={h|h: X— X is a
homeomorphism such that there exists a g € G such that ph=gp}. If G acts effec-
tively on X, it is easy to see that there is a short exact sequence

I — 1 (X) >T(X,G) 2 G — 1

where p (h) € G satisfies ph=p (h)p. We note that I' (X, G) acts cellularly on X.

If (Y, X) is a pair of connected G-CW complexes such that 7, (X) — =, (Y) is an
isomorphism, then p ~!(X) =X is the universal cover of X where p: Y— Y is the
universal cover of Y. Hence, there is a homomorphism r,:T'(Y, G) — I'(X, G)
induced by restricting the action of T'(Y, G) on Y to X. If the action of G on X is
effective, then clearly r, is an isomorphism.

Suppose now that (Y, X) is a l-connected pair of G-CW complexes which is
relatively free (i.e., G acts freely on Y—X). Then the action of I'(Y, G) on ¥Y— X is
free and the cellular chain complex C,=C, (Y, X) is a chain complex of free
ZT'(Y, G) modules. In fact, C, (Y, X) has a basis {&'} consisting of one n-cell &”
out of each I'(Y, G) orbit of n-cells in Y—X. This basis is unique up to the usual
notion of equivalence of bases and we regard C, as a based ZT' (Y, G) chain com-
plex. We note that if Y is a finite G-CW complex, then C, is finitely generated.

If the relatively free, finite G-CW pair (Y, X) has the property that the inclusion
i: X—> Y is a homotopy (or a G-homotopy) equivalence, then C, (Y, X) is a finitely
generated, based, acyclic, chain complex of ZI'(Y, G) modules. Hence, its White-
head torsion is defined and we set 7(Y, X)=r,7(C, (Y, X)) € WhT'(X, G). The
geometric meaning of the invariant 7(Y, X) is given in the following theorem.

THEOREM 1.1 Let (Y, X) be a relatively free, finite, G-CW pair such that the
inclusion i : X — Y is a homotopy equivalence. Then (Y, X) =0 if and only if there
exists a free equivariant formal deformation from Y to X relative to X.

A equivariant formal deformation is free if it is a composite of free elementary
equivariant expansions and collapses. The equivariant elementary expansion that
sends X to XU b"Ub"*! is free if b® is a free G-orbit of an s-cell e® for s=n, n+1.
The inverse of a free equivariant elementary expansion is a free equivariant ele-
mentary collapse. The reader is referred to [4] for more complete definitions of equi-
variant formal deformations and their main properties.

We also prove the following realization theorem.
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THEOREM 1.2. Let X be a finite, connected, G-CW complex on which G acts
effectively, and let 1o € WhT' (X, G) be arbitrary. Then there exists a relatively free,
finite G-CW pair (Y, X) for which the inclusion i : X —> Y is a G-homotopy equiva-
lence such that 7(Y, X) =1y.

Suppose now that (X, A) and (Y, B) are relatively free G-CW pairs. We say that
(Y, B) G-dominates (X, A) if there exist G-maps i: (X, A) — (Y, B) and
r: (Y, B) — (X, A) such that ri is G-homotopic to the identity map as maps of
pairs. In this case r is called a domination with section i.

We note that if X and Y are connected, then r, : 7, (Y) — =; (X) is onto.

Let p: X — X be the universal cover of X and ¢: Y — Y be the pullback of p via
r. In fact, Y is just the covering space of Y corresponding to ker r,. Thus
Y={(x,y) € Xx Y|p(x)=r(y)} and it is easy to see that I'(X, G) acts on ¥ by
setting h(x, y) = (h(x), p(h)(y)) for heT' (X, G). Furthermore, this action is free
and cellular on ¥—¢q ~!(B) from which it follows that the cellular chain complex
C, (Y, g~ '(B)) is a chain complex of free ZI' (X, G) modules.

If (Y, B) is a relatively finite, relatively free G-CW pair that G-dominates (X, A),
then C, (Y, g '(B)) is a finitely generated free ZI'(X, G) chain complex which
dominates C, (X, p ~!(A)) in the usual sense (cf. [7] or [8]). Hence the finiteness
obstruction O(C, (X, p 1(A))) € KyZI'(X, G) is defined. We set wg(X, A) =
0(C,(X,p~1(A))) and call wg(X, A) the relative equivariant finiteness obstruc-
tion of (X, A).

THEOREM 1.3. Let the relatively free G-CW pair (X, A) be G-dominated by the
relatively finite, relatively free G-CW (Y, B). Let X and Y be connected, suppose G
acts effectively on X and Y, and suppose that Y (or, equivalently, B) is of finite
type. Then there exists a relatively finite G-CW pair (Z, A) and a G-homotopy
equivalence of pairs g: (Z, A) — (X, A) such that f| A is the identity if and only if
we (X, A) =0.

The assumption that G acts effectively on X and Y is included only to rule out
degenerate cases. If X—A and Y—B are non-empty, then G obviously acts effec-
tively on X and Y.

We also establish a realization theorem in this setting.

