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1. INTRODUCTION

Let Q be a bounded domain in C” and let q be an integer, 0 =q=n-—1.
A C? function u defined in { is a g-plurisubharmonic function in Q if its complex
Hessian has (n — q) nonnegative eigenvalues at each point of (). An obvious question
is whether there is a definition for g-plurisubharmonic functions which are not
necessarily C> Recall that an upper semicontinuous function defined in Q is
plurisubharmonic there if it is essentially subharmonic in every complex direction
(see [6]). Thus the definition of plurisubharmonic function is reduced to a 1-complex
dimensional definition, and the same is true for plurisuperharmonic functions.
We give definitions of g-plurisubharmonic (and q-plurisuperharmonic) functions
in Q, with O-plurisubharmonic and plurisubharmonic being equivalent. These
definitions seem to be very natural for C", are invariant under biholomorphic
coordinate changes on C", and are equivalent to those mentioned above if a function
is actually C?2.

Let D be a bounded strictly pseudoconvex domain in C*, n > 1, with C* boundary,
and suppose that b is a continuous real valued function defined on dD. We can
solve the Dirichlet problem to find a harmonic function in D which assumes the
given boundary values. The problem with this solution is that it is not invariant
under biholomorphic coordinate changes on C”. In order to remedy this, Bremermann
[3] considered the class of all continuous plurisubharmonic functions in D which
are less than or equal to b on 4D and applied Perron’s method showing that
the upper envelope @ of this class exists and takes on the given boundary values.
His solution 1 is plurisubharmonic in D, invariant under biholomorphic coordinate
changeson C”, andif C?, satisfies the homogeneous complex Monge-Ampere equation

[8u]™ = ddun ...Ad0u =0
N —_—

n times

in D. Later, Walsh [8] showed that G is continuous, and Bedford and Taylor
[2] proved that i satisfied their distributional definition of the homogeneous complex
Monge-Ampere equation.

Let D be a strictly g-pseudoconvex domain in C" with C? boundary, and let
b be a continuous function on dD. We prove that the upper envelope of all upper
semicontinuous functions on D which are g-plurisubharmonic in D and less than
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or equal to b on dD exists and takes on the boundary values b(z) on dD if we
assume that 2q <n (for 2q = n we give a counterexample). We show that this
upper envelope is continuous on D, is g-plurisubharmonic in D, and is (n — q — 1)-
plurisuperharmonic in D (if the envelope is C? these last two conditions imply
that it satisfies the homogeneous complex Monge-Ampere equation).

Given a strictly pseudoconvex domain D C C" with C? boundary, we prove
that any continuous plurisubharmonic solution taking on given boundary values
b(z) on oD, and which is also (n — 1)-plurisuperharmonic must actually be
Bremermann’s solution. Hence this is also the solution to the distributional complex
Monge-Ampere equation defined by Bedford and Taylor.

We also examine a problem similar to one discussed by Chern, Levine, and
Nirenbergin [4]. Consider an “annulus” with C*boundary where the outer boundary
is pseudoconvex (not necessarily strictly pseudoconvex) and the inner boundary
is weakly restricted. Assign the boundary values 1 on the outer boundary and
0 on the inner boundary. Using the theory developed in this paper we show that
there exists a function which is plurisubharmonic and (n — 1) -plurisuperharmonic
in the annulus, and which takes on the given boundary values. This function
is the upper envelope of the plurisubharmonic functions which are less than or
equal to 1 on the outer boundary and less than or equal to O on the inner boundary.
Moreover, this function satisfies the distributional complex Monge-Ampere equation
of Bedford and Taylor.

Bremermann also considers his boundary value problem for a pseudoconvex
domain D with C? boundary. The treatment of general pseudoconvex domains
requires the notion of “Silov boundary” S(D) of the function algebra of holomorphic
functions in D which are continuous in D. He shows that his generalized Dirichlet
problem is possible for the upper-envelope of the plurisubharmonic functions in
D that are smaller or equal to the given continuous boundary values b(z) (at
those points of D where b(z) is defined) if and only if the boundary values are
prescribed on and only on the Silov boundary S(D) of D. Rossi [7] proved that
the Silov boundary is just the closure of the strictly pseudoconvex boundary points
for D.

Suppose we consider our boundary value problem for a q-pseudoconvex domain
D, with 2q < n, which is not necessarily strictly q-pseudoconvex. We prove results
that suggest that the boundary values should probably be prescribed only on the
closure of the strictly q-pseudoconvex boundary points of D. In doing so we introduce
the notion of gq-holomorphic functions of Basener [1], and relate properties of
q-holomorphic functions to properties of g-plurisubharmonic functions. These
q-holomorphic functions essentially play the same role in our problem as the
holomorphic functions in Bremermann’s problem.

