BOUNDED PROJECTIONS AND THE GROWTH OF
HARMONIC CONJUGATES IN THE UNIT DISC

Allen L. Shields and D. L. Williams

This paper is dedicated by the first author to the memory of the second
author. David Leroy Williams died unexpectedly on March 9, 1980; he was 42
years old. He received his Ph.D. in 1967 at the University of Michigan, under
the direction of the first author. A fine mathematician, a fine friend.

1. Introduction. Let # be a harmonic function in the open unit disc A and as usual
denote M,, (u, r) =sup{|u(re®)| : —w <0 <«} for r<1. If u is bounded, elementary
estimates on the conjugate Poisson kernel show that the harmonic conjugate &
satisfies the growth condition M, (i, r) =0 (log(1/(1—r))). Moreover the analytic
function log(1/1—z)), whose imaginary part is bounded in A, proves that this
estimate is best possible, that is, log(1/1 —r)) cannot be replaced with a function of
slower growth. On the other hand, Hardy and Littlewood [4], [5], [3, p. 83] showed
that if M, (u, r)=0((1/(1—-r)*), a>0, then M, (i, r) satisfies the same growth
condition. We fill the gap between these two results.

More precisely, for x =0 let ¥ (x) be a positive increasing function for which there
exists >0 such that ¥ (x)=0(x%), x—> oo. Assuming some mild regularity con-
ditions on Y, we show in Section 3 that if M, (u,r) =0 (1/(1-r))), then
M, (i1, r)=0(¥(1/1—r))) where ¥(x)= f{,t"'¥(f)dt. We also show that this
estimate is best possible by constructing a harmonic function # on A such that
Mo (u,r)=01/(1-r))) and M (it, r) =y (1/(1—-r)), re [0,1).

To interpret these results, one needs to know certain facts about the ratio ¥/y. We
shall give a detailed discussion in Section 2. Here we make some brief observations.
First, if ¥ (x) grows like x* then so does y/(x), and one obtains the Theorem of
Hardy and Littlewood. However, if Y grows more slowly than any positive power of
x, then, generally speaking, ¥ grows faster than y. For example, if y (x) =log (x+2),
then ¥ (x) grows like [log(x+2)]2. If ¥ (x) =1, then ¥ (x) grows like log x; thus we
recapture the bounded case mentioned above.

The above discussion remains valid if we replace M, (u, r) by

1 T .
M(u,r) = — S |t (re®)|do
2w J_x
throughout. Of course, for M, (u,r)=[(27) "' | |u(re®)|Pd0]'P, 1<p<oo, the
well-known theorem of M. Riesz [3, p. 54] says that M, (u, r)=0 (¥ (1/(1—r)))
implies M, (i, r) =0 (¥ (1/(1—r))). Therefore, in this paper we shall be concerned
only with the means M, (u, r) and M, (i, r). However the referee has pointed out to
us that Theorem 1 remains valid for a rather general class of norms, namely for the
norm in any ‘‘homogeneous Banach space’’ in the sense of Y. Katznelson. This is
discussed briefly in Section 7 at the end of the paper, where the relevant definitions

and references are given.
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In Section 4 we interpret the results of Section 3 in terms of the ‘‘analytic
projection’’ operator on certain Banach spaces of harmonic functions.

It happens that our questions and results on the growth of conjugate harmonic
functions are closely related to the question of the existence of bounded projections
from certain L! spaces onto the subspace of analytic functions. This connection is
discussed in Section 5. Let 5 denote a finite positive Borel measure on [0, 1) and let
L!(n) denote the space of complex Borel measurable functions on the open unit disc
A for which

_ 1 I pm i0
A1, = T So X_w | f(re®)| dodny < .

Also, define 4! (5) to be the subspace of functions in L!(5) which are analytic in A.

For which 7 does there exist a bounded projection from L! (%) onto A! (n)? While
we cannot completely answer this question, we do obtain some interesting results.
First, let us eliminate the trivial case where 4! () is not closed in L (). This occurs
if and only if 5 is supported on a subinterval [0, p) where 0<p< 1. Thus, we assume
7 is not supported on such a subinterval. In terms of the Hausdorff moments of 7,
this is equivalent to assuming the sequence 5 (n) = _[(l, rdny(r) approaches zero more
slowly than any exponential sequence p”, 0 <p < 1. Roughly speaking, our techniques
allow us to study the cases where the moments of y approach zero more slowly than
n~ % for some o >0. More precisely, we assume c¢/y(n) <y (n) <C/y(n) where ¢ is
one of the functions described above and c and C are constants; we show that if ¥/
is not bounded, then there is no bounded projection from L!(5) onto A! (). This is
related to a result of Joel Shapiro; see the discussion following the proof of Theorem
3’ in Section 5. We also show that our result is ‘‘best possible’’ (Theorem 3’).

A growth condition of the form M, (u, r) =0 (¥ (1/(1 —r))) naturally describes a
Banach space of harmonic functions which we denote by 4., (¢). In [10] and [11] the
authors studied the problem of finding a measure 4 with the property that 4., () is
isomorphic to the dual of 4! () = {u € L!(y) : u harmonic}. This duality problem is
closely related to the problems discussed in this paper; in fact, solving the duality
problem yields alternate proofs of some of the results of this paper. On the other
hand, the results of this paper provide further insights into the work in [10] and [11]
and answer some questions raised there. Therefore, in the last section of this paper
we review briefly some of this earlier work and discuss its relation to the main
theorems of the present paper.

Finally, we remark that there are analogies between some of our results on the
mean M, for harmonic conjugates and some results of N. K. Bari and C. B. Ste¢kin
[1]. Bari and SteCkin studied functions on the unit circle with a modulus of con-
tinuity w (f; ) =0(#(?)), and they gave necessary and sufficient conditions on ¢ in
order that w(f, ) =0(¢(¢)) also. It is well-known that fractional integrals can be
used to map certain spaces of analytic functions satisfying a growth condition on the
unit disc onto spaces of functions satisfying a continuity condition on the unit circle.
See, for example, Chapter 5 of [3]. However, we have not been able to apply this
technique in sufficient generality to obtain a direct connection between our results
and those of Bari and Steckin.
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2. Some lemmas on monotone functions. In describing the spaces of harmonic
functions studied in this paper, we use monotone functions of at most polynomial
growth. We shall need to impose certain mild regularity conditions on these
monotone functions, and in this section we define the regularity conditions and
establish some consequences and equivalent formulations of these conditions. A
portion of the results of this section are closely related to some of the results of
N. K. Bari and C. B. SteCkin in Section 2 of [1]; however, it is easier to prove our
results directly than to derive them from the results in [1].

Sergei Bernstein introduced the notion of almost increasing and almost decreasing
functions (see the paragraph preceding Theorem 3 in [2]). A real function f is a/most
increasing if there exists a positive constant ¢ such that x; <x, implies f(x;) =c¢f(x,).
An almost decreasing function is defined similarly.

Throughout this paper ¥ will denote a positive increasing function defined for real
x=0. For each such function ¥ we define another function by

J(x) = S):/zt_ltﬁ(t) dt, (x=1/2).

Consider the following conditions:
(U) There exists a>0 such that y(x) /x° is almost decreasing for x =1/2.
(L) There exists € >0 such that ¥ (x) /x¢ is almost increasing for x =1/2.
Condition (U) contains the restriction to polynomial growth plus a regularity
condition. On the other hand, (L) implies that ¥ (x) grows faster than some positive
power of x.

