ON THE CLASSIFICATION OF STATIONARY SETS

Eric K. van Douwen and David J. Lutzer

1. INTRODUCTION

In this paper, a cardinal is an initial ordinal and a cardinal a is regular provided
it is not the sum of fewer, smaller cardinals. We will reserve the symbol k for
a fixed regular uncountable cardinal. Viewing the ordinal k as the set of smaller
ordinals we will speak of “subsets of k” instead of “subsets of [0,«).” (However,
see the comments on special notations at the end of this section.)

The set k will always carry the usual order topology and subsets S of k will
always be endowed with the relative topology inherited from k. We define

cub(x) = {S C k:Sis closed and unbounded (equivalently, cofinal in k)}

We say that a set S C « is stationary if S N C # @ for each C € cub (k) and that
S is bistationary if both S and x — S are stationary.

Regular cardinals and their stationary subsets have long been important tools
in topology, especially as indexing and constructive devices, e.g., in the recent
papers [4], [5], [7], [8]. They have received less attention as topological objects
in their own right, except in the theory of ordered spaces where stationary sets
in regular cardinals are viewed as the archetypical non-paracompact ordered spaces.
More precisely, it is proved in [3] that if X is (a subspace of) a linearly ordered
topological space, then X is not paracompact if and only if some closed subspace
of X is homeomorphic to a stationary set in an uncountable regular cardinal.
That theorem raises the question of whether two stationary subsets of a fixed
k can be distinguished topologically from each other. Phrased in that way, the
question has an. immediate affirmative answer since, if S is a bistationary set
in k, then no member of cub(k) can even be mapped continuously onto a cofinal
subset of S. (Further, the existence of bistationary sets is guaranteed by the
Ulam-Solovay theorem cited as Theorem E below.) However it is more difficult
to determine whether two bistationary sets in k, e.g., a bistationary set and its
complement, are of different topological types, especially if k = w,. In this paper
we settle that question by proving

A. THEOREM. If S and T are disjoint bistationary subsets of «, then there
is no continuous mapping of S onto a cofinal subset of T.

Indeed we show that there are many topologically incomparable types of
stationary subsets of k by proving
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B. THEOREM. There is a collection % of bistationary subsets of « such that:
(1) & has cardinality 2*;

(2) if S# T belong to & then there is no continuous mapping from S onto
a cofinal subset of T.

The key step in proving Theorems A and B is

C. THEOREM. If S is a stationary subset of v and if T is a cofinal subset
of x which is a continuous image of S, then T is stationary and S — T is not
stationary.

The condition in the conclusion of Theorem C, when made suitably symmetric,
gives a useful necessary condition for homeomorphism of two stationary subsets
S and T of k, namely, that the set SAT = (S — T) U (T — S) must be nonstationary,
so that S N T must be very large indeed. Furthermore, even though the condition
“S AT is nonstationary” is not sufficient for homeomorphism of S and T, it is
possible to translate the condition into a functional relationship between S and
T provided one is willing to consider the class of measurable functions (see Section
4 for precise details) instead of the more restrictive class of continuous functions.

The o-algebra with respect to which our functions are measurable is a generali-
zation of the Borel o-algebra. To avoid cluttering this Introduction with new
terminology, we preview our results on measurable functions by considering the
case where k = w;; in this case no such generalization is required. Recall that
the Borel o-algebra on a space X, denoted %7 (X), is the smallest o-algebra of
subsets of X to which each open set belongs, and that two spaces X and Y are
Borel-isomorphic if there is a bijection f: X — Y such that B € Z7/(X) if and only
if f [B] € #7(Y). We prove

D. THEOREM. Let S and T be stationary subsets of w,. Then the following
are equivalent: :

(1) SATis nonstatiénary;
(2) S and T are Borel isomorphic;

(3) there are continuous functions f: S — T and g: T — S, not necessarily surjec-
tive, such that both f [S] and g [T] are uncountable.

Our paper is organized as follows. Section 2 contains characterizations of
stationary sets in regular cardinals in terms of a certain o-algebra which generalizes
the usual Borel o-algebra. Section 3 describes another generalization of the Borel
o-algebra which can help in understanding the o-algebra used in section 2. In
section 4 we introduce measurable and strongly measurable functions and study
their interrelations; these mappings, and not the continuous mappings, are appro-
priate for the study of stationary sets. Section 5 presents our main results on
the classification of stationary sets. In section 6 we characterize stationary sets
using mappings into metrizable spaces; these results are not directly related to
the problem of classifying stationary sets, but the methods employed to obtain
them are similar to the techniques used in earlier sections of the paper. Section
7 displays examples to which earlier sections refer and section 8 presents a list
of open questions.
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The main part of the paper is self-contained except for the following important
theorem due (essentially) to Ulam [12] for successor cardinals and to Solovay
[11] for the general case.

E. THEOREM. LetS be a stationary subset of a regular uncountable cardinal
k. Then there is a family Z of pairwise disjoint stationary subsets of x, each
contained in S, such that & has cardinality «.