THEOREM 1.4. Let (Z, A) be a relatively finite, relatively free, G-CW pair. Let
wo € KoZT'(Z, G) be arbitrary. Suppose that G-acts effectively on Z. Then there
exist relatively free G-CW pairs (X, A) and (Y, A) such that (Y, A) is relatively
finite, G-dominates (X, A), and wg(X, A) =wg.

The complex X constructed to prove 1.4 has the properties that ZC X and
7 (Z) — 7 (X) is an isomorphism. Then the map p:T'(X, G) —I'(Z, G)
obtained by restriction is an isomorphism and the above equation can be written
more precisely as pwg (X, A) =wy.

2. The component structure of a G-space. Let X be a G-space. In this section we
define the ‘‘component structure’’ of X and collect its main properties. We also
define the group I' (X%, G) in this section.
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Let X be a G-space. The component structure of X is the triple ({ X%}, {G, ), {H,})
where { X | HC G, a € Ay} is the set of components of X*, (A is an indexing set
depending on H), G,={g<€ G|g(X¥)=X}, and H,= {g € G, | g is the identity on
XHy.

REMARK 2.1. Clearly H, = NI, where I, = {g € G| gx=x} is the isotropy subgroup
of x and the intersection runs over x € X, Furthermore, G,CN(H,) where N(H,)
is the normalizer of H,. Thus H, is normal in G,.

LEMMA 2.2. Let i : X—> Y be a G-map. Let X2 and Y} be components of X" and
YH, respectively, such that i(XL) C Y}. Then

i) G, N\N(H) C G, and

ii) If there exists a G-map r: Y —> X such that ri is G-homotopic to the identity,
then G, NN (H)=Gg NN(H) and Y} G,NN(H)-dominates X*.

Proof: Let g€ G,NN(H), y € Y} and z=i(x) where x € XH. Let w:I—> Y} be
a path such that v(0)=z and w(1)=y. Since g€ N(H), gw is a path in YH, Since
ge G,, gw(0)=gz= gl(x)—l(g(x)) € I(XH) C Y§. Thus g is a path in Y# since
Yﬁ is a component of Y*. Hence gy € Yﬁ and g( Y3 )C YB But then also g le
G,NN(H) and g ' (Y}) C Y§. Hence g(Y§) =Y} and g € G;.

To prove ii), let X” be the component of X such that r( Yé’) CXH. Let
F:XXI— XbeaG- homotopy from the identity to ri. Then F(XX xI) is contamed
in a component of X* and, in fact, this component must be X% since F| X x0 is the
identity. Hence ri(XH) = (F| Xx 1) (X¥) c XZ. But also n(XH) cr(Yfycx
from which it follows that XN X@. Since X2 and X! are components of ny
this implies that X=X’ and that r: Y — XH. The rest of ii) now follows from i)
and by restricting Fto Xt CH I, O

COROLLARY 2.3. Let f: X —> Y be a G-homotopy equivalence. Let X! and YH be
components of X" and Y, respectively, such that f(X) C Y}. Then

i) fIXE:. xH— Y,‘;’ is a G, N N(H)-homotopy equivalence

il) If XC Y and f is the inclusion map, then the inclusion

Xtuvfn U Y51 — v§
K2H

is a GgNN(H)-homotopy equivalence.

Proof. The first part of the corollary is an immediate consequence of 2.2. To prove
the second part, we note first that YH N Uk Y& = Ukon YX is the union of the
components of YX(K 2 H) that are contamed in Y. Slmllarly,

xInivfn U v¥1= U x¥
KIH KIH
is the union of the components of XX (K 2 H) contained in X%

Define i, : {X§} — (Y} by i, (XX)=Y§ if XX Y¥. Since the inclusion
i:X—Y is a G homotopy equlvalence i, is a well defined bijection such that
i1 XK: XK — v¥=i, (X¥) is a homotopy equivalence for all X and v. A straight-
forward, but tedious, Van Kampen and Mayer-Vietoris argument will now complete
the proof of ii). ]
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We now turn to the definition of the group I' (XX, G). We observe first that if X2
is a component of X, then G,/H, acts effectlvely on XX Thus the group
(x4 G,/H,) is defined. On the other hand, G, NN(H) CG, and HC H,. Thus
there is an obvious homomorphisrn 6:G,NN(H)/H— G,/H,. We now define

r'x%, G) to be o*T' (X, G,/H,). More precisely, I'(X*, G) is defined to be the
pull back group making the diagram below commute

1 — 7, (X7 - (X2 G) — G,NN(H)/H — 1

| | v}

1 — (X% -r«x%G6,/H,) —  G,/H, — 1

We remark that if there exists a point xEXH with I, = H, then H, = H and
G,CN(H). Thus g is an 1somorphlsm and I'(X?, G)=I" (X%, G,/H,).

We shall now show that I'(XZ, G) is 1somorph1c to the group m (EK, Xg_ XHy of
[3; Section 4]. Since the group K of [3] is just the subgroup of W(H) = N (HY/H
that maps the component X to itself, it is easy to see that K, =G, NN (H) /H. To
simplify our notation, we write K, instead of G, N N(H)/H. Thus there is a pull
back diagram

rx? e Ak,
"’1 7}
I' (X G/H)—»G/H

Using this diagram, define an action of I' (X, G) on EK, x X by setting v (x, y) =
(B (y)(x), () (¥)) for y €T (X, G). It is easy to verify that this action is free and
that the orbit space is EK, Xg_ XH The existence of the claimed isomorphism is now
clear.