Section 2 of this article contains our definition of g-plurisubharmonic function
together with properties of such functions. In section 3 we solve the generalized
Dirichlet problem for strictly g-pseudoconvex domains in C” with 2q < n. In section
4 we consider the uniqueness of solutions to the boundary value problem and
the “annulus” problem. Section 5 contains a treatment of the problem for q-pseudo-
convex domains and a development of the relationship of g-holomorphic functions
and g-plurisubharmonic functions.
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2. q-PLURISUBHARMONIC FUNCTIONS

As we move toward the consideration of our boundary value problem for
g-pseudoconvex domains, we need several definitions and lemmas.

Definition 2.1. A function defined in an open set A C C and with values in
[—oo, +0) is called subharmonic if (i) u is upper semicontinuous in , and (ii)
for every open ball B such that B C Q and every continuous function h on B
which is harmonic in B and is greater than or equal to u on B we have u<h
on B.

Definition 2.2 A function u defined in an open set Q C C" with values in
[~o0, +0) is called plurisubharmonic if (i) u is upper semicontinuous in , and
(ii) u is subharmonic on the intersection of every 1-dimensional complex plane
with Q.

Definitions for superharmonic and plurisuperharmonic functions can be given
by replacing upper semicontinuity by lower semicontinuity in (i) of both definitions
and by reversing the inequalities in (i1) of Definition 2.1. Also u is superharmonic
(plurisuperharmonic) if —u is subharmonic (plurisubharmonic).

Definition 2.3. A function u defined in an open set ) C C" and with values
in [—oo, +x) is called (n — 1) -plurisubharmonic in Q if (i) u is upper semicontinuous
in Q, and (ii) for every open ball B with B C © and every continuous function
g in B which is plurisuperharmonic in B and greater than or equal to u on 6B
we have u = g on B. Actually, we need only require that g be lower semicontinuous
in B. -

The following result shows that we need to consider only C” (or C?) plurisuper-
harmonic functions in Definition 2.3

LEMMA 2.4. An upper semicontinuous function u defined in anopen set Q) C C"
and with values in [—w, +) is (n — 1) -plurisubharmonic if and only if for every
open ball B such that B C Q and every C* function g on B which is plurisuperhar-
monic in B and greater than or equal to u on B we have u < g on B.

Proof. The necessary statement of this result is trivial so we concern ourselves
with only the sufficient statement. Let g’ be a continuous function on B which
is plurisuperharmonic in B and greater than or equal touon dB. Let 0 < ¢ € Cj (C")
be equal to 0 when |z| > 1, let ¢ depend only on |z,|, ..., |z,], and assume that

¢(2z) d\(z) = 1 where d\ is the Lebesgue measure. By Theorem 2.6.3 of [6] it
follows that

g.(z) = S g'(z — &) (L) dN(E)

is plurisuperharmonic, that g/(z) is C” where the distance from z to the complement

of B is greater than &, and that g/ increases monotonically to g’ as £ decreases

to 0. Given 8 > 0 there exists an e sufficiently small so that u <g’ + 8/2 and

u<g/ +3 on 3B, where B, is an open ball concentric with B and with radius -
equal to the radius of B —e. By hypothesis u< g/ + 8 on B,. Letting & and ¢

approach 0 we find that u < g’ on B.
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We can generalize Definition 2.3 to g-plurisubharmonic functions, where
O0=q=n-1.

Definition 2.5. A function u defined in an open set Q& C C” and with values
in [—o, +) is called q-plurisubharmonic in Q if (i) u is upper semicontinuous
in ), and (ii) u is g-plurisubharmonic on the intersection of every (q + 1) -dimensional
complex plane with Q.

If a function g is continuous in B'and plurisuperharmonic in B, where B is
an open ball whose closure is contained in the intersection of a (q + 1) -dimensional
complex plane with (), then g (being independent of (n — q — 1) variables) remains
plurisuperharmonic under biholomorphic coordinate changes on C”. Thus the
definition of a q-plurisubharmonic function is invariant under such coordinate
changes.

Of course similar definitions can be given for (n — 1)-plurisuperharmonic
functions and q-plurisuperharmonic functions in Q C C".

LEMMA 2.6. A C? function u defined in an open set Q C C" and with values
in [—o, +x) is q-plurisubharmonic in Q if and only if the complex Hessian of
u has at least (n — q) nonnegative eigenvalues at each point of .