Through this paper ¢ and C denote positive constants, not necessarily the same at
each occurrence.

The symbol A! denotes the usual first difference operator, that is: (Aly)(n)=
y(n)—y(n+1).

LEMMA 1. Let ¥ be a positive increasing function for x =0. If y satisfies (U), then
the following are also true.

(i) There exists ¢>0 such that for all x =0, ¢ (2x) <cy(x).

(ii) There exists ¢>0 such that for all x =1, ¥ (x) <cy¥(x).

(iii) There exist C, ¢>0 such that for all re [0,1),

cy(1/(1=-r))/(1—-r=< % vim)r' <= Cy(1/7(0 —=r)) /(1 —r).

(iv) There exist C, ¢>0 such that for all re [0,1),

o]

cy(l/(1-r)) =< %3 [—(AYW)(n—D]r" = CY(1/(1 — 1)), F(—1)=0).
(v) There exist C, ¢>0 such that for all r€ [0,1),

cy(1/(1 —r)) < ? (n+ 1D)~"Wn)r" < CY 1/ (1 —r)).
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Proof. (i). For x=1/2 condition (U) implies that

V(2x) /Y (x) = [¥(2x) 7/ (2x)?]129[x /¢ (x)] < c.

For 0=x=<1/2, y(2x)/¥(x) <y (1)/¢(0).
(ii). For x=1, (U) implies that

J(x) = S" [¥(£) /t°1t°~V dt = e[y (x) /x7] f‘ 17V dt = ey (x).
1/2 1/2

(iii). This is the conclusion of Lemma 1 of [11] where a slightly stronger hypothesis
than (U) was used; however, the same proof works with hypothesis (U). Actually,
only the right hand inequality makes use of (U); the left hand inequality depends only
on the assumption that ¢ is increasing.

(iv). Summing by parts, L8[~ (A'Y)(n—1)1r"= T8 'Y (n) (r"—r"*1) + 4 (p) r2.
Because (U) limits ¢ to polynomial growth, for each re [0, 1), lim ¢ (p)r?=0. Thus
LS [— (AWY)Y(n—=1)1r"=(1—r) L&Y (n)r", and (iv) follows from (iii).

(v). This follows by integrating (iii) from O to r. u]

LEMMA 2. Let ¥ be a positive increasing function for x=0. The function
satisfies (L) if and only if there exists ¢ >0 such that for all x=1, y(x) <cy(x).

Proof. If ¢ satisfies (L), then for x =1

J(x) = S" [ (£) 7e1E~ dt < c[¥(x) /x¢] S" 1= dt < ey(x).
172 172

Conversely, suppose ¥ (x) <cy(x) for x = 1. Letting 4=e?,

A
¥(x)log A = ¥(x) j

X

X Ax -
t-ldt < 5 t=1(8)dt < ¥ (Ax)

= ¢y (Ax) = (1/2)(log A) ¥ (Ax),

that is, ¥ (Ax) =2y (x) for x=1. Now fix x and x; such that 1 =x<x; <o, and let p
be the integer such that A?x <x, <AP*!x. Then for any ¢ >0,

Y(x)/x¢ = Y(Ax)/ (2x¢) = --- < Y(APx)/ (2Px°) < Y (x;)/(2Px°)
= [W(x) /xi1[27Pxf/x].

Also, x;/x<AP*!; hence Y (x)/x¢ <A (A /2)Py(x;)/xf. Choosing ¢ >0 so that
A¢=2 gives (L) for x =1, and therefore for x=1/2. O

Later we shall use the following concept.

DEFINITION. A positive increasing function ¢ defined for x =0 is normal if it
satisfies both (U) and (L).

In the authors paper [10] the word ‘“‘normal’’ was used in a slightly different sense:
instead of ‘‘almost increasing’’ and ‘‘almost decreasing’’ (in the definitions of (U)
and (L)) we required the functions in question to be ‘‘increasing’’ and “‘decreasing’’,
respectively. The theorems in [10] remain valid with this change.
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One could establish other relations between the above properties of a positive
increasing ¢. For example, (i) of Lemma 1 implies (U). Also, Lemma 1 (ii) and
Lemma 2 together show that if ¢ is normal, then there exist C, ¢>0 such that
cy(x) =¥ (x) =Cy(x) for x=1; the converse is also true.

3. Growth of harmonic conjugates. The following theorem is a generalization of
the theorem of Hardy and Littlewood [4], [5], [3; p. 83] mentioned in the
introduction.

THEOREM 1. Let ¥ be a positive increasing function for x =0 which satisfies (U),
and let u be harmonic in the unit disc.

(@) If Mo, (u, r) =0 (1/(1=r))), then M, (ii, r) =0 (¥ (1/(1=r))).

(i) If My (u, r) =0 (¢ (1/ (1 =r))), then M, (it, r) =0 (Y (1/(1 —=r))).

Proof. We shall prove (ii); the proof of (i) is similar. First, let
. _1 . w -
Nre®)y =i ¥ (n| + Drife™ —i ¥ (n+ 1)rre™
iy 1

and note that M, (\, r)=0O(1/(1~r)). Now using the Fourier expansion u(re”) =
Ya(n)ri"l e refe A, we define

_1 oo
Nxu)(re®y=i Y, (|n| + DYa(m)riMe™ —i ¥ (n+ 1)a(n)r*e™
— 1

= 2_17r_ r u(Vre!®=Dy N(Jre®) dt.

by Fubini’s Theorem,
My(N*u,r) = My (NVP)M, (u,Vr) = ey (1/(1=vr))/ (1—=r).

Thus by Lemma 1(1), M, (A*u, r) < cy(1/(1=r))/(1—r). From the definitions of A
and of the conjugate function, i (re”)= [y (\*u)(rpe®®)dp, and by Fubini’s
Theorem,

M (4, r) = S;MI(A *u,rp)dp < c§; (1= rp)~'w(1/(1 = rp)) dp

(1-n"1! -
=cr“lg t=Y () dt <= cy(1/(1 —r)). 0
1

If ¥ is normal, that is, ¥ satisfies both (U) and (L), then Lemmas 1(ii) and 2
together imply that ¥ and ¥ have the same rate of growth. Thus, when y is normal,
the above Theorem says that if # is harmonic in the unit disc and M (i, r) =
OW(1/(1—-r))), then My, (u, r)=0(¢¥(1/(1—r))). Likewise if M, (u,r) =
O (1/(1—r))) then M (u, r) =0 (Y (1/(1—r))).

If ¢ satisfies (U) but not (L), then ¥ grows at a faster rate than ¥, and one must ask
if the above theorem is best possible, i.e., is there a harmonic function u such that
M (u,r)=0(y(1/(1=r))) and M, (i1, r) =y (1/(1—r)). If we assume a bit more
regularity on the growth of Y, we can prove that this is the case.
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THEOREM 1’. Let Y be a positive increasing function for x =0 which satisfies (U).
If ¥ is either convex or concave (or, more generally, if condition (*) of Lemma 3
below holds), then there exist real-valued functions u and v harmonic in the unit disc
such that

() Mo, (1, ry=0(1/(1—=r))) and M, (it, r) zcjx(l/(l —r)).

(i) M (v, r)=0((1/(1—r))) and M (0, r) =cy(1/(1—r)).