3. The proof of Theorem A. In this section we prove Theorem A. The first step is
to define the map &.

To do this, let x€ Whg(X) be represented by the pair (Y, X) of connected,
G-finite, G-CW complexes where the inclusion i: X —> Y is a G-homotopy equiva-
lence. Let H=H, be one of the distinguished (i.e., in the set { H;|s€ S} of Theorem
A) subgroups of G and let X’/ be one of the distinguished components of X*. Let Y}
be the component of Y containing X7,

Let p: Y5 — Y4 be the universal cover of Y4 and notice that p~' (X&) = X[ is the
universal cover of XH We claim that C,=C, (YH, XEUpN(YEN Ugan YX)) is
a finitely generated, acyclic, based chain complex of free ZI‘(X;:I , G) modules.
Indeed, it follows from 2.3 that the inclusion i: XZ U (YN Ugay Y*) — Y is a
G, N N(H)-homotopy equivalence; hence, C, is acyclic. If we now set,

Z=Y{ - [XZU (YEn N Y91,
4

then I, = H for all z € Z. Hence, G, NN (H) /H acts freely on Z and relatively freely
on (Y” XU (YN Ukan YX)). By the analysis of section 1, it now follows that
C, is a finitely generated free, based chain complex of ZI‘(YB ,G,NN(H)/H)
modules. On the other hand, the map r, : T'(Y¥, G,\NN(H) /H) — I‘(XH, G,/H,)
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obtained by restricting the homeomorphism 4 of f’” to XH is easily seen to induce an
isomorphism r, : T'(Y¥, G,NN(H)/H) — T'(X£ G) and the claim follows

We set TH(Y X)=r,7(C, (YH,XHUp'l(YB N Ukzr Y)) in WhT'(X}, G) and
define the homomorphism ® by ®(x) = (7 (Y, X)) where (Y, X) represents
x€ Whg(X) and H, € {H;|s€ S} and a € 4, in the notation of Theorem A. It is
clear from the definition of addition in Whg (X) that & is a homomorphism if it is
well defined.

LEMMA 3.1. The map ® is well defined.

Proof. 1t suffices to show that if Z is obtained from Y by an equivariant ele-
mentary expansion relative to X, then 724 (Z, X) =71 (Y, X) for all H, € {H,|s€ S}
and all « € 4,. Without loss of generality, we may assume that Z = Y U b" U p"*!
(n=0), where b’ is an equivariant r-cell (r=n, n+1), and that there is a charac-
teristic G-map ¢ : G/H, x I"*! — Z for b"*! such that ¢ | : G/H, X I" —> Z is a char-
acteristic G-map for b” and ¢ (G/H, xJ") C Y where H, is one of the distinguished
subgroups of G. For simplicity of notation, let H=H,.

Clearly ¢ (HxJ™) C YH and since J" is_connected, ¢ (HXJ") lies in a single
component Y5 of Y. Let XX be the component of X# contained in Y}. We may
further assume that X is one of the distinguished components of XH.

Let Z¥ be the component of Z# containing Y} and let e =¢(HXI"). By 2.2 if
ge C;;f ﬂN(H) then ge’ € ZH On the other hand if ge" € ZH, then clearly g € N(H),
g(Yg') is a component of YH, and an argument similar to 2 2 shows that g( YH )=
YH. Thus g€ GgNN(H). It follows that Z! is obtained from Y§' by a Gy ﬂN (H)-
equlvarlant elementary expansion, and that, 1f we pass to Gg ﬂN (H) /H this expan-
sion is free. Since Gg NN (H) /H=Ga NN(H)/H by 2.2, it follows from 5.1 below
that 7Z7(Y, X) =r(Y}, XI =+(Z¥, X =+1(Z, X).

If either 6 #a or s#¢, then for H H, the component YH of YH containing X is
unaffected by the equivariant elementary expansmn to Z. That is, Yi'=Z where ZH
is the component of Z# containing Y}'. Hence 7f(Y, X)=1{(Z, X) for all H= H
and all 6. Thus & is well defined. m]

LEMMA 3.2. The map ® is injective.

Proof. Let the connected G-CW pair (Y, X) represent an element x € Whg (X)
for which ®(x) =0. Let H=H, be a distinguished subgroup of G of minimal order
that is also an isotropy subgroup for some point in Y —X. Let X be a distinguished
component of X* which does not equal the component Yé’ of Y* that contains it.
Let BY/=XU (YN Ugau Y5).

It follows from 2.1 and 2.2 that the pair (Y4, BH) is G, N N(H) /H relatively free.
Furthermore, the inclusion B — YH is a G, N N(H)/H homotopy equivalence by
2.3 and 7( YH, Bih=7H(Y, X)=0. Hence there is a free G, N N(H)/H-equivariant
formal deformation of Y4 to B relative to BZ. This deformation can also be
regarded as a G, N N(H) equivariant formal deformation and as such it extends to a
G-equivariant formal deformation from GY§ to GB'= GX;'U (GY} N Uy GYX)
relative to GBH by a standard equlvarlant cell attaching argument.