Proof. From the definition of g-plurisubharmonic function it suffices to prove
the following result in C*"%. If Q C €%, a C? function u is g-plurisubharmonic
in Q if and only if u has at least 1 nonnegative eigenvalue in its complex Hessian
at each point of ().

Assume that u has (q + 1) negative eigenvalues at some point z, = 0 € Q. We
may write (assuming u, its first derivatives, and certain second derivatives vanish

at z,) ot

u(z) = > A\z#; + 0(|z|°),
j=1

v_vhere \;<0for j=1,2,...,q+ 1. Then there exist a ball B about 0 such that
B C Q and an & > 0 such that u(z) < —¢ on 9B and u(0) = 0, a contradiction.

To prove the other direction, let B be an open ball with B C D, and let g
be a C” function on B which is plurisuperharmonic in D and greater than or
equal to u on 0B. Then u — g is a C” function on B whose Hessian has at least
one nonnegative eigenvalue. By the maximum principle for such functions (which
is easy to prove for C® functions), u = g on 6B implies u = g on B. An application
of Lemma 2.4 yields the desired result.

The following lemma gives us a maximum principle for g-plurisubharmonic
functions. Of course there is an analogous minimum principle for g-plurisuperhar-
monic functions.

LEMMA 2.7. Let K be a compact set in C" and suppose that u is upper
semicontinuous on K and q-plurisubharmonic in the interior of K. Then the maximum
of u on K is attained on K.

Proof. Since u is upper semicontinuous on K, u does take on its maximum
on K. Assume that there is an interior point z, = 0 of K for which u(0) > u(z)
for all z € 9K and assume u(0) = 0. Intersect K with a complex plane through
z, of dimension (q + 1) and notice that u is g-plurisubharmonic in the interior
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of this intersection. For this reason we can assume that n =q+ 1 and K C C*"",
Thus we have that u(0) =0 and u(z) <0 for all z € K. Choose € > 0 so that
the functionu,(z) = u(z) + €||z|, where|z| = (z,Z, + ... + z,%,)"/?,satisfiesu, (z) <0
on 9K. Since u(0) = u(0) = 0, we have that u_(z) assumes its maximum for K
at some interior point p in K. Let B be an open ball of radius r > 0 and center
p such that B is contained in the interior of K. A computation yields

u.(z) = u@ + el z|* = u() + el z - p|* — ellp|* + 2 Re(p,2),

where (.,.) is the usual inner product on C”. Since the function 2¢ Re(p,z) is
pluriharmonic, it is obvious that the function u(z) — ¢[|p|]° + 2¢ Re(p,z) is g-pluri-
subharmonic in the interior of K. Thus there exists a point z; € dB such that

u(p) + € p|® = u(z,) — &|pl° + 2¢ Re(p,z,)

< u(z,) + er* — g||p|® + 2¢ Re(p,z,).

Thus ue(p) < u,(z,), contradicting the fact that u, assumes its maximum at p.

Remark. 1t is clear that in Definition 2.3 we could replace open balls B such
that B C Q by compact sets K such that K C . Also the definition of q-plurisubhar-
monic functions is a local definition.

The proof of the next lemma is obvious.

LEMMA 2.8. Let () be an open setin C", and let u, and u, be q-plurisubharmonic
in Q for some q, 0 = q = n — 1. Then max(u,, u,) is q-plurisubharmonic in ).

If Q is an open set in C, then a continuous function u in Q which is both
subharmonic and superharmonic in  is harmonic there. This suggests the following
definition for our theory.

Definition 2.9. If Q is an open set in C" and if q satisfies 0 =q=n — 1,
then a continuous function u in Q is called g-complex Monge-Ampere (q-CMA)
in Q if it is both g-plurisubharmonic and (n — q — 1) -plurisuperharmonic. -

LEMMA 2.10. If uis a C® function in an open set @ C C", and if u is ¢-CMA

in Q, then u has at least one zero eigenvalue in its complex Hessian at each point
of Q.

Proof. We have that u is g-plurisubharmonic in ) for some q, 0 =q=n —1,
and also (n — q — 1) -plurisuperharmonic in Q. By Lemma 2.6 u has at least (n — q)
nonnegative eigenvalues in its complex Hessian at every point. Of course a
corresponding lemma for (n — q — 1) -plurisuperharmonic functions would show
that this Hessian has at least (q + 1) nonpositive eigenvalues in ). Hence the
complex Hessian of u has at least 1 zero eigenvalue at each point of Q.