The cardinality of a set S is denoted by |S| and the power set of S is denoted
by Z(S). Further, since « will always denote a regular uncountable cardinal, the
statements “S is a cofinal subset of k” and “S C k has |S| = k” are equivalent.
Throughout the paper we will identify k with the set [0,k) of ordinals less than
k. However, when forced to consider initial subspaces of k we will write [O,)\)
instead of merely A so that the reader can always determine whether we mean
a large subspace of k or just the point A of the set k. Having given that forewarning,
we hope that our notation will clarify rather than obfuscate the exposition. Finally,
unless otherwise noted, all closures are taken in the space «.

All of our theorems involve the regular cardinal k, but that does not cause
any essential loss of generality since, for any cardinal (i.e.,, initial ordinal) A,
there is a closed cofinal copy of the regular cardinal c¢f(\) in A and the stationary
subsets of A are entirely classified (modulo nonstationary difference) by their traces
on cf(A\). The case where cf (\) = w, is uninteresting and the cases in which cf(\) > o,
are covered by our theorems.

Our terminology and notation concerning linearly ordered sets and spaces
generally follows that of [3].

2. MEASURABLE SETS AND CHARACTERIZATIONS OF STATIONARY SETS

The collection cub(k) and the notions of stationary and bistationary subsets
of the regular uncountable cardinal k were defined in the Introduction. We now
generalize these notions in a natural manner.

2.1 Definition. Let S be a cofinal subset of k. Define

cub(S) = {A C S: A is relatively closed and | A| = k};

S(S) = {A: A C S and A is stationary in «};

A (S) = {A C S:either A or S — A contains a member of cub(S)};
A . (S) = {A C S: A contains a member of cub(S)}.

Members of .# (S) are called measurable subsets of S.

2.2 Remarks. IfS is cofinal in k, then every relatively open subset of S belongs
to # (S) and .# (S) is a o-algebra by (2.3c) or (2.5), depending upon whether or
not S € S(k). Hence Z/(S) C .# (S) where Z/(S) is the Borel o-algebra of the
space S. For successor cardinals k, Proposition (5.1a) explains exactly when
F/(S) = A (S) for a stationary subset S of k. The result that Z/(S) = .# (S) for
each stationary set S in w, is due independently to Rao and Rao [9] and to the
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two authors of the present paper. If S € #(x) then
cub(S) ={SN C:C € cub )} C Z(S).

And if S & #(x) then #(S) = @ even though cub(S) and .# (S) will be large
collections; see (2.5). .
We begin with two éasy lemmas which will be needed in later sections.
2.3 LEMMA. LetS € (k). Then:

(a) cub(S) C £(S) C F(x);

(b) the set of non-isolated points of S belongs to cub(S) C #(8);

(c) if {C.:a € A} C cub(S) and if |A| < « then n {C.:a € A} € cub(S);

*

(d) if N, & ZL(x) foreacha € A andif|A| < k, then U {N_:a € A} & F(x)

Proof. Assertions (a) and (b) are clear, and (c) follows from the corresponding
well-known result for members of cub (k) while (d) follows from (c).

Using (2.3c) we can easily prove the following well known “diagonal intersection
lemma” which is needed at several points in the sequel.

2.4 LEMMA. LetS € S(x) and for each x € S let C, € cub(x). Then the set
D={x€S:x€C, foreachy € SN [0,x)} belongs to cub(S).

Proof. For each x € k — S let C, = k. Consider the set
E={x € xix € C, for each y <x}.

The set E is closed in k. For suppose x € E and let y < x be arbitrary. Then
x € (E N (y,x])". But clearly E N (y,x] C C, so that x € C, since C, is closed.
Next, E is cofinal in . For let w € k. Because of (2.3c) we can inductively define
a sequence (x, ) in k by

Xo=w and x,,,= min( ﬂ {C,;y<x,.}nN (Xn,K)).

Then the ordinal z = sup{x,: n € w} belongs to E and is greater than w. Therefore
E € cub(k)sothat ENS € cub(S). But E N S =D.

Our next result characterizes stationary subsets of x and is used repeatedly
in later sections. The equivalence of (a) and (f) is the contrapositive of the well
known Pressing Down Lemma.

2.5 THEOREM. LetS C « have cardinality «. The following are equivalent:
(a) S is not stationary;

(b) if T C S has |T| = k, then some relatively closed discrete subspace D of
Shas |D|=xand D C T;
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(c) there are two disjoint members of cub(S);
(d) Z(S) =.#(S);

(e) there is a function f: S — « such that if x € S — {0} ¢ f(x) <x and
foreachy € x, |7 [{y}1| < x; .

(f) there is a function g: S — k such that if x € S — {0} then g(x) <x and
foreachy € k, g7" [{y}] & L (x).

Proof. We show that (a) = (b) = (c) = (a), then that (b) = (d) = (a) and
finally that (a) = (e) = (f) = (a).

(@) = (b): Since Sisnon-stationarysomeC € cub{(x)hasS N C= @¢.Let{I:y €T}
be the family of maximal convex subsets of k —S. ThenT\, = {y €T:I, N T # § }
has cardinality k; for each y € I’y choose d, € TN I,. Then D= {d,:vy € I,}
is the required relatively closed, discrete subset of S having D C T.