Now let Z=XU UYXU UGY# where the first union runs over subgroups X of G
satisfying either |K| > |H| or |K| =|H| and K is not conjugate to H and the second
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union runs over the components of Y other than Y}. Then Z is a G-invariant
subcomplex of Y and Y—Z=GY}. But also GY{/NZ=GBH. Thus there is a
G-equivariant formal deformation of Y to Z relative to Z.

Now the pair (Z, X) of G-CW complexes also represents the element x € Whg (X),
but is less ‘‘complex’’ than (Y, X) in the sense that Z differs from X either in fewer
components of Z than Y*# or in fewer fixed point sets of distinguished subgroups of
G than Y. Since there are only finitely many places such differences can occur, we
can now proceed by induction to obtain an equivariant formal deformation of Zto X
relative to X. Hence x=0 and & is injective. O

LEMMA 3.3. The map ® is surjective.

Proof. Let o€ WhT'(X, G) be an arbitrary element. It suffices to show there
exists an element x € Whg (X) such that the component of & (x) in WhT (X%, G) is
7o and all other components of ® (x) are zero. Let H= H;. There are now two cases.

Case 1. There exists a point z € XX such that I,=H. In this case H,=H and
G,CN(H) by 2.1. Hence G, NN (H) /H acts effectively on X, and by 1.2 there
exists a finite G, N N(H) /H-CW complex Y§{ containing X for which the inclusion
X" — YH is a G, N N(H)/H-homotopy equivalence and such that 7( Y%, Xx) =17,
in Whl'(XH, G, "NN(H)/H).

Let Z=GXg- Yé" be the balanced product of G and );};H over G'=G,NN(H)
where g€ G’ acts on G by right multiplication and on Yj' via the homomorphism
G, NN(H)— G,NN(H)/H. Then Z is a left G-space and there is an obvious
G-map ¢:GXg XH— X, Let Y=X U, Z. It is a routine, but tedious, matter to
verify that (Y, X) is G-CW pair representing a class x € Whg (X) with the desired
properties.

Case 11. There is no point z € X* such that I, = H. In this case, let Z=XUb" U b"*!
(n=2) be obtained from X via a equivariant elementary expansion with the property
that there exists a characteristic G-map ¢:G/HXxI"*!'— Z for b"*! for which
¢ |:G/HXI"— Z is a characteristic G-map for b" and for which

S (G/HXJ") = Zy C XH,

Clearly such a G-CW complex Z exists. Furthermore, if Z.‘;’ is the component of ZH
containing XX, G,=G,NN(H) and H = H by 2.2, the observation that restriction
defines an injection G,—> G,, and 2.1. Hence, case I may be applied to Z to
complete the proof of 3.3. m]

Theorem A is a now trivial consequence of 3.1-3.3.

4. The proof of Theorem B. This section contains only the proof of Theorem B.

Let X and Y be G-CW complexes with Y finite and let r: Y—> X be a G-domina-
tion with section i: X—> Y. Let H=H, be one of the distinguished isotropy sub-
groups (i.e., H is in the set {H,|s € S} of representatives of the isotropy subgroups
of the action of G on X given in Theorem B) and let X be a distinguished com-
ponent of X¥. Let Y} be the component of Y¥ such that i(XZ%) C Y. It then
follows from 2.2 that G, NN(H)=GgNN(H) and that Yé’ G, NN (H)-dominates
X4,
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If we now consider the pairs (XZ, X;'N Uxyp XX) and (Y, YEN Ugap Y5,
we see easily that they are relatively free G=G, NN(H)/H-CW pairs and that the
former is G-dominated by the latter which, in turn, is relatively finite. We now define

wHs (X) to be the invariant wg (XX, XH N UK:)HX ) of 1.3.

If X has the G-homotopy type of a finite G CW complex, then, for all s€ S and
a€ A, (XHs, XHsn UKDHX ) has the G=G,, N N(H) /H homotopy type of a rela-
tively finite, relatively free G-CW pair (Y, B). Hence, for all s€ S and a € A,
wis(X) =0 by 1.3 and the necessity part of Theorem B i) follows.

Suppose now that w/s(X) =0 for all s€ S and all « € A,. Let H,,H,,...,H,, be
the distinguished subgroups of G ordered in such a way that if H; is conjugate to a
subgroup of Hj, then j<i. Let Xé{ , ...,Xﬁf;‘i be the distinguished components of
XH, Order the pairs (p,q); 1<p<m, 1<gq = n,, lexicographically.

We shall construct by induction G-homotopy equivalences f, ,: Z, ,—> X where
Z,  is a G-CW complex such that (Z, q)H is finite for any subgroup H of G conju-
gate to some H; with 1 <i<p—1 and such that G(Z, q)ﬁjp is finite for any com-
ponent (Z q)B of (Z q) » corresponding to XHP under Jp,q for 1 =j=gq. Then
Zy,n, w1ll be a finite G CW complex having the ‘G- homotopy type of X and the
suffic1ency part of Theorem B i) will follow.