Our construction of the examples for this theorem is interesting in that we are able
to construct harmonic functions satisfying rather general growth conditions by
specifying the Fourier coefficients of the functions. To accomplish this we require a
mild regularity condition on . The next lemma is the essential ingredient in our
construction. The following function will play a special role in our calculations. If ¥
is a positive increasing function for x =0, then let

k(re®®) = E‘ v(|n|)rie™ =y (0) + 2 E Y (n)r"cosnd.
= 1

If Y grows less rapidly than any exponential (in particular, if ¥ satisfies (U)), then the
series converges for r<1 and so k is harmonic in the open disc A. Also, as usual, let
A2y =Al(AlY); thus

(M%) (n) = y(n) = 2¢(n + 1) + ¢ (n +2).

LEMMA 3. Let ¢ be a positive increasing function for x =0 which satisfies (U).
Then

(*) M (k,r)=00(1/(1-r))) (0=r<1)

if any one of the following conditions is satisfied:
(i) ¥ is convex,
(i1) ¥ is concave, 1
A n
(i) (%) (m)] < —e- 2

n

n=12,....

Further, if ¥, ¥, are two functions (positive, increasing and satisfying (U)) for
which (*) holds, then (*) also holds for ¢ =y y,.

Proof. The statement that (iii) implies (*) is precisely Lemma 2 of [11]. The proof
that (i) or (it) implies (*) proceeds, in part, along the same lines. First summing by

parts,
g—1

¥(0) +2 ):'jw(n)r"cosno = T (A1 n)r") D, (8) +¥(a)rDq (0)

where D, is the Dirichlet kernel. On letting ¢ —> oo, the last term on the right
vanishes because of (U) and we have k(re®®)= Y& (Al (¢ (n)r*)) D,(0). Another
summation by parts gives k(re??) =X & (A%2(Y(n)r*))(n+1)K,(0) where K,, is the
Fejer kernel. Using the identity

A2(Y(n)r™) = [(1 = r)2y(n) + 2r(1 — r)(A'Y)(n) +r2(A%Y) (n)1r7,

we obtain the estimate
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|k(re®)| < (1-r)? ioo; (n+ 1Y (n)r"K,(0)

oo

+2(1=r) %} (n+1)[(—AYW) (n)|r"* 1K, (0)

+ ):; (n+1)|(A%Y) (n)|[r"+2K, (0).

Since §* K, (0) d0 =2,

M, (kr) < (1-r) ? (n+1)y(n)r* +2(1—r) ioo: (n+1) (= (AN (m))r"t!

1) o
+ L (D@ ()],

We now show that each of the three terms in (1) is O(¢¥(1/(1—r))). Applying
Lemma 1(iii) to the function (x+1)y(x) we have

) f} (n+ DY) r <cy(1/(1 —r))/(1 —r)2.

0

For the second term, summing by parts and using (2), gives

o]

%‘5(n+1)(—(A'»’/)(n))r”‘L1 = %3 (W (n+1)=¢0)1[(n+1)r"+'— (n+2)r"+?]

3) = %'f [ (n4+1) —(0) ] [(m+1) (1 —r) —r]r+!

< (1-r) % (n+D)yn+D)r"t < ey (1/(0=r))/(1—r).

If ¥ is either convex or concave, then in the third term of (1), (A%¥)(n) has constant
sign. Thus, summing by parts,

L (DA% )]+ = | 3;5 (n+ 1) [(A20) (n) 17"+

=| ¥ [(A'Y)(0) = (A'Y)(n+ )] [(n+1)r"+?
— (n+2)r"*3]|

Hence

o« oo

);03 (n+1)[(A%y)(n)|r" 2 < | %; (A'Y)(n+ 1) [(n+1)r"2— (n+2)r" 3|

+ | ioo; (A'W)(0)[(n+1)r" 2~ (n+2)r"+3]]
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= | ioo) A (n+ D [(n+ 1) (L=r)r"t2 =3 + [(AlY) (0)) ]

< (1-1) % (n+1)(— (AY) (n+1))r"+2 + ‘g; (= (A'Y) (n+1))rm+?

+ (= (Aly)(0)r

By (3) and Lemma 1(iv) this is O (¢ (1/(1 —r)}). This concludes the proof when { is
either convex or concave.

Now suppose ¥ =y, ¢, where ¥, and y, are positive increasing and satisfy (U) and
(*). Then clearly ¥ is positive increasing and satisfies (U). To see that ¢ also satisfies
(*), let

k(re®) = T gi(n)riem, k(re®y = ¥ yy(|n)yrien,

n= —0oo n=-—o
and observe that

K(re®) = (ky * k) (re®) = & Wy () (|n]yri e

1 ¢« . :
= 5= |7 mwre O ret at.
27 J—x
By Fubini’s Theorem, Lemma 1(i), and the assumption that (*) holds for ¢, and v,
we have

M, (k, r) = M (kj,Vr)M, (ky, Vr) < c¥1 (1/(1=-r)¥2(1/(1-r))
<cy(1/(1-r)). u

REMARK. The hypothesis (iii) of Lemma 3 is more natural than it may first
appear. For a discussion see p. 265 of [11]. Generally speaking, the obvious functions
which satisfy (U) also satisfy (iii). In addition, if ¢, and ¥, are positive increasing and
satisfy (U) and (iii), then so does | ¥,. To prove Lemma 3 under the hypothesis (iii),
follow the above argument, but use (iii) to estimate the third term of (1). For details
see p. 267 of [11].

Proof of Theorem 1’. Throughout the proof the symbol ¥ stands for Y ;°; at one
point the summation is taken only over odd », this is indicated separately.

(@) Let f(z)=XLn" 'Y (n)z", z€ A, and let u=Im(f). Then &= —Re(f). Thus
u(re®y=xn"'y(n)risinnd, i(re’®y=—Yn "'y (n)ricosnd By Lemma 1(v),
M, (i, r)=Xn"'Y(n)r"=cy(1/(1—r)). On the other hand

up (re) = L (n)r'cosné,
and by Lf;mma 3, M, (ug, 1) <cy(1/(1—r)). Since u(ry=0 for all r€ [0, 1), we see
that u(re®) = {8 u, (re”)dt and

lu(re®)| = SZ]u,(re")l dt < 27M,(ug,r) <cy(1/(1—r)).
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Therefore M(u,r) =0 (Y (1/(1—=r))).
(i) Let v(re®) =X ¢ (n)r"cos nd. By Lemma 3, M, (v, r)=O (¥ (1/(1—r))). Now
g(re®)=Y y(n)r"sinnd and so

M, (5, r) = —— S” | X ¥ (n)r'sinnd| do = -2-1— r | X ¥ (n) risin nb)| do
— 0

27 T

=2 % nlymr.

1 = s
= |77-r— So [X ¢ (n)r"sinn6] dé )

From Lemma 1(i) and the fact that y is increasing we have, for
n=1: cy(n) =y 2n) =yY(n+1).
Hence (recall that the constant ¢ need not be the same at each occurrence)
n~Yn) zcn+1)"Y(n+1).

Thus M, (3, r) =cXn "y (n)r"; hence M, (0, r) >cy(1/(1—r)), by Lemma 1(v).
a

REMARK. With v as in the above proof, the analytic function
g(z) =v(z) +iv(z) = Ly(n)z"

must satisfy the growth condition M, (g, r) = c¥ (1/(1 —r)) since |g(re?)| = |T(re®)].
One can also prove this directly by appealing to Hardy’s inequality [3, p. 48]. Indeed,
applying Hardy’s inequality to g,(z) =g(rz), 0<r<1, we have

f:(n + 1) (n) =§::(n +1)71g,(n) = =M (g, 1.