(b) = (c¢): Let D be a relatively closed, discrete subset of S having cardinality
k and write D as the union of two disjoint subsets D, and D, each with cardinality
K.

(¢) = (a): Given A and B, disjoint members of cub(S), the set A N B, where the
closure is taken in k, is a member of cub (k) which is disjoint from S.

b)=>(): Let T € £(S). If |T| <k then S —T contains S N [x,k) for some x
so that T € .#(S). And if |T| = « then (b) yields a set D € cub(S) with D C T,
so that T € .#Z (S).

(d) = (a): If S is stationary in k, then it follows from Theorem E of the Introduction
that there are disjoint subsets T, and T, of S, each belonging to (k). But then
neither T, nor S — T, can contain a member of cub (S)j contrary to (d).

(a) = (e): Suppose C is a member of cub (k) which misses S. Define f: S — « by

£x) { if x € S and x < min (C)
X) = ~
max{y € C:y<x} ifx € Sandx > min(C).

(e) = (f): This implication is obvious.

(f)= (a): Given g: S — « as in (f), let C, € cub(x) have C, N g ' {y}1 =9
for each y € k. Define

A={xEK:x€ n {Cy:y<x}}

Clearly SN A= ¢ and, by (2.4), A € cub(k). But then S & .%(«x), completing
the proof.

2.6 COROLLARY. LetS be cofinal in . Then:
@ . ZQ) ={SN A:A e .#«K)};
b) #,.6)={SN A: A € .#,()}if and only if S € F(x).
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Proof. Write #'={S N A: A € #(k)}. Suppose B € .#(S) is disjoint from
C € cub(S). Then B N C = P so that B € .# (k) and hence B € .4 And if B
contains C € cub(S) then A=B U C € .# (k) so that again B=S N A € 4.
Thus #(S) C #. Conversely, suppose B € #. If S is not stationary in k then
A (S) = #(S) and there is nothing to prove. And if S € #(k) then B € .# (S)
because for each C € cub(k), C N S € cub(S). Thus, (a) is proved. Assertion (b) is
easily verified.

One important consequence of (2.5) is that the property of being a stationary
set is a topological property which does not depend on the particular way in which
the set is embedded in k. We will see in (5.2b) that this is also true for the
property of being bistationary. Furthermore, as the reader will see in Section
4, functions which are considerably more general than homeomorphisms preserve
stationary sets.

2.7 COROLLARY. Suppose S € () and h is a homeomorphism from S into
k. Then h [S] € S(x).

Proof. Since h[S] is cofinal in k, the result follows from the equivalence
of (a) and (c) in (2.5).

3. A GENERALIZATION OF THE BOREL oc-ALGEBRA

In certain cases, it is possible to relate .# (S) to other algebras of subsets of
S. As already noted, if S is stationary in w, then .# (S) is precisely %7(S), the
usual Borel o-algebra of subsets of the space S. In case «k is a regular cardinal
greater than ,, # () 2 2 (k). (See Example 7.1.) We now introduce a generali-
zation of the Borel o-algebra.

3.1 Definition. Let X be a topological space and let A be a cardinal number.
Then % (X, \) is the smallest collection of subsets of the space X such that:

(a) each open subset of X belongs to Z (X, \);
b) ifSe Z(X,N)thenX —S € Z(X,\);

(c) if #C Z(X,N) and if | | < A then n & e ZXN\).

It is clear that for any space X, Z/(X) = Z (X, w,).

3.2 PROPOSITION. Suppose S is a cofinal subset of a successor cardinal k.
Let o7 be the family of subsets of S which are either unions of fewer than x closed
subsets of S or intersections of fewer than x open subsets of S. Then

MHOS) =A = Z(S,x).

Proof. Letk =\". We show that .# (S) C .& C £(S,«) C .#(S). To prove that
A (S) C o, let B € .# (S). If | B| < k, then B is the union of fewer than « closed
sets. If | B| = k and if B is disjoint from some C € cub (S) write
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k—C= U {I,.y€eT}

where the 1’s are pairwise disjoint convex open sets in k. Let
r={rer:I,-B#9}.

For each v €T, index I, — B as {b(y,a): 1 = a <\}, repetitions being allowed.
For 1=a<\ let C,=cl({b(y,a):y€T,} and let G, =SN k —C,) for

l1=a<\XLetGy=(x— C) N S. Then B= n {G.:0 =a <\}, showing that

B € & provided B is disjoint from some member of cub(S). Next suppose
B € .# (S) contains a set C € cub(S). Then S — B € &/ by the first part of the
proof so that B € .& since .« is closed under the formation of complements (in S).
Therefore .# (S) C «/. That &/ C #Z(S,x) is automatic. That % (S,x) C .# (S)
follows from (2.5d) if S is non-stationary and from (2.3c) in case S is stationary
in k.

s

3.3 Remark. Proposition 3.2 is not true if k is a regular cardinal which is
not a successor; i.e., if k is a regular limit cardinal. See Example 7.3.