We let Z, =X and f; o be the identity. Suppose now that f, ,: Z, ,— X satis-
fying the above conditions has been constructed. To simplify notation, we will
identify X with Z, . via f,, , and will assume that X H s finite for any H conjugate to
H; with 1 <i<p—1 and that GXHP is finite for 1 <j <gq.

Case I: g<n,. In this case we 51mphfy notation further by letting H=H,, a =« ,,
and G=G,, ﬂN(H)/H Since (XH, xHN UKDHX ) is G-dominated by a finite
G-CW pair, 0=wH(X) = we (XH, XHN UKDHX ) by hypothesis, and

xXfin Uy xX¥
KZH
is finite by the inductive hypothesis, by 1.3 there exists a G-homotopy equivalence of
pairs f: (¥, XJ N Ugap X*) — (XZ, XI N UKDHX ) such that Y is a finite
G-CW complex and such that f| XN Uk2 1y X¥Xis the identity.

Let h: (XH, XHN UKDHX ) — (Y, XN UKDHX ) be a G-homotopy inverse
for f whose restriction to XN Uk XX is the 1dent1ty Since there is a natural
epimorphism G'=G,NN(H) — G, ﬂN(H)/H G, we can, and will regard f and
h as G, N N(H)-maps which are mutual G, N N(H)-homotopy inverses. It is then
clear that the maps 1 X f and 1 X/ induce G-homotopy equivalences f’ and 4’ that
make the following diagram commute

1xf
GXY = GxXxH
1xh
01 11'
S 1
GXg Y & G Xg X,
hl

where G X 'Y is obtained from G XY by identifying (gg’,y) with (g, g’y) for
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g'€ G'=G,NN(H), GxgXH is defined similarly, and ¢ and 7 are the obvious
quotient maps. Note that f” and A’ are the identity on the subspace

Gxg (XN U x5,
K2H

We now define an equivalence relation ~ on G Xg- (X2N UK?é g X%) by setting
[g,x]1=1[g’,x’] whenever gx=g’x’ in X where [g,x]=0(g, x)=7(g, x). Extend ~
to equivalence relations on G X Y and G X5 X by identifying no points outside
Gxg (XN Ugan X¥). Let Z=GXg Y/~ and note that Gx g X/~ =GX[=
UgeGgX C X. Then Z is a finite G-CW complex and f’ and A’ induce G-maps
f":Z— GXH, h" : GXH— Z which are easily seen to be G-homotopy equivalences.
Furthermore, G(Xf N UK; yXX)C Z and f” is the identity on this subspace

It is now a routine matter to extend f” to a G-homotopy equivalence f, ,: Z, ,— X
by using the techniques of [1; Section 4] and [4; Section 4]. Clearly, this map has all
the properties needed to complete the proof of case I.

Case 11. g=n,. The proof of this case is identical with the proof of case I except
that the notation is changed so that H=H,, ;| and a=q;.

This completes the proof of Theorem B i).

The proof of Theorem B ii) proceeds by an induction argument similar in spirit to
the one just given. The key idea is to use 1.4 to complete the inductive step. The
tedious, but by now clear, details are left to the reader.

5. The proofs of Theorems 1.1 and 1.2. In this section we give the proofs of
Theorems 1.1 and 1.2. The proof of 1.1 requires the following lemma.

LEMMA 5.1. Let (Y, X) be a relatively free, finite, G-CW pair such that the
inclusion i: X—> Y is a homotopy equivalence. Let the G-CW complex Z be ob-
tained from Y by a free equivariant elementary expansion. Then 7(Z, X) is defined
and 71(Z, X)=7(Y, X).

Proof. Clearly (Z, X) is relatively free and the inclusion j: X— Zis a honlotopy
equivalence. Hence 7(Z, X) is defined. On the other hand, if we regard C, (Y, X) as
a chain complex of ZT'(Z, G) modules via the restriction map

r. :I'(Z,G) —I'(Y,G),

then 0— C, (Y, X) — C,(Z,X)— C,(Z, Y)— 0 is a short exact sequence of
finitely generated, based, acychc chain complexes over ZI'(Z, G). Hence, in
WhT'(Z, G) we have T(C (Z X)) =7(C, (Y, X)) +7(C, (Z Y)).

We claim that 7(C, (Z, Y)) =0. For there exist equivariant s-cells b* (s=n, n+1)
such that Z=YUb"Ub"*! and a characteristic G-map ¢:GxI""! — Z for p"*!
such that ¢ | Gx I" is a characteristic G-map for b”". Let ¢:I"*!'— Z be a lift of
¢ |1xI"*!, Then é=¢(I°) (s=n, n+1) can be taken to the basis of C,(Z, Y).
Since C,(Z, Y)=0 for s#n, n+1 and 3:C,,,(Z, Y) — C,(Z, Y) has matrix the
identity relative to the bases described, 7(C, (Z, Y)) =0.