Thus by Lemma 1(v), M, (g, r) =cy (1/(1—7r)).

Theorems 1 and 1’ together yield precise growth estimates on harmonic conjugates
and it is interesting to look at some examples. We have discussed the normal case
above. At the other end of our growth range we have y (x) =1 with ¢ (x) =log 2x; as
mentioned in the introduction, this case is well-known. Let us consider an
intermediate case, say ¥ (x)=[log(x+2)]* where «>0. Then ¥ (x) grows like
[log(x+2)]1**1, i.e., taking the harmonic conjugate increases the growth by a factor
of log (1 —r) ! in these cases also. On the other hand if we let

¥(x) =exp(log(x + 1))*, «€][0,1],

then ¥ (x) grows like (log(x+1))'~*y(x); therefore, taking the harmonic conjugate
may increase the growth only by a factor of [log(1—r)~']1—2.

4. Banach spaces of harmonic functions. The growth conditions applied to
harmonic functions in the previous section naturally describe certain Banach spaces of
complex-valued harmonic functions; and the results of the previous section can be
stated essentially in terms of the analytic projection operator on these spaces.
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Let 1(A) denote the vector space of all complex-valued functions harmonic in the
open unit disc A with the usual pointwise addition and scalar multiplication. Let i be
a positive increasing function defined for x =0 and use it to define the norms

lully =sup{Mo(u,r)/¥(1/(1 —r)):re(0,1)},
lully,y = sup{My(u, r) /¥ (1/(1 —r)):re [0,1)}.

The spaces ho, (¥) = {u€h(A): |lu|y <oo} and hlL (Y) = fueh(A): ey, <oo}
are Banach spaces. The spaces A, () were studied by the authors in [10] and [11]—
they used the notation A, (¢) where ¢ (r)=1/¢(1/(1—r)). Many basic properties
of the space A, () are given in Section 2 of [11], and similar results can be proved
for the space AL (y).

In the case where ¥ is bounded A (¥) is isomorphic to the space of bounded
harmonic functions in the supremum norm, which has been extensively studied.
Similar remarks apply to AL (¢) when y is bounded. We are primarily interested in
the cases where lim,_, Y (x)=o0; then we can define the following subspaces of
he (¥) and AL (¥), respectively.

ho(Y) = (ueh(A): ljrp_Mm(u, r/Y/(1 —r)) =0};
hs(¢) = (uEh(A): ljrll1 M (u,r)/¥(1/(1 —r)) =0]}.

It was shown in Section 2 of [11] that A, () is a closed subspace of A, (¥) and that
the harmonic polynomials (polynomials in e” and e =) are dense in #,(y). Simi-
larly, hd (¥) is a closed subspace of AL () and the harmonic polynomials are dense
in Ay (¢).

The analytic projection P,:h(A)—> h(A) is defined by P,(L®a,r" )=
Y& a,r"e™. The range of P, is the space A (A) of all functions analytic in the open
unit disc. While we could deal with the conjugate operator u — i =iu—2iP,u+iu(0),
we choose to use the analytic projection for two reasons. First, being a projection P,
is slightly simpler; second, the use of P, is consistent with our study of projections in
the later sections of this paper.

As before, we assume y satisfies (U). Then Theorem 1 says that

P, iho () — he(§) and P,:hl(y) — hL(¥)

are everywhere defined. It is easily seen from the proof of Theorem 1 that P, is
bounded for these spaces; alternatively, one can show that P, has a closed graph in
these spaces and so is bounded by the closed graph theorem. Assuming y satisfies the
hypotheses of Theorem 1’, we have shown that, if ¥ * is another positive increasing
function, then in order for P,: he (¥) — he (¥*) or P,:hl (¥) — kL (¥*) to be
bounded it is necessary that ¥/y* be bounded.

We now obtain similar results for the subspaces Ay () and Aj ().

THEOREM 2. Let ¢ be a positive function for x =0 which increases to +o and
satisfies (U). Then

(@) P, : by ($) —> hy () is bounded;

(i) P, : h§ () — By (¥) is bounded. -
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Proof. Since P, : he, () — ho, (¥) is bounded and maps harmonic polynomials to
harmonic polynomials, (i) follows from the fact that the harmonic polynomials are
dense in 4, (¢). The proof of (ii) is similar.

THEOREM 2'. Let ¥ be a positive function for x=0 which increases to + o,
satisfies (U), and is either convex or concave (or, more generally, which satisfies
condition (*) of Lemma 3). Let y* be a positive increasing function for x =0.

@) If P, hy(Y) — ho, (¥*) is bounded, then J/y* is bounded.

(i) If P,: h(y) — ' (Y*) is bounded, then y/y* is bounded.

Proof. (i) Let u(re”y= Y {n~"y(n)r"sin nd and recall from the proof of Theorem
1(i) that u € h, (¥). Then u, (re”) =u(pre™) belongs to hy () forallp € [0,1), and

Ma (Pytiy, 1) = |Pyttor)] = L En =9 (n)p"r" = c§ (1/1(1 = pr))
1

by Lemma 1(v). But P,: hy(¥) — h, (¢*) bounded implies
Ma (Patty, 1) < |Pollt, g% (1/ (1 = 1) < [Pl |ully 71/ (1 = 1)).

Thus || P, || lully¥*(1/(1=r)) >cy(1/(1—pr)), and, letting p—> 1~, we see that
¥/¢* must be bounded.

(ii) The proof is similar; use the function v € AL (¥) defined in the proof of
Theorem 1°(ii) and the remark following the proof.

5. Bounded projections. Let 5 be a finite positive Borel measure on [0, 1) which is
not supported in any subinterval [0,p), 0<p<1. Let L!() denote the space of
Borel measurable functions on the unit disc A which are integrable with respect to the
measure (27) " 'd0dy(r), and let

1 T .
171 = 5= |, |7 eyl doan (o).

Also define Al(n)=L'(y) Nh(A) and A'(9)=L'(y) NA(A) where, as before,
h(A) denotes the space of all functions harmonic in A, and 4 (A) denotes the
subspace of all analytic functions. Both 4! (n) and A!(n) are closed subspaces of
L'(n); in fact it can be shown that the above condition on the support of 7 is
necessary and sufficient for the completeness of ! () and A' (). Also, if u€ h' ()
and u=0 a.e.(d0dn(r)), then u=0. Finally, the harmonic polynomials are dense in
h'(n) and the analytic polynomials are dense in A'(n). For proofs of these and
other basic facts, see Section 2 of [11].