4. MEASURABLE FUNCTIONS

Having defined the collections .# (S) and .# , (S) for each cofinal subset S of
Kk, we can now introduce the special functions which are appropriate to the study
of (k).

4.1 Definition. Let S and T be cofinal subsets of k and let f: S— T. Then
fis measurableif f ' [B] € .# (S) whenever B € .# (T) and f is strongly measurable
if f is measurable and for each y € T the fiber f™' [{y}] of f is non-stationary.
Finally, a function f: S — T is a measurable isomorphism if f is a bijection having
the property that A € .# (S) if and only if f [A] € .# (T).

We remark that the range set T in the definitions of measurable and strongly
measurable functions is irrelevant in the light of (2.6a); i.e., f: S — T is measurable
(respectively, strongly measurable) if and only if f: S — «is measurable (respectively,
strongly measurable). We also remark that the definition of strong measurability
is topological, because of (2.7).

The relationship between measurable functions and continuous functions is
summarized by

4.2 PROPOSITION. LetS be a cofinal subset of x and let f: S — k.
(a) If f is continuous then f is measurable.
(b) If f is continuous and has |f [S]| = « then f is strongly measurable.

Proof. To prove the first assertion, note that if C € cub(k) then f ' [C] is
closed in S so that f ' [C] € .# (S).
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The second assertion is trivial in case S & .#(k), so assume S € .¥(x) and yet
for some y € k the set f* [{y}] is stationary. Let D= f~'[[y + 1,k)]. Then D
belongs to cub(x) and yet is disjoint from the stationary set f™' [{y}]. But that
is impossible because S is stationary.

Our next major result gives a characterization of strongly measurable functions
which is crucial for Section 5. We need a preliminary lemma.

4.3 LEMMA. Let 7 be a pairwise disjoint collection of non-stationary subsets
of k. and suppose S C U 7 where S € # (k). Then for some C € cub(S), |CNT| =1
foreach T € 7. ‘

Proof. For each x € S let T'(x) be the unique member of .7 which contains
x and let C(x) € cub(x) have C(x) N T(x) = @. According to (2.4) the set
C={xeS:x€C(y)foreachy € SN [0,)}

belongs to cub(S). Suppose T €  and yet C N T contains two points x, < x,.
Then x, € n {C(y::y€eSandy<x,} C C(x,) so that x, € C(x,)NnT.

But that is impossible because x, € T forces T = T(x ;) sothatC(x,) N T=@.

4.4 THEOREM. Suppose S € .#(k) and suppose f: S — « has the property that
the set T = f [S] is cofinal in «. Then the following are equivalent:

(@) if A € # , (T) thenf ' [A] € #, (S);
(b) f is strongly measurable;
(©) if A € F(S) then f [A] € F(x);
(d) there is a set F € cub(S) such that f(x) = x for every x € F.
Proof. We show that (a) = (b) = (c) = (d) = (a).
(a) > (b): Foreachy € T, T — {y} contains some C € cub(T) so that

£ [T - {y}] €#.,(S).

Since S € .#(k), it follows that f™* [{y}] is non-stationary. Obviously (a) implies
that f is measurable.

() = (c): By (4.3) there is a C € cub(S) having |C N ! [{y}]| =1 for each
y € T. Let A € ¥(S) and suppose that f [A] &€ #(x). Then T, = f[A N C] &€ (k)
and yet |T,| = k so that from (2.5d) .# (T,) = #(T,). Let B € #Z(A N C). Then
f[B] € #(T,) so that by (2.6a) f[B] =T, N D for some D € .# (T). But then
f'[D] € #@) and B = (A N C) N f'[D] showing that B € .# (A N C),
againin the light of (2.6a). Therefore.# (A N C) = Z(A N C), and that is impossible
> because from A € %°(S) and C € cub(S) it follows that A N C € (k). (See (2.5d).)

(¢) = (d): According to (2.5f) the set S, = {x € S: f(x) < x} is not stationary; let
C,Ecub(x) have C, N S, = P. Let S, = {x € S: f(x) > x} and for each y € f[S,]
let m(y) = min(S, N f 7' [{y}]). Then m(y) <y for each y € f[S,] and m is
one-to-one. It follows from (2.5f) that f[S,] is not stationary. By (c), neither is
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S,; let C, € cub(k) have S, N C, = @. Then C, N C, € cub(k)-so that, S being
stationary, the set F =S N (C, N C,) is the required member of cub (S).

(d)=> (a): Let A € .#,(T). Then for some C € cub(T), A D C. Then C € cub(k)
so that F N C € cub(S) because F € cub(S) and S € .#(x). But since f(x) = x for
eachx e FFFNCCc FN Ac f '[A] sothat f'[A] € .4, (S), as required.

Our first corollary significantly sharpens (2.7) because of (4.2).

4.5 COROLLARY. Suppose thatS € ¥(x) and that f: S — K is strongly meas-
urable. Then £ [S] € ¥(k).

Proof. Write T = f[S]. If |T| <x then S is the union of fewer than «
non-stationary sets, namely the sets f ' [{y}] for y € T, and that is impossible
by (2.3d). Hence T is cofinal in k so that (4.4c) applies.