Thus if uis C®>and q-CMA in Q@ C C", then u satisfies the homogeneous complex
Monge-Ampere equation

[0du]® = 80uA ...A ddu =0
—
n times

in Q.
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3. A GENERALIZED DIRICHLET PROBLEM

We want to consider a boundary value problem for particular domains in C",
n> 1. Let D be a domain in C” with a C? boundary. Let p € 8D and U be an
open neighborhood of p in €”. A C? real-valued function p on U satisfying

DNU={z¢€ U:plz)<0}

and dp # 0 on 0D N U is a defining function on U for D. We let L, (p) denote
the Levi form of p at p. Let A, A\;, and A denote the number of positive, zero,
and negative eigenvalues of L, (p) respectively.

Definition 3.1. The domain D is q-pseudoconvex at the boundary point p if
Ay =q and is strictly q-pseudoconvex at p if Ay + N\, =< q. Also D is (strictly)
q-pseudoconvex if it is (strictly) q-pseudoconvex at each boundary point.

The boundary value problem that we are interested in is the following one.
Let D be a bounded strictly g-pseudoconvex domain in C”, n > 1, of the form
D = {z € C™: p(z) < 0}, where p (z) is a C? defining function for D which is strictly
g-plurisubharmonic in a neighborhood of D. Let b(z) be a continuous function
given on dD. We consider the set of all q-plurisubharmonic functions in D which
are upper semicontinuous in D and less than or equal to b(z) on 8D. As a consequence
of our next result we have that if 2q < n, then the upper envelope of this class
of functions exists and takes on the prescribed boundary values b(z).

First we give a counter example to show that this may not be true if 2q = n.
Let D C C? be defined as D, — D,, where

D, = {z€ C* (2,7, + 2,2,)'’* < e} and
D, = {z € C% (2,2, + 2,2,)"/> < 1}.

Then D = 4D, U 8D,, and D is 1-pseudoconvex in C> Let

1 ondD,
b(z) = .
0 ondD,

Then we can define a C” 1-plurisubharmonic function u in D such that on
each 1-dimensional complex plane through the origin (which we assume is the
zl-plane for convenience) we have u is a function of |z,|* such that u(1) = 0 and
ue®=1and —1=u<1lon D, with 0=u=1on D. Given ¢ >0 and 3 >0 we
can choose such a u so that u(z) = 1 — & for (2,2, + 2,2,)"/*= 1 + 5. Thus the upper
envelope of such functions takes on the boundary value 1 on dD,, and our problem
does not have a solution.

THEOREM 3.2. Let D be a domain in C" given by D = {z € C": p(2) < 0},
where p(z) is C® in a neighborhood of D. Let b(z) be a continuous real valued
function defined on 3dD. Then the upper envelope u(z) of the class of all functions
which are q-plurisubharmonic in D, upper semicontinuous on D, and less than
or equal to b(z) on D exists. If aD is strictly q-pseudoconvex in a neighborhood
of p € aD, then we have
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lim inf u(z) = b(p).

z—Dp
If D is a strictly q-pseudoconvex domain in C" and 2q < n, we also have

lim sup u(z) = b(p)

z—p

for every boundary point p of D.

Proof. The family of g-plurisubharmonic functions in D which are upper
semicontinuous on D and less than or equal to b(z) on 8D is denoted by P (b (z), D).
The fact that the upper envelope u(z) of functions in P_ (b (z), D) exists follows
from the maximum principle of Lemma 2.7.

The first inequality if proved using the arguments of Bremermann [3] with
his strictly plurisubharmonic functions replaced by the strictly g-plurisubharmonic
functions.

If D is a strictly g-pseudoconvex domain, we define U,(z) = p(z) — €|z — p|,
where p is an arbitrary boundary point, and £ > 0 is chosen sufficiently small
so that U,(z) is strictly g-plurisubharmonic in D. Exactly as in Bremermann’s
proof, we prove that u(p) =< b(p) by constructing a “barrier” at the point p, the
barrier function being W (z) = —U,(z). The only difference herf: is that we must
show that u(z) — CW,(z) satisfies the maximum principle in D, where C > 0 is
a constant.

From the proof of Lemma 2.7, it suffices to show that u(z) — CW,(z) + el z|”
satisfies the maximum principle in D for € > 0. Assume there exists a point
z’ € D such that

u(z) — CW,(2) + €] z||> < u(z’) — CW,(z") + ¢|z’|* forallz € D

and the maximum of the function on D is assumed at z’. Suppose we can prove
thatu(z) — CW,(z) is g-plurisubharmonic on the intersection of a (q + 1) -dimensional
complex plane H’ through z’ with an open ball B with center at z’ and of small
radius. Then the proof of Lemma 2.7 will show that there exists a point z € 6B N H’
such that

u(z) — CW,(2) + €]z > u(z’) — CW, (@) + €| z|,

a contradiction.