In this section we study the question of the existence of bounded projections from
L'(y) onto A'(n). The following lemma connects this problem with the work in the
previous sections. As in Section 4, P, will denote the analytic projection, that is, the
projection onto the analytic functions. Lemmas of this sort are well known: see, for
example, [9] (or [6; Chapter 9, p. 154]) where Rudin used it to give a simple proof of
D. J. Newman’s theorem [7] on the non-existence of bounded projections from L'
onto H'.
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LEMMA 4. Let H be a vector subspace of h(A) which contains the harmonic
polynomials. Let P be a projection of H onto HNA(A). Then for any harmonic
polynomial u,

. 1 T
(Pou) (re®) = 5— S

(T_,PT,u)(re”)dr,

where T, : h(A) — h(A) is defined by (T,v)(re®®)=v(re’®+7),

Proof. It is enough to verify the result for the monomials u,(re®®) = rl"l ei®
(n=0, 1, +2,...). We have T,u,=e™ u, for all n. If n=0, then Pu,=u, by
assumption, and the result follows. If n<0, then f,=Pu, is analytic: f,(z) =
Ya,z*. Hence (T_,PT,u,)(re®)=e™ L a,r*e*®e =", where, for fixed re” € A,
the series converges uniformly in 7. When one integrates with respect to 7, every term
is zero (since n<0). This completes the proof. a

As we stated in the introduction, the techniques used in this paper allow us to
consider measures » whose moments n(n)=jér"dn(r), n=0,1,2,..., satisfy a
conditon of the form

@ c/y(n) =n(n) =C/y(n), n=0,1,2,...,

where ¢ and C are positive constants and ¢ is a positive function for x =0 which
increases to + oo and satisfies (U). Also recall from the introduction that, if » satisfies
(4) where y satisfies (U), then A'(y) is a closed subspace of L!(5).

THEOREM 3. Let y be a finite positive Borel measure on [0, 1). Assume there are
positive constants ¢ and C such that

) c(n) < S;r"dn(r) <Cr(n), n=0,1,2,...,

where  is a positive function for x =0, which increases to o, satisfies (U), and is
either convex or concave (or, more generally, satisfies (*) of Lemma 3). If there
exists a bounded projection of L' (n) onto A'(n), then Y satisfies (L).

REMARK. Recall from Lemma 2 that y satisfies (L) if and only if {/y is bounded.

Proof of Theorem 3. Suppose P:L'(n)—> L'(n) is a bounded projection with
range A' (n). Then the restriction of Pto k! (%) is a bounded projection from 4! ()
onto A' (). We now show that if there is any bounded projection from 4'(7) onto
Al(n), then the analytic projection, P,, is also bounded. Indeed, by Lemma 4, for
any harmonic polynomial u,

|(P,u) (re®)| < 51; S“ (T, PT,u)(re®)|dr;

-7

and by Fubini’s Theorem

1 T
Py < 5— Lr |7_, PTull,dr < sup|| T_, PT,ul,.
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Since 7, and T_, are isometries on L' (y), ||P,ull, < |P| ||u||,, Because the harmonic
polynomials are dense in 4! (%), we may conclude that P, is bounded on 4! (7).

Let h,(re®)=h(pre”) =Xy (n)*p"r"cosnd, p€ [0,1). We claim that |A,]|, <
cv,b(l/(l—p)) By Lemma 3, M, (h,,r)= Ml(h pr) <cy(1/(1—pr))? and so to
establish the claim it suffices to show that Solﬁ(l/(l —pr))2dy(r) <c¢(l/(1 -p)).
Applying Lemma 1(iv) to ¥2, ¢(1/(1—pr))? scLy [~ (Aly?)(n—1)]p"r". Using
this and the hypothesis on the moments of 7,

S(’)w(l/(l—pr))zdnv) < CS; [% [—(A'¢2)<n—1)]p"r"]dn(r)
©) i
=X (- @A) (= D)1¥(m) "o,

Now [—(A'YA) (n—D]¥(n) '=[¥(n)2—¢(n—1)21Y(n) "' = =2(A'Y) (n—1).
Thus by (6) and by Lemma 1(iv),

Séll/(l/(l — pr))dn(r) < C%E [—@'Y)(n—1)]p" < c¥(1/(1 - p)).

Therefore ||4, |, <cy(1/(1—p)), as claimed above.
On the other hand by the remark following the proof of Theorem 1°(ii),
M, (Pyh,,r)=M,(P,h,pr) =cy?(1/(1—pr)). Using Lemma 1(v) applied to 2,

¥ (n+ 1)~ '(n)20" " < cf2(1/(1 = pr)) < cMy (Pyhy, 7).
0

Integrating with respect to dy () and using the hypothesis on the moments of 5 gives
X5 (n+1)" 'y (n)p" <c||P,h,|,. Thus by Lemma 1(v) applied to ¥,

Y(1/(1 —p)) < CEJ (n+ 1)~ (n)p" < c||Pyh, |l, < c|Pal |, ;-

Finally, the above estimate on |4, ||, gives Y (1/(1—p)) <c||P,ll¥(1/(1—p)); i.e.,
Y/y¥ is bounded. O

We remark that with appropriate modifications in some of our definitions we
could have included in the statement and proof of Theorem 3 the result of Newman
that there is no bounded projection from the space of Lebesgue integrable functions
on the unit circle onto the Hardy space H!. This corresponds to the case y=1.

In practice the hypotheses of Theorem 3 are not difficult to verify. For example,
consider the family of measures dv,(r) = (1—r) " '[log(1/(1—r)))~%dr, a>1. A
calculation shows that there are positive constants ¢ and C such that

1
c/[log(n +2)]*~ ! =< S rdy,(r) = C/[log(n +2)1°"!, n=0,1,2,....
0

Thus 1nequa11ty (5) in the hypothesis of Theorem 3 is satisfied with ¢, (x) =
[log(x+2)]1*~L. Since l// (x)/l,bar (x) =clog (x+2) Theorem 3 shows that there is
no bounded projection from L' (v,) onto Al (vy), for any a>1.
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Theorem 3 is related to an unpublished result of Joel Shapiro. To state this result
we let 7 be a finite positive Borel measure on [0,1) and let n(n)=§ér”dn(r)
(n=0,1,2,...). Shapiro shows that if

1 qn)? _

O o n+1 n(2n) B

then there is no bounded projection from L!(y) onto A!(y) (in fact, there is no
bounded projection of L! (%) onto any closed subspace isomorphic to 4! (5)). He
also points out that if Yy(n)(n+1)~'=oo, then (7) is satisfied. These two condi-
tions are equivalent if % (2n) =cy(n), which will be the case in the situation
considered in Theorem 3 when y satisfies (U). Theorem 3 applies to some situations
where Shapiro’s result does not; for example, his result shows there is no bounded
projection from L!(»,) onto A'(v,) only for 1 <« =<2, whereas ours show it for all
a>1. On the other hand, his result applies in certain situations where we cannot
produce a ¢ which satisfies our conditions (for example, where ¢ ¢ (U)). Also, as
noted above, his result shows that there is no projection onto any subspace
isomorphic to 4! ().

Suppose 7 is a finite positive Borel measure on [0, 1) for which (5) in the statement
of Theorem 3 holds for some y satisfying (U). Then we conjecture that the converse
of Theorem 3 holds, that is, if y satisfies (L), then there exists a bounded projection
from L'(n) onto A'(n). However, it appears to be quite difficult to construct
bounded projections in such generality, and so we settle for showing that Theorem 3
is ‘“best possible’’.

THEOREM 3. Let ¥ be a positive increasing function for x =0 which satisfies (U).
If ¥ satisfies (L), then there exists a finite positive absolutely continuous measure 7
on [0, 1) such that

(i) there exist positive constants ¢ and C with c/Yy(n) < S(l,r"dn(r) <C/y(n),
n=0,1,2,...,

(i) there exists a bounded projection from L' (y) onto A'(y).