It now follows that 7(C, (Z, X)) =7(C, (Y, X)) in WhT'(Z, G). Thus 7(Z, X) =
rir(C, (Y, X)) in WhT (X, G) where r':T'(Z, G) — I'(X, G) is induced by restric-
tion. Since r.7(C, (¥, X)) clearly equals 7(Y, X), the lemma follows. O
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Proof of Theorem 1.1. Let the G-CW pair (Y, X) satisfy the hypothesis of 1.1 and
suppose 7( Y, X)=0. The arguments given in [4; Section 4] show that there exists a
free equivariant formal deformation from Y to Z relative to X such that Z is in
“‘simplified form.”’ In particular, Z=XU UbfU Ub*! (n=2, 1 <i<t) where b}
has a characteristic G-map ¢$: GXI*—> Z (s=n, n+1) satisfying ¢S (1 x ) =x;€ X
if s=n and ¢7(1 xJ*~!) =y, if s=n+1. Furthermore, 7(Z, X) =0 by 3.1 or 5.1.

It now follows that 7(Z, X) is represented by the matrix M of

0:Cr1(Z,X) — C,(Z,X)

where we identify I' (Z, G) with I' (X, G) via the restriction. Furthermore M may be
reduced to the identity by a finite sequence of matrix operations of the following
types:

1) Multiply a row or column by =+1;

2) Multiply a row or column by a € T'(Z, G);

3) Replace the matrix N by the matrix (‘3’ (1’) or the inverse operation;

4) Replace a row p; by p; +p; for i#].

Matrix operations of types 1) and 2) may be realized by changing the basis of
C,(Z,X) or C,,1(Z,X) in an appropriate fashion. Thus they may be trivially
covered by a free formal deformation. The proof of 5.1 shows that operations of the
first type in 3) are covered by a free equivariant elementary expansion.

In order to cover the inverse of the operation that sends M to (t’ ?) by a free

formal deformation, we first pick characteristic maps §*:I°— Z for the cells &°
(s=n, n+1) for which d[é"*']=[é"] where [&°] denotes the class of &° in
C,(Z, X). We may, in fact, assume that py*=¢7 |1 X I*=y° where p: Z—> Z is the
projection of the universal cover and ¢; is the characteristic G-map for b; described
above.

But now the following diagram commutes

~ o~ h - o~ ~ o~
(A, X) = 1,4 %) > H(AX = C(ZZX

al ot 2] o

P, 5 = * 5 5 o
Tp1(Z, A) «— w1 (Z, A) :’ 12, A) = C11(Z, X)

x>

where A=XU Ub" (1 <i<t) and h, is the Hurewicz homomorphism. Since the
indicated maps are isomorphisms, d[¢"*!] = [¢"]. Now define n"*!: ["*1 — A by
9"t I"=y" and 9" *!|J"=c the constant map to x,. Since [y"*!|I"]=a[y"*'],
we know that ¢"*!| I" is homotopic to y” as maps into A. But then also y"*!| 7"+1 is
homotopic to ”*! as maps into A.

If we now define 7"*!: GxI"*!— A by 7(g, t) =gn(¢), then clearly 7”*! and

7*1 are G-homotopic. By [4; Lemma 4.1] there is a free formal deformation of Z to
W relative to X where W=AU Ub/"*'Uc"*! (1<i<t—1) and ¢"*! is an equi-
variant (n-+1)-cell with attaching G-map #"*!. Clearly W is obtained from V=
XU UbMU UBM! (1 <i<t—1) by a free equivariant elementary expansion.

The free equivariant formal deformation from Z to W to V is then relative to X
and covers the given type 3) operation.
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The proof that operations of type 4) can be covered by free equivariant formal
deformations proceeds along lines similar to those of the argument above. Namely,
one considers the restriction ¥; =¢*!|1x I"*! of a characteristic G-map for b/ *+!,
homotopes ¥; nonequivariantly to replace p; by p;+p; (cf. [2; pp. 63-64]), and then
symmetrizes over G to obtain a G-homotopy to which [4; Lemma 4.1] may be
applied. The details are left to the reader.

This completes the proof of 1.1. O

Proof of Theorem 1.2. Let 1o € WhI' (X, G) be represented by the matrix
(Aj) € GL(m, ZT' (X, G)).

Let n=2 and set Z=XU Ub/ (1 <i<m) where b/ is a free equivariant n-cell with
characteristic G-map ¢! : G x I"— Z satisfying ¢ (1xI")=x,€ X. We note that
there is an obvious equivariant retraction p: Z— X.

Let p: Z—> Z be the universal cover of Z. Since n =2, m;(X)— m(Z) is an
isomorphism and p ~!(X) =X is the universal cover of X. Thus, there is a string of
isomorphisms

a(ZX) 2 x (2R I H(Z %) =C(2 %).

On the other hand, p, splits the exact sequence

Py
— 1 (X) — T (Z) — 7, (Z,X) —

and we can (and will) regard =, (Z, X) as a direct summand of n,(Z).

Let f;: (I"*!,0) — (Z,x,) be a map representing the class a;€ w,(Z) corre-
sponding to the image of Y ;A;e/' and extend f; to F:GxI""'— Z by setting
Fi(g, t)=gfi(¢). If we now let Y=ZU Ub!*! where F; is the G-attaching map of the
free G-cell b7*!, then the pair (Y, X) has all the properties required by 1.2.