Our second corollary summarizes the behavior of measurable and strongly
measurable functions with respect to function composition and restriction.

4.6 COROLLARY. LetR, S and T be cofinal sets in k.

(a) Iff: R — S and g: S — T are both measurable (respectively, strongly measura-
ble), then so is gof.

(b) If h: S — T is measurable (respectively, strongly measurable) and if R C S,
then h|R is also measurable (respectively, strongly measurable).

Proof. Assertion (a) for measurable functions is trivial. If R is non-stationary,

then assertion (a) for strongly measurable functions is obvious. If R € #(k), use
(4.4d).

Assertion (b) for measurable functions is an immediate consequence of (2.6),
and assertion (b) for strongly measurable functions is then obvious.

5. MAPPING CLASSIFICATIONS OF STATIONARY SETS

Throughout this section k denotes a fixed uncountable regular cardinal.

5.1 THEOREM. Suppose S and T are cofinal subsets of . Then the following
statements are equivalent:

(@ S — T & F(x);

(b) thereis a continuous f: S — T, not necessarily surjective, such that |f [S}| = «;
(c) there is a one-to-one measurable map from S onto T,

(d) there is a strongly measurable mapping from S into T.

Proof. There are two cases, depending upon whether S is stationary in k.

Suppose S & #(x). We shall show that assertions (a), (b), (c) and (d) are always
true in this case. If S & (k) then surely S — T & (k). The proof that (a) = (b)
in Theorem 2.5 shows that S can be mapped continuously onto a discrete space
D having cardinality k; since such a D is homeomorphic to the set of isolated
points of T, we have (b). To obtain (c) and (d), take any bijection f: S — T. Since
S & #(k), (2.5d) guarantees that f is strongly measurable.
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The interesting case in the proof of (5.1) occurs when S € #(k). We prove
(a) = (c) = (d) = (a) and then (a) = (b) = (d).

(a) > (c): Since S~ T & #(k), some C € cub(x) is disjoint from S — T. Then
SNCEcub(S) and S N C C S N T. Let B be the set of nonisolated points
of the subspace S N C. Then |(S N C) — B| =k = |T — B|. Let f be any bijection
from S onto T having f(x) = x for each x € B. Then f is (strongly) measurable by
(4.4d) and (2.3b).

(c) = (d): This follows from the definition of strong measurability.

d)=> _(a): In the light of (4.4d), some F € cub(S) has f(x) = x for each x € F.
Then F is a member of cub (k) which is disjoint from S — T, s0S — T & (k).

(a) > (b): Let C € cub(k) be disjoint from S — T. Then S N C € cub(S) so that
by [2, III, Thm. 8] there is a continuous f: S— S N C having f(x) = x for each
x € S N C. (Indeed, since S N C is cofinal, one can define f by

f(x) =min({y € SN C:x =< y}).)

Since S N C C T, this f is the required continuous function.
(b) = (d): Apply (4.2b).

5.2 Remarks. (a) Theorems A and C of the Introduction follow immediately
from (5.1).

(b) An easy consequence of (5.1a) is that the property of being a bistationary
set is a topological property, independent of the way in which the bistationary
set is embedded in k. (Compare Remark 2.6.)

(c) It also follows from (5.1) that a one-to-one strongly measurable mapping
f from a stationary set S onto a stationary set T may fail to be a measurable
isomorphism in the sense of (4.1): take S to be a bistationary subset of w, =T
and apply (5.1). .

We now turn to the proof of an expanded version of Theorem B of the Introduction.
5.3 THEOREM. There is a collection # of bistationary subsets of k such that:
(@ |Z]| = 2% ,

(b) if S# T are in & then no continuous f: S— T has |f[S]]| = k;

(c) if S#T are in & then there is no one-to-one measurable function from
S into T,

(d) if S#T are in # then there is no strongly measurable function from S
into T.

Proof. In the light of (4.2) and (5.1) it will be enough to find & satisfying
(a) and (d). Using Theorem E of the Introduction, let &£ be a family of pairwise
disjoint stationary subsets of k having | Z| = k. Write

P ={S,:a<k}U {T:a <k}

where S, # S;, T, # T, for distinct o, < k, and where S, # T, for any o,B < k.
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For each A C k define U(A)=(U {S.:a € A}) V) (U {T.:x Ex —A}).

Each U(A) contains a member of 4 and is disjoint from another member of Z;
hence each U(A) is bistationary. Further, if A and B are distinct subsets of k,
then U(A) — U(B) contains a member of & so that U(A) —U@B) € #(x). It
follows from (5.1) that there is no strongly measurable mapping from U(A) into
U (B).

We conclude this section by establishing the relevant generalization of the
Introduction’s Theorem D. -

5.4 THEOREM. LetSandT becofinalsubsetsof x. The following are equivalent:
(@) SAT & F(x);

(b) there is a measurable isomorphism g from S onto T;

(c) there are strongly measurable functions g:S— T and h: T — S.