Proof. According to (U), there exists a>0 such that ¥ (x) /x? is almost decreasing
for x=1. Choose any «>a—1 and let

dn(r) = [(1 = Y1/ (1-r)]"dr,
K@) =(a+ 1)1 —z)" @2 zeA,
Q) (W) = % X; [" K(wre)fre®) (1 = r)ravdr, feL'@).
It is easily seen from (L) that y is a finite measure. Also
(1=-n*=cl(1-ny@/aA-rHl-,

and so (Qf)(w) is defined and analytic for w € A. Let f€ A'(y). By expanding f
and K in their Taylor series, it is easily seen that Q f=f (for details see Lemmas 4 and
9 and Theorem 1 of [10]). Thus to establish (ii) it remains to show that Q is bounded
on L(n).
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To show Q is bounded on L!(y), first note that by the Lemma on p. 65 of [3],
M, (K, r)=0((1=r)~@*D), Then for fe L' (), Fubini’s Theorem yields

1

lorl = 5= | | lentenldedne)

1 1 pr 1 )
T 27 So S—w SOMI (K, pr)dn(p) |f(re”)| (1—r*)*rdf dr

= CSI SW Sl (l_pr)—(a+l)dn(p)lf(rei())l (l-rz)ardﬁdr.
0J—7xJ0O

Now, if we can prove that

8) S; (1 —pr)~ @ Ddy(p) = c[(1 =ty /(1 - )],

it will follow that

1 p7 .
lofll, < ¢ SOS If(re®)| [(1 = Py (1/(1 = )]~ 'rdb dr < c|f],
and this will complete the proof of (ii).
To prove (8) break the integral at r and apply (U) to the first half to obtain

S;(l—prr‘“*”dn(p) = S;(l—pr)*““’u—p)-’w(l/u—p))-‘dp
= j;(1—pr)-<“+”<1—p)"—‘[(l—p)“w(l/(l—p))]-'dp
<c[(1—-r)y 1/ (1—r))]"! 5 (1—pr)~ e+ (1—p)*=1dp
0

<c[(1=ryy(1/(1—r))] ! S; (1—p)a=*=24p

<c[(=r)*TyQ/(A=r)].

To estimate the other half of the integral in (8), we use the hypothesis (L), that is,
there exists e>0 such that Y (x)/x¢ is almost increasing. Clearly a>¢ so that
a>a—1>e—1, and so

Sl (1=pr)~ @+ D dy(p) = Sl (1=pr)~*D(1—p)~ 'y (1/(1~-p))~'dp

= [ (1=pn =D (1=p) (1 =p) ¥ (1/ (1=p))] *dp

r

sc(1=r)"Y/(1=r)~! Sl (1=pr)~C*D(1—p)~tdp

r
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1
<c(1-n~Y /(1= =" [ (1-p)'dp

<cl[(1—=r)**ty(1/(1—-r))]" N

This completes the proof of (8) and (ii).
To prove (i) we first observe that for §> —1 and n>0,

S;r"(l —r)Bdr=T(8+1)T(n+1)/T(B+n+2) < const. T(8+1)efn =1,

Now, to estimate jé r"dn(r) we break the integral at p=1-n "1, Making use of (U)
and the above observation we have

Spr”dn(r) = S"r’*[(l—r)n//(l/(l—r))r‘dr
0 0

= §”r"(1—r)“-‘[<1—r)wu/(l—r»r'dr
0

<cl=p)y (17 A=p1 ™" [ r"(1=n)~"dr

=c/y(n).
Using (L) and the fact that 7" <1 we have

Slr”dn(r) = Slr"[(l—r)\lx(l/(l—r))]‘ldr
p

P

= [ == =ny/a-m1-'ar

p

< c[(1=p) ¥ (1/(1—p))]~" S‘r"(l—r)f*‘dr

p
<c/y(n).
Thus Sé r*dy(r) <c/y(n). To obtain the lower bound on the moments of », we
again use (U). Letting p=1—n""! for n>1,

[irran( = [ rmdn(r) = el =p)y 1/ A=pD1 " | (1 =ne=tar

o )
= c[(1=p)*¥(1/(1—p))~'p" S‘ (1—r)"='dr
P

=c[(1-p)¥(1/(1—p))]1 'p"a~ " (1-p)*
=cp" Y (1/(1=p)) =c(1—=n"""/{¥(n) = c/Y(n).

This completes the proof of (i) and the theorem. m]



BOUNDED PROJECTIONS 19

Theorem 3’ is closely related to the authors’ Theorem 1 of [10] which also deals
with the existence of bounded projections. In the next section we shall discuss the
relationship in some detail.

In view of the above theorems one might ask about the existence of bounded
projections from L!(5) onto k'(y). Unlike the analytic case, in the harmonic case
the condition (L), i.e., that ¥/¢ be bounded, is not relevant. In fact, if one assumes
that  satisfies (U) and is sufficiently regular, then one can find a measure 5, with
moments which decrease like 1/¢(n), and a bounded projection on L!(n) with
range equal to A'(5). Most of the work involved in proving this was done by the
authors in [11]; we give more details at the end of the next section.

One can also consider the existence of bounded projections on the spaces A, ()
and Ay (¢) having ranges equal to

Ax(¥) = he (V) NA(A) and Ay (¥) = hy(¥) NA(A),

respectively. As before we assume y satisfies (U), and, since the case where ¢ is
bounded is well-known, we assume y (x) —> + o0 as x —> + 00, Suppose there exists a
bounded projection P on h,, () with range A, (Y) or a bounded projection P, on
ho () with range Ag(y). From Lemma 4, for a harmonic polynomial u,

. 1 T
(Pautre™ | 1/ (1=n) = 5= " |T_ PT,ul,dr

< sup|| 7, PT,uly = | P| Jull,-

The same computation is valid for Py. Thus, if P or P, is bounded, then P, is
bounded on the harmonic polynomials in the norm |- |,. Therefore, since the
harmonic polynomials are dense in hy(y), P, is bounded on Ay(y). Thus the
question of the existence of bounded projections P or P, is answered by Theorems 2
and 2’, that is, if ¢ satisfies (U) and (*) of Lemma 3, then bounded projections exists
if and only if ¥/y is bounded, i.e., ¥ is normal.

One can make similar statements for the spaces AL (), A} (¥) and their subspaces
of analytic functions AL (¥) and A} (¥), respectively.

For further results concerning the construction of projections related to the | - ||,
norm, we refer the reader to Theorem 1(i) of [10] and Theorems 1(ii) and 4 of [11].
We also remark that similar constructions are possible for the norm |- ||;, .

6. The duality problem. There is a very close relation between the above ideas
concerning conjugate functions and projections and a duality problem which the
authors studied in [10] and [11]. We shall briefly review the duality problem, discuss
its relation to the present paper, and then show how it may be used to obtain alter-
nate proofs of some of the above results.