6. The proofs of Theorems 1.3 and 1.4. In this section we prove Theorems 1.3 and
1.4. We begin with an elementary, but very useful, observation about =, (M, Y) and
H, (M, Y) where (M, Y) is a G-CW pair.

LEMMA 6.1. Let (M, Y) be a G-CW pair and p : M —> M be the universal cover of
M. Then

(*) . B
oo = Hy (M, p~'(Y)) — Hy(p~'(Y)) — Hy (M) — H,(M,p~'(Y)) — -

is an exact sequence of ZI'(M, G) modules. If m\(Y) — w (M) is an isomorphism,
then

(**) ”'_’ﬂ-q-l—l(Mr Y) _>7rq(Y) —’WQ(M) _’Wq(Mv Y) —---
is an exact sequence of ZI' (M, G) modules.

Proof. We prove only the statement about homotopy since the other part is
obvious. To do this we first define ZI' (M, G) module structures on the various terms
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in (**). We note first that p ~!(Y) =Y is the universal cover of Y since m;(Y) —>
m (M) is an 1somorphlsm and that any homeomorphism 4 € I' (M, G) restricts to a
homeomorphism 4 |: ¥— Y.

We now define an action of I'(M, G) on =,(M, Y, ), where y, € Y is a base
point, by letting 2 € I'(M, G) act via the composite.

- he S s % - 5

T (M, Y, 5) — 7,(M, Y, h(5)) — 7,(M, Y, 7)
where 7 is the change of basepoint homomorphism induced by a path «, in Y from
Jo to h( yo) Since Y is simply connected, ay, is independent of the choice of «;, and

the action of 4 is well defined. The actlon of I'(M, G) on 7,(M,Y,y,), where
Yo=p(Jp), is now obtained by requiring the isomorphism

Py iy (M, Y, 5) — 7,(M, Y, y)

to be a ZI'(M, G) isomorphism. The action of I' (M, G) on the other terms in (**) is

defined similarly.
The claim that (**) is an exact sequence of ZT' (M, G) modules is now obvious.
O

If (M, Y) is a G-CW pair and p: M—> M is the universal cover of M we shall call
the composite y=Hp, ! the Hurewicz homomorphism, where

* ~ — - H ‘ag —_
7o (M, Y, y9) &= x,(M, p~'(Y), §) — H,(M,p~'(Y))

and H is the usual Hurewicz map. If 7, (Y) — =, (M) is an isomorphism, 7 is a map
of ZT' (M, G) modules.

Let X and Y be G-CW complexes and f: Y— X be a G-map. Let M=M(f) be
the mapping cylinder of f and p: M —> M be its universal cover. We define 7 (f)
and H, (f) respectively, by =, (M, Y) and H,, (M, p~1(Y)), respectively. As usual,
we may represent an element a € m,(f) by a pair of maps (s, ) where s: 17— X,
t:19— Y, and ft=s|I°.

If G acts effectively on X, then the homomorphism p:T'(M, G) — T'(X, G)
defined by restricting h € I'(M, G) to X is an isomorphism. In this case, if
fo:m (Y)— m(X) is an isomorphism and we identify I' (M, G) and I' (X, G) via
p, and w, (M) and H,(M) with 7,(X) and H,(X), respectively, in the obvious
ways, we obtain the commutative diagram

— W41 (f) — 7, (Y) ﬁ» T (X) — 7, (f) —

bn P by
1N — H (Y) ﬁ»Hq(X) — H,(f) —

of ZI'(X, G) modules, where f: ¥—> X is a lift of f.

Suppose now that «; € 7,(f) (i=1,...,k) is represented by the pair of maps
(s, ;). Let Yi=YUb{U --- Ub} where b/ is a free equivariant n-cell with charac-
teristic G-map ¢;: G X I"—> Y; satisfying ¢ |gx["=gt; for g€ G, i=1,...,k. Ex-
tend fto f;: Y; — X by setting f; | ¢;(g X I") =gs;. We shall say that f; is obtained
from f by attaching free equivariant n-cells to Z via «; (i=1,...,k).
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The following, easily verified lemma is the key ingredient in the proofs of 1.3 and
1.4:

LEMMA 6.2. If g<n, then 7, (f)=7,(f}). Ifn=q=2and f,: 7 (Y) — 7 (X) is
an isomorphism, there is an exact sequence of ZI' (X, G) modules.

e Tpp1 () — Tpi1 (1) _*Wn(Yl’ 17)

a

- 7, (f) — 7, (f;) =0
in which =, (Y,, Y) is free over ZI'(X, G) on generators 8; (i=1,...,k) satisfying
66,-=a,-.

Proof of Theorem 1.3. Let f: (Z, C) — (X, A) be a G-homotopy equivalence of
pairs where (Z, C) is a relatively finite, relatively free G-CW pair. Let M be the
mapping cylinder of M. Then ZC M D X and we have isomorphisms

T (Z) Lo m (M) & ()

induced by inclusion. Since G acts effectively on X and Y, the homomorphisms
Jj*:T'(M,G)—T'(Z,G) and i*:T'(M, G) — I'(X, G) obtained by restricting the
action are isomorphisms. We identify I' (Y, G) with I' (X, G) via i*(j*) -1,

It is now easy to see that if f: Z— X covers f, then

fuo:C(Z,p " (B)) — C,(X,q 1 (B))

is a chain equivalence of chain complexes over ZT'(X, G) where p:Z— Z and
g : X — X are the universal covers of Z and X, respectively. Hence,

we(X, A) = 0(C,(X,¢7'(4))) = 0(C(Z,p~'(B))) =0

since the latter chain complex is a finitely generated chain complex of free ZI' (X, G)
modules. The necessity part of 1.3 follows.