Proof. If neither S nor T is stationary in k, then (a), (b) and (c) are true,
where g is any bijection from S onto T and h = g~* (see 2.5d). We consider only
the case where S is stationary in k, the other case being analogous. Suppose (a)
holds. Let C € cub(x) have CN (SAT)=@8. ThenCNS=CN SNT)=CNT
so that since C N S € cub(S) C #(x), T € #(x) and hence C N T € cub(T).
Let D be the set of non-isolated points in the space C N (S N T). Then
D € cub(S) N cub(T) and |S—D|=«=|T~D|. Hence there is a bijection
g: S — T having g(x) = x for each x € D; then g is the function required by (b).

Clearly (b) implies (c) and the implication (c) = (a) follows immediately from
(5.1a) and (2.3d).

6. STATIONARY SETS AND METRIZABLE SPACES

Stationary sets can also be characterized in terms of the ways in which they
can be mapped into metrizable spaces. While the results of this section do not
contribute to the classification of stationary sets, they do provide new ways for
recognizing stationary sets and show that the notion of a measurable mapping
has wider applications. The technique used to prove (a) = (b) in Theorem (6.2)
below is the same as the technique used to prove (b) = (c) in Theorem 4.4. We
begin by giving a slight generalization of the notion of a measurable mapping.

6.1 Definition. Let X be any topological space and let S be a cofinal subset
of k. A function f: S— X is measurable if £~ [U] € .# (S) for each open set U
in X,

It is clear that f: S — X is measurable if and only if f ~*[C] € .# (S) for each
closed set C in X. Therefore, this wider definition of measurable mappings coincides
with our earlier definition in case X = T is a cofinal subset of .

Recall that a space X is subparacompact provided each open cover of X has
a o-discrete closed refinement [B].
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6.2 THEOREM. IfS is a cofinal subset of «, the following are equivalent:
(@) S is stationary;

(b) if X is any subparacompact space in which each point is the intersection
of fewer that k open sets and if £f:S— X is a measurable surjection, then
“[{x}] € #,(S) for somex € X;

(c) if £f: S — X is a continuous mapping from S into a metrzzable space X, then
“H{x}] € # . (S) for some x € X;

(d) if £: S —> X is continuous and if X is metrizable then If [S]] < x;

(e} if £:S— X is continuous and if X is metrizable, then |f7' [{x}]| =k for
some x € X,

Proof. Since (b) = (c¢) and (d) = (e) are trivial, it suffices to prove (a)=> (b),
(c) = (d), and (e) = (a).

(@) = b): Suppose X and f are as in (b) and thatf " [{x}] & .# . (S) for each x € X.
By (2.3¢), n & € # ,(S) whenever &/ C .# ,(S) has || <«k; hence each

x € X has a neighborhood U, such that £ ' [U, ] & .#, (S). Since X is subpara-
compact there is a refinement Z = U {Z(n):n € o} of {U,: x € X} where each
Z(n) is a discrete collection of closed subsets of X. Then f'[D] & .#, (S)
and yet f~' [D] € .# (S) for each D € Z; hence f "' [D] & .#(S) for each D € 2.

By (2.3d) there is a natural number n such that the set T =f""| U Z (n)]

is stationary. Then {f ' [D]: D € £ (n)} is a disjoint cover of T by non-stationary
sets so that by (4.3) there is a C € cub(T) such that |[C N f7! [D]| =< 1 for each
D € Z(n). Then (*)f|C is a one-to-one map and f[C] is closed and discrete. By
Theorem E of the Introduction, since C € %(k), there are disjoint sets A, and
A, in S(C). It follows from (*) that f[A,] is closed in X so that f™' [f[A,]]
is measurable. But that is impossible because A,C f'[f[A,]] and
A, N f[A,]] = B, again by (*).

(c) = (d): Suppose f: S — X is continuous where X is metrizable. According to c),
some set f~' [{x}] belongs to .#, (S). Since X — {x} is an F_-subset of X, the
set T = f7'[X — {x}] is an F_-subset of S. But then, since T N £~ [{x}] = P,
there is some s € S having T C [0,s). Therefore |f [S]| < k.

(e) = (a): Suppose S is not stationary. Then S C k — C for some C € cub (k). Write
k—C= U # where £ is a disjoint collection of open, convex subsets of k. Since

no member of .# is cofinal in k, |#| = k. Index .# without repetitions as
F=({I;y<«k} and let D= {d,:y <k} be a discrete topological space having
|D| = k. Define F: U.# — D by the rule that F(x) = d, if x € I,.. Then F is con-
tinuous. Let f=F|S. Then f:S— D is continuous and yet for each d €D,
[£7* [{d}] <k, contrary to (e).

6.3 Remarks. (a) In Theorem 6.2, the only metric spaces which need to be
considered are discrete spaces.
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(b) If f: S — X is continuous, where S is stationary in x and where X is metrizable,
then |S — £ [{x}]| < « for some x € X.