As above, let ¥ be a positive increasing function for x = 0. Since the duality ideas
we are about to discuss do not apply to the space of bounded harmonic functions, we
shall assume that Y (x) — o0 as x —> oo, Also, we shall assume that ¥ is continuous
(if ¥ is not continuous then there is a continuous function ¥, such that
ho(Y)=ho(¢,) and h, (¥) =he (¥, ), with equivalent norms).
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It has been shown by Rubel and Shields [8] that 4., () is isometrically isomorphic
to the second dual of Ay (). In [10] and [11] the authors have studied the problem of
representing the intermediate space, the dual of %,(y), as a space of harmonic
functions with an L! norm. We say the harmonic duality problem is solvable for y if
there exists a finite positive Borel measure 5 on [0, 1) (but not supported on [0, p) for
any p <1) such that the topological isomorphisms #!(5)* ~ Ao, (¥), hy(¥)* ~ h'(n)
hold. (See Sections 4 and 5 for the definitions of these spaces.) More precisely, each
element of ki, (¥) may be identified with a linear functional on #!(n) by means of
the bilinear form

) (u,v) = Rl Xl K” u(re®yv(re=yy(1/(1—=r)) " 1dédy(r)
0 Jd—7

27
where u € h,, (¥) and ve h'(y), and every continuous linear functional is obtained
in this manner. The linear functional norm is equivalent to the #!(n) norm. The
relation Ay (Y)* ~h' () is defined in a similar manner. We note that 2! (9)* ~ Ao, (¥)
if and only if Ay (¥)* ~h'(n); see Theorem 1 of [11].

Analogously, we say that the analytic duality problem is solvable for ¢ if there
exists a measure 7 such that A'(9)* ~Ay (¥) and Ay(y¥)* ~A'(n). The action of
feAl(n) on g€ A, (V) is to be given by the bilinear form (9) restricted to the
analytic functions. Again, we note A! (9)* ~A, () if and only if Ay (¥)* ~A' ()
[11, Theorem 2, p. 263].

The relationship between the harmonic and analytic duality problems is closely tied
to questions about harmonic conjugates and is easily discussed in terms of the
analytic projection operator P, defined in Section 4. Recall that P, is bounded on any
of our spaces if and only if the conjugate function operator is bounded. Thus letting
h and A represent any of the spaces Ay (), k! (n) or hy, (¥), and Ay (¥), A' (), or
Ao (¥), respectively, then P, is a bounded projection of 4 onto A4 if and only if 4 is
self-conjugate. (We say that a space of harmonic functions 4 is self-conjugate if u € h
implies &#€ h.) As pointed out on p. 263 of [11], it is easy to see that if
ho(Y)*~h'(n) and A'(9)* ~ he (¥) and if P, is bounded on any one of these three
spaces, then it is bounded on all of them. In fact, in this case (P,u, v) = (4, P,v) for
all u€ ho, (), ve h'(y). The following theorem connects the harmonic and analytic
duality problems and reveals the strong connection between the analytic duality
problem and the conjugate problem.

THEOREM. [11, Theorem 3]. In order that A' (y)* ~ A (¥), it is necessary and
sufficient that he, (V) be self-conjugate and that h' (n)* ~he (V).

In [10] we solved the analytic (and hence the harmonic) duality problem for the
cases where y is normal. Thus the above theorem implies that &, () is self-conjugate
when ¢ is normal. (Actually, the definition of normal that we use here is slightly
broader than that in [10]. In the definition of normal in [10], we used increasing and
decreasing rather than almost increasing and almost decreasing. However, it is easy
to see that all the theorems and lemmas of [10] are valid and their proofs essentially
unchanged under our present definition of normal.) If we combine the above
theorem with Theorem 2’, we see that one cannot expect to be able to solve the
analytic duality problem for those y satisfying (U) but not (L).
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In [11] the authors studied the harmonic duality problem for those ¢ satisfying
(U). For ¢ satisfying (U) plus some regularity conditions, the authors solved the
harmonic duality problem [11, Theorem 4]. For details regarding these regularity
conditions see the discussions on pp. 265, 266, and 271 of [11]. (Incidentally,
condition III on p. 265 of that paper could be replaced by any of the conditions in
Lemma 3 of the present paper.) We point out here only that these conditions deal
with regularity of growth, not rate of growth, and do not exclude any obviously
interesting examples.

By Holder’s inequality the bilinear form (9) is defined for any ¢ and 4. Moreover,
in the spaces hy(¥), h'(y) and A (¥), point evaluation is a continuous linear
functional [11, Proposition 1]. According to Proposition 3 of [11], the function

k(re®y = ¥ k(nyri ein, k=t = [ rmp s =m " dn o,
= 0

is harmonic in A and is the reproducing kernel for the bilinear form (9). That is,
setting k,, (z) =k(wz) we have u(w) = (u, k,,) forallu € h, (¥), and v(w) = (k,,, v)
for all ve h' (4). Note that &, is harmonic in the disc of radius 1/|w|>1 and hence
belongs to both A, (¥) and h'(y).

If now h'(n)* ~he (¥), then the equivalence of norms requires that

(10) Ikl < ¥ (1/(1={w])).

See Section 5 for the definition of || ||,. Conversely, the estimate (10) implies that 5
is a solution to the harmonic duality problem [11, Theorem 1].

If k is the reproducing kernel for harmonic functions, with respect to the bilinear
form (9), then a simple computation shows that P,k is the reproducing kernel for
analytic functions. Moreover, 7 is a solution to the analytic duality problem if and
only if |k, |l, = c¢(1/(1—r)). See Theorem 2 of [11].

We shall need the following lemma relating the moments of a measure which
solves the harmonic duality problem to the Fourier coefficients of the reproducing
kernel.

LEMMA 5. Let ¥ be a positive continuous function for x =0 which increases to + o
and satisfies (U). If the measure v is a solution to the harmonic duality problem for
V¥, then there exist positive constants ¢ and C such that cx//(n)/k(n) = jor dy(r) <
Cy(n) /k(n), n=0,1,2,..., where k is the reproducing kernel for the duality.

Proof. Let v,(z)=z", n=0. Now v, € h'(y) and

— 1 bem n ,ind — ! n
lonlly = 5 |, §"_Irme™dodn(r) = | rdn(r).

Since A (5)* ~ hy, (¥), there exist C, ¢>0 such that
cllvnll, = sup{|(w, v,)|: flully, =1} = Cllv,|l,, n=0,1,2,....

For u€ h,, (¥) we have
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(,v,) = — S' S” u(re®yrie=m0y (1/(1—r)) "' d0dn(r)
27 0J—nm

= j'a(n)rz"zp(l/(l—r))-‘dn(r) — a(n)/k(n).
0

Thus, there exist C, ¢ >0 such that c||v, ||, < sup{|@(n)| : ||ull, =1 }/k(n) <C|lv, [
n=0,1,2,.... Hence, to prove the lemma, it suffices to show there exist C, ¢>0
such that cy(n) ssup(|@(n)|: |ully<1}=Cy¥(n), n=0,1,2,.... For |ul, <1,
|u(re®)| =y (1/(1-r)), and

la(n)| < (21r)—'r_"r lu(re®ye=n do < r="y(1/(1 — r)).

Thus |a(n)| sinf{r ="y (1/(1—r)) :r<1}. Taking u(z) =v,(z)/||v, ly» we have
f,(n) =1/|v, |y = 1/sup{r"y(1/(1—r)) " 1:r<1}
=inf{r "y (1/(1=r)):r<ij.

Therefore, sup{|a(n)|: |ul,<1}=inf{r="¢(1/(1—r)):r<1}, and it suffices to
show cy(n) <inf{r="y(1/(1—-r)):r<1)y=Cy(n), n=0,1,2,.... The right in-
equality is easy since, letting r=1—n"1,

infr="y(1/(0—r)) < (1—=n"YHY""Y(n) <4y(n), n=2,3,....