Suppose now that (X,A) is G-dominated by (Y,B) as in 1.3 and that
wg (X, A)=0. Let r: (Y, B) — (X, A) be a domination with section i: (X, A) —
(Y, B). By combining 6.2 with the arguments of [1; Section 4] and [4; Section 4], we
may assume that r|B:B—> A is a G-homotopy equivalence and that r: Y—> X is
n-connected where n=max (dim(Y—B), 3). It then follows from [9; Lemma 2.3]
that H, ., (r) =m,4;(r) is a projective ZI' (X, G) module that represents wg (X, A).
Since wg (X, A) =0, it follows that there exist finitely generated, free ZI'(X, G)
modules. £} and F, such that 7, (r) @ F =F.

Suppose F; has rank k. Let o; € w,(r) (i=1,...,k) be the trivial class and let
r: (Y, B) — (X, A) be obtained from r by attaching free equivariant n-cells to
(Y,B) viae; (i=1,...,k). It follows from 6.2 that 7, (r;) =7, (r) @ F;. Hence
mhe1(n)=F is a free ZI'(X, G) module. We may now attach free equivariant
(n+1)-cells to Y; via a free basis for w,,(r;) to obtain a G-map r;: (Y,,B) —
(X, A) such that r,: Y, — X is a homotopy equivalence and r, |B:B—> A is a
G-homotopy equivalence. Since (Y;,B) and (X, A) are relatively free, this implies
that r: (Y3, B) — (X, A) is a G-homotopy equivalence of pairs by [5]. Note that
(Y5, B) is relatively finite.



TORSION INVARJANTS AND ACTIONS OF FINITE GROUPS 41

Now let #: A —> B be a G-homotopy inverse for r, | A. Using the techniques of
[1; Section 4] and [4; Section 4], we may extend 4 to a G-homotopy equivalence of
pairs h: (Z, A) — (Y, B) with (Z, A) relatively free and relatively finite. Then r,h
is G-homotopic to a G-homotopy equivalence f: (Z, A) — (X, A) such that f| A is
the identity. This completes the proof of 1.3. m|

Proof of 1.4. Let P, and P, be finitely generated, projective ZT'(Z, G) modules
such that (—1)"[Py]=wy € I?OZI‘(Z, G), where n=max(dim(Z—A),3), and such
that Py (® P, =F is finitely generated and free. Let p;: F—> P; (i=0, 1) be the pro-
jection. Let C,={C,, 8,} be the chain complex with C,=0 for g<n, C,=F for
qzn; 0,424-1=p1, and 9,,,;=po for g=1. We shall construct relatively free
G-CW pairs (X, Z) and (Y, Z) such the C,=C, (X, Z) and C (Y, Z) =0 for g#n.

Welet Y=ZVvbl'V --- Vb where k=rank Fand b/ is a free equivariant n-cell with
characteristic map ¢;: G X I" —> Y satisfying ¢; (g X I™) =gy, where y, € Y is a base-
point. Then C, (Y, Z) =0 for g#n and C,(Y, Z)=F as a ZT'(Z, G) module.

We now construct by induction a space X, containing Z, and a map i,: X, — Y
such that C, (X, Z) realizes C, up to dimension n+¢g—1 and Q is a direct summand
of 7,.,(i;) where Q=P if q is even and Q=P if g is odd. To construct Xj,
consider the inclusion map iy : Z—> Y. There is an exact sequence

o 1 (V) — 7, (i) —> Ty (Z) — 7y (V) —

with m, (iy) =F as ZI'(Z, G) modules and d=0. Let p, be the composite

FA p cF

and let o;=p,(§;) € F=7,(i{y) where {; (j=1,...,k) is a free basis for F. Let
iy : X, — Y be obtained from {, by attaching free equivariant n-cells to Z via «;
(j=1,...,k). It follows immediately from 6.2, that P, is a direct summand of
Tn+1 (il ).

We remark that since the boundary operator in the above exact sequence is trivial,

the attaching maps for the n-cells of X; are equivariantly trivial. Hence, they are
equivariantly homotopic to the attaching maps for Y and there exists a G-homotopy
equivalence r; : Y — X;.
Once i, : X, —> Y has been constructed with the desired properties, i, is obtained
by attaching free equivariant (n+¢g)-cells to X, via the classes o () (J=1,...,k)
where p°: F— Q=P; is the projection onto Q=P; (s=0 or 1) and again invok-
ing 6.2.

Let X= U, X, and Y be as above. Then the reader may verify that the composite r
given by

Y %X, CX

is a domination with section i satisfying i | X, = i and that (X, A) and (Y, 4) have
the properties claimed in 1.4. This completes the proof of 1.4. O
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