7. EXAMPLES
Our first example aﬁd the subsequent proposition elucidate the relationship
between the o-algebras .# (S) and %7 (S) (see Section 2).
7.1 EXAMPLE. . If k is any regular cardinal with « > w,, then .# (k) 2 B (k).
Proof. Otherwise, since v, < k, Z([0,0,)) C A (k) = H/(x) so that

y({o,uh)) = '@/( [O)wl))

which is false.

When one considers stationary subsets of k instead of all of k, a more interesting
result is available. : -

7.1a PROPOSITION. Let S be a stationary subset of «. Then # (S) = %/ (S)
if and only if, for every ordinal \ < x having cf(\) = w,, there is some closed
cofinal subset of [0,\) which is disjoint from S N [O,\).

Before proving (7.1a) we pause to comment on the existence of the kind of
stationary set described in the hypothesis of the proposition. Suppose k = n* for
some regular cardinal p. and consider the set S = {a < k: cf(a) = n}. Then S is
stationary in k. Suppose A < k is a limit ordinal. Then there is a closed cofinal
Cin [0,)) such that |C| = ¢f(\) and {a € C: « is isolated in k} is dense in C. Then
cf(x) < cf(\) =< p for each x € C so that S N C = @. Consequently S satisfies the
hypotheses in (7.1a).

Our proof of (7.1a) requires a lemma.

7.1b LEMMA. Let {I:y € I'} be a pairwise disjoint collection of open convex
subsets of x and for each vy €T let B,C 1,6 be a Borel subset of . Then

B= U {B,:v €T} is a Borel subset of .
Proof. According to a result of Mauldin [6], each B, can be written as

B, = U {O(nyy) N K(ny):n=1})

where each O (n,v) is an open subset of I, and each K(n,v) is a closed subset of

k. Let O(n) = U {O(n,y):y €T} and let K(n) = cl( U {K(ny):vy € F}).

Then O(n) N K(n) = U {O(m,v) N K(n,y):v € I'} so that
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U {Om)NKm:n=1} = U {U {O(my) NK(ny):n=1}:v EF}
= U {B,:y€r}

as required to show that B is a Borel subset of k.

Proof of (7.1a). Suppose #/(S) = .# (S), and let A < x have ¢f(\) = ®,. Then
ZB N [0AN) =S N [0,N) C.# (SN [0,\). But then a trivial modification
of the proof that (a) = (b) in (2.5) shows that some closed cofinal subset of [O,A)
is disjoint from S. Conversely, suppose that whenever A <k has cf(\) = ®,,
some closed cofinal subset of [0,\) is disjoint from S. We assert that

Z(6 N [0,N\) C Z(S)

for each A\ < k having cf (\) = w,. For if not, let \ be the first ordinal satisfying:
(a) \ <k;
(b) some T C S N [0,\) is not in ZZ(S).

(Notice that cf(\) = w,; this follows from minimality of A\ plus property (b).) Let
C be a closed cofinal subset of [0,\) which is disjoint from S. Write

[O,A) — C = U {I.vyerT}

as the union of its convex components. Then each I, has the form I, = (a,,b,)
where b, <\A. Then each set T,=T N I, belongs to Z/(S) so that, by (7.1b),
T € #/(S), contrary to the choice of T.

Now, to show that .# (S) = Z/(S), let R € .#Z (S). It is ehough to consider the
case where R is cofinal in k and is disjoint from some C € cub(k). Write
k—C= U {J5:08 € A}, the J,’s being the convex components of k — C. Then
each J, has the form J, = (c;,d;) where d; < k. But then the set R, =R N J,
belongsto £Z(S N [0,d,)) C %£/(S) sothat, by (7.1b), R = U {(R,:3 € A} € Z(S).

Thus # (S) C %/(S). Since %/ (S) C .# (S) is always true, the proof is complete.

Our second example shows that the class of measurable mappings cannot
profitably be used to study stationary sets. Instead one must consider measurable
mappings with nonstationary fibers; i.e., the class of strongly measurable mappings
(see Section 4). :

7.2 EXAMPLE. Let S be a stationary subset of the regular cardinal x and
let T be any cofinal subset of x. Then there is a measurable function f from S
onto T such that exactly one fiber of f has more than one point.
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Proof. Let C be the set of non-isolated points of S. Then |S — C| =« =|T|.
Let t, be the first element of T and let g be any bijection from S — C onto T — {to).
Define f: S— T by the rule

g(s) ifseS-C
f(s) =
to ifs e C.

Our next example shows that Proposition (3.2) is valid only for successor cardinals.

7.3 EXAMPLE. Let x be an uncountable regular limit cardinal. Then there
is a non-stationary set B which is not in % (x,«) (see (3.1)) even though B € # (k).

Proof. Let C be the set of uncountable regular cardinals A with A < k. One
easily constructs a collection {A_: a € C} of pairwise disjoint open subsets of «
such that

(a) A_ is homeomorphic to [0,a) for each a € C
(b) k — U {A_:a € C} is cofinal in k and hence belongs to cub (k).