As for the left inequality, for each n>0 let j, be the nonnegative integer such that
2n<n<2/n*! For 0<j=<j, wehave 2’ <nand, for 1 -2/n " '<r=<1-2/"1np"1,

P/ (1=1) = (1 =27~ Yy="y(277n) = e ' ciy(n)
where the last inequality uses Lemma 1(i). Since lim;_, ezj“]c{ = oo,
c=inf{e? '¢f:j=0]>0.

Hence, for 1=2/"n"!'<r<1-—(2n)"! we have r="y(1/(1=r)) zcy(n). For
1—Q2n) '=r<l, r "y (1/(1=r)) 2y (2n) =y (n). For0<r=<1-2/nn-1,

F(1/(1 = 1)) = (1 —2nn=1)="4(0) = e?"y(0).

Now by (U) there exists a constant ¢, >0 such that ¥ (x) <c,e*’? for all x=0. Thus
Y(n) <c,e™?<c,e?”, and so, for 0<r<1-—2/nn-1,

rYt 1/ (1 =r)) = ¢ 'Y (0)¢ (n).

This completes the proof of the lemma.

Assuming A, (7)* ~ he (¥), or equivalently kg (¢)* ~h' (), an easy computation
with Fourier expansions shows P, k,, € h!(n) represents the continuous linear func-
tional u—> (P,u)(w) on h.(¥) or hy(y). Thus the following theorem, which
estimates the norm of these linear functionals, contains essentially the information in
Theorems 1(i), 1’(i), 2(i) and 2’(i).
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THEOREM 4. Let { be a positive continuous function for x =0 which increases to
+ oo and satisfies (U). If the measure v is a solution to the harmonic duality problem
for ¢, and if k is the reproducing kernel for the duality, then there exist positive
constants ¢ and C such that ¢y (1/(1—r)) < | Pkl < Cy(1/(1-r)), refo, ).

Proof. The proof of Theorem 1(i) shows that if u € A, (¥), then [((Pyu)(r)| <
cllully ¥ (1/(1—=r)). Thus from the assumption that ! (n)* ~ Ao (¥), we have

Pk, ll, < csup{|(u, Pok)| : [ully = 1)
= csup{|(Pu)(r)] : |Jull, = 1) = CY(1/(1—=r)).

For the other half, first apply Hardy’s inequality [3, p. 48] to P,k, on a circle of
radius p<1, to obtain Lo_o(n+1) k. (n)|p" <nwM,(P,k,,p). Now, integrating

with respect to dy (), Lo (n+1) "'k, (n)| §,0" dn(p) < || P,k,|,- Since k,(n) =

r"k(n), Lemma 5 gives Lo o(n+1) "'y (n)r"<c||P,k, ,» and then Lemma 1(v)
completes the proof. O

Let us assume y satisfies the hypothesis of Theorem 4. The right hand inequality in
Theorem 4 can be used to prove the conclusion of Theorems 1(i) and 2(i); of course
we used the same computation to prove the right hand inequality in Theorem 4 as we
did to prove Theorem 1(i).

However, the left hand inequality in Theorem 4 gives us another proof (one that
does not use explicit examples) of the conclusion of Theorem 2’(i), namely, that the
Y function is “‘best possible’’ in Theorems 1(i) and 2(i). The proof goes as follows.
Suppose P,:hy(y) — h, (¢*) is everywhere defined; then by the closed graph
theorem it is bounded, that is, there is a constant ¢>0 such that for {ju|, <1,
[(P,u)(w)| =cy*(1/(1—|w|)). By the duality ky(¢)* ~h'(5),

Pk I, scsup{|(u, Pk,)| : flully, < 1)
= csup{|(P,u)(r)| : |ully = 1};

and, therefore, ||P,k,|, <c¢*(1/(1—r)). Now the left hand inequality of Theorem
4 implies ¥/¢* is bounded.

The duality problem is also closely related to the existence of certain bounded
projections. According to Theorem 1 of [11] the duality 4y (¥)* ~h! () is equivalent
to the boundedness of the operator S: M(A) — L! (%) defined by

(Sv)(w) = 717? SAk(Wz-)l#(l/(l = z|)~ldr(z), veM(A), weA,

where M(A) is the space of finite complex Borel measures on A. To see the
connection between this operator and the work in Section 5, identify L!(5) with the
subspace of M(A) consisting of the measures absolutely continuous with respect to
dOdy(r). Then for fe L!(n),

1 T . .
SfW) = 5 SQS k(wre =)y (1/(1=r)) "1 f(re®) df dn(r);

—_—m

and, because of the reproducing property of k, S is a projection with range h!(y).
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Similarly, Theorem 2 of [11] says that A, (¥)* ~A'(3) if and only if

st 2 (f

P, k(wre =y (1/(1=r)) "' f(re®®) do dy(r)

is a bounded projection on L' (n) with range A' ().

The difficulty in using these results to study the question of the existence of
bounded projections on L‘(n) with range A! (n) is that the measure 5 occurs as a
(nonunique) solution to the duality problem for some . Consequently, we have not
been able to use these results to improve the theorems of Section 5. However, we can
use these results to justify our comment at the end of Section 5 that for a measure 5
with moments decreasing like 1/y(n) (where ¢ satisfies (U)) the question of the
existence of a bounded projection on L' () with range 2'(y) does not depend on
the boundedness of the ratio ¥/y. Indeed, as stated above, in Theorem 4 of [11] we
solved the harmonic duality problem for a large class of ¥ satisfying (U) and some
additional regularity (but not growth) conditions. In particular, we solved the duality
problem for a large class of y that are not normal, i.e., for which /¢ is not
bounded. We actually obtained a sequence of solutions 7,, m=2,3,4,..., with
associated reproducing kernels having coefficients k(n) =y (n)"”. Taking the solu-
tion with m=2, Lemma 5 tells us c/y (n) < [ér" dn, (r) =C/y(n); and by the above
quoted results from [11],

Sf(w) = L Sl S" k(wre =)y (1/(1=r)) "' f(re) dO dn, (r)
27 Jo m2

is a bounded projection of L!(%,) with range h!(,).

7. Homogeneous Banach spaces. Y. Katznelson has generalized the L7 (1 <p <o)
spaces on the unit circle by introducing the following class of spaces, which he calls
homogeneous Banach spaces (see [12] and [13], p. 14).

A homogeneous Banach space B is a vector subspace of L' of the unit circle,
together with a norm with respect to which B is complete, and which satisfies the
following conditions. Here R, denotes the operator of rotation by w (|{w|=1)
defined by (R, f)(z) =f(wz). As before, A denotes the open unit disc.

a) If fe B, we dA, then R,,f€ Band ||R,f|z=|fll5-

b) If f€ B, we 3A, then lim |[R.f—R, f||=0 ({— w, {€4A).

We wish to thank the referee for pointing out to us that the proof of Theorem 1
establishes the following result. If » is a harmonic function in A and if r is given
(0<r<1) then u, denotes the function defined on A by the formula: u,(e’) =
u(re®y. We define Mg (u, r) by: Mg(u, r) = ||u,|s-

THEOREM. Let B be a homogeneous Banach space that contains all continuous
Sfunctions. Let y be a function satisfying the conditions of Theorem 1, and let u be a
harmonic function in the unit disc. ~

If Mg(u, r)=0(1/(1—r))), then Mg (i, r)=0((1/(1—-r))).

In view of this result, Theorem 1’ of Section 3 shows that the L! and L * norms
represent the ‘‘worst possible’’ case.
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