For each o € C choose a subset S, C A _ which is a homeomorph of a bistationary
subset of [0,a), and let B = U {S,:a €C}.Since BN A, =S, & #Z (A,,a) for
each o« € C, B & # (k,a) for each o« € C. Since C is cofinal in k, B & &% (k,k).

Since B misses k — U {A_:a € C} € cub(k), B is the required set.

We now present an easy example showing that the condition “S — T & («)”
is a necessary but not sufficient condition for there to exist a continuous mapping
from S onto T. (See Theorem 5.1.)

7.4 EXAMPLE. There exist stationary subsets S and T of o, such that
SAT & (w,) and yet there is no continuous mapping from S onto T.

Proof. LetS =w,andletT = 0, — {w,}.

Even though Theorem (5.3) yields a rich supply of bistationary subsets of w,
which are topologically distinct, it is difficult to describe a simple topological property
which one, but not every, bistationary set in w, possesses. (We remark that the
existence of a countably compact cofinal subspace distinguishes any superset of
a member of cub(w,) from any bistationary set in ®,.) The following example
is a simplification of an example communicated to the authors by W. Fleissner.
It yields a stronger result than does (7.4): the sets in (7.4) are not bistationary.

7.5 EXAMPLE (Fleissner). For any stationary set S in w, there are stationary
sets S, and S, such that SAS; & #(w,) for i=1,2 and yet S, and S, are not
homeomorphic.

Proof. For any space X let I(X) be the set of isolated points of X and let
X? =X — I(X). Define X recursively by X© = X and X®*" = [X®] % The sets
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S, and S, which we will construct are not homeomorphic since all points of I(S¥)
have compact neighborhoods in S,, while not all points of I(S%’) have compact
neighborhoods in S,.

Let A =I(0,) U I(0®) U I{®). Clearly A & #(v,) and it is easy to see that
the set S, =S U A has the required property.

The first point in I(®?) is 0] and ] is the limit of the sequence (v, - k: k = 1).

It is easily seen that the set S, = S, — {w, * (2k): k = 1} has the required properties.
(We leave it to the reader to construct S, in such a way that no point of I(S¥)
has a compact neighborhood in S,.) A trivial modification of the above construction
yields ‘'disjoint stationary sets T, and T, having analogous properties.

8. QUESTIONS AND DIRECTIONS FOR FURTHER RESEARCH

8.1 Give necessary and sufficient conditions on two stationary subsets S and
T of x (or even of w,) so that T is a continuous image of S (a homeomorph of

S).
8.2 Let D be k with the discrete topology. For each A € (k) let

A= n {C1,, (A N ©): C € cub ().

Then A is a nonvoid compact Hausdorff hspace contained in BD — D. Using
standard techniques, one can show that for A,B € .#(k), the spaces A and B are
homeomorphic if and only if there is an almost isomorphism h: .#(A) — #(B),
where we make the following definitions:

(a) SC’  Tif and only if S — T & (k) (where S,T € ¥(x));
(b) S="Tifand only if SAT & (k) (again where S,T € #(k));
(c) f: S(A) — S(B) is an almost isomorphism if
@) for S,,S, € L(A), f(S,) C f(S,)ifand only if S, C " S,
(ii) for each T € ¥(B) some S € %(A) has f(S) =" T.

If AB € (k) and A =" B then it follows from (5.4) that there is a bijection
f: A — B having the property that S € (A) if and only if f [S] € #(B). Defining
h: #(A) —» #(B) by h(S) = £ [S], one obtains an almost isomorphism and therefore
a homeomorphism from A onto B. The question posed here asks about the converse

of that last assertion; i.e., given that A and B are homeomorphic does it follow
that A =" B?

The referee pointed out a reformulation of this question in terms of Boolean
algebra. If we let Z(A) = #(A)/.#" (A), then A is just the Stone space of Z(A)
and A is homeomorphic to B if and only if 4 (B) is isomorphic to 4 (A). Thus
the question posed here reduces to “if % (B) and % (A) are isomorphic, does it
follow that A =" B?”
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8.3 In this question, we are asking for topological properties which rather
strongly distinguish different types of bistationary subsets of w,. To explain what
we have in mind, we first consider w,.

Consider the following properties of topological spaces.
#: every non-isolated point has a countable neighborhood base;
4": no non-isolated point has a countable neighborhood base.

Define B C w, by B = {x < w,: ¢f(x) < w,}. Then B is bistationary, B has property
% and w, — B has property .#. Conversely, if S,T C w, are such that S has property
# and T has property .#, then S N T cannot be stationary since S N T is discrete,
even if both S and T are stationary. .

This suggests the problem of finding “nice” topological properties &/ and %"
such that

(1) there is a bistationary set A C w, such that A has 2« and w, — A has
Z;

(2) given any two stationary sets S and T in w,, if S has &/ and T has &,
then S N T is not stationary.

The relevance of this question is this: the set B C w,defined above is a “constructive”
example of a bistationary set in w,. If one could find A C »,,# and #Z satisfying
(1) and (2), that would give a bistationary set in w,; which is “more constructive”
than the ones obtained using either Theorem E of the Introduction or the more
ad hoc constructions such as that described in [10].
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