Since CW_(z) is a C? strictly g-plurisuperharmonic function in D, there exists
anopen ball B, of sufficiently small radius and center z’, and an (n — q) -dimensional
complex plane H through z’ such that CW (z) is C? plurisuperharmonic in B N H.
Because 2q < n, we have q + 1 =n — q, and there exists a (q + 1) -dimensional
complex plane H' through z’ such that CW_(z) is plurisuperharmonic in B N H'.
Let B’ be an open ball with B’ C B N H’, and let g(z) be a C™ plurisuperharmonic
function in B’ which is continuous on B’ and satisfies u(z) — CW,(2) = g(2) on
oB’. Since u is g-plurisubharmonic in D, and CW,(z) is plurisuperharmonic in
B N H’, we have that u(z) — CW_(z) = g(z) on B’. Thusu — CW _(2) is g-plurisubhar-
monic on B N H'.
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Our next result concerns properties of the solution u(z) given to us by Theorem
3.2.

THEOREM 3.3. Let D be a strictly q-pseudoconvex domain in C" and assume
2q < n. Let b(z) be a continuous real-valued function defined on dD. Then the
upper envelope u(z) of P (b(z),D) is

(i) q-plurisubharmonic in D,
(ii) continuous in D, and
(iii) q-CMA in D.

Proof. First we shall prove (i). Let B be an open ball with closure contained
in the intersection of a (q + 1) -dimensional complex plane with D. Suppose g
is C” plurisuperharmonic in B, continuous on B, and satisfies G(z) < g(z) for all
z € 0B. Since u(z) = g(z) forall z € 9B and all u € P, (b(z), D), we have u(z) = g(z)
for all z € B and all u €P_ (b(z), D). Then u(z) =< g(z) for all z € B, and 1 is
g-plurisubharmonic in D if it is upper semicontinuous there. However, this will
follow from part (ii) of our result, which is proved using the technique of Walsh
[8] with g-plurisubharmonic functions instead of plurisubharmonic functions.

It remains to prove that u is q¢-CMA in D. To do this we must show that
2 is (n — q — 1) -plurisuperharmonic in D. Since @ is continuous in D, we must
show only that u satisfies the appropriate minimum principle. Let B be an open
ball whose closure is contained in the intersection of a (n — q) -dimensional complex
plane H with D. Suppose fis a C” plurisubharmonic function on B which is continuous
on B and satisfies f(z) < @(z) on 9B. Assume that the complex plane H is defined
by z, =0,2,=0, ...,,z, =0, so f(z) is actually f(z,,,, ..., z,). Let f’ (z,, 2,, ..., z,) be
defined by f’ (z,, ..., z,) = f (24, .. 2,) — K(z,2, + ... + 2.Z,), where K > 0 is cho-
sen sufficiently large so that f'(z) = u(z) on dD’, where D’ is a still to be chosen
strictly pseudoconvex domain with C” boundary and with closure in D whose
intersection with H is B. Since f'(z) has (n — q) nonnegative eigenvalues in its
complex Hessian, f'(z) is g-plurisubharmonic on D’ if D’ is chosen appropriately
(for example an ellipsoid whose intersection with any (n — q) -dimensional complex
plane parallel to H results in a smaller ball than B, the centers of both balls
being contained in the same g-dimensional complex plane normal to H). Since
f'(z) = @(z) on aD’, we find f'(z) € P (0(z), D’). In Lemma 3.4, we will show that
if D’ is.a strictly pseudoconvex domain in D, the function G defined as

{ﬁ(z), zeD-D
a(z) =
Up- (2) z€ D/,

where . (z) is the upper envelope of all g-plurisubharmonic functions in D’ which
are upper semicontinuous in D, and less than or equal to u(z) on dD’, is actually
equal to u(z) on D.

Now f'(z) € P (u(z), D’), implying that f'(z) =< Gy, (z) for all z € D’, and hence
f'(z) = u(z) for all z € D’. Thus f(z) < u(z) on B, and u(z) is (n — q — 1) -plurisuper-
harmonic in D.
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Remark. Theorems 3.2 and 3.3 are valid if g-plurisubharmonic is replaced
everywhere by g-plurisuperharmonic, P, (b(z), D) is replaced by S, (b(z), D), the
set of g-plurisuperharmonic functions in D which are greater than or equal to
b(z) on D, and the upper envelope is replaced by the lower envelope.

We now consider the lemma which is mentioned in the proof of Theorem 3.3.

LEMMA 3.4. Let D be a q-pseudoconvex domain in C* with C*> boundary
where 2q < n, and let b(z) be a continuous function defined on dD. Denote by
i(z) the upper envelope of the class P (b(z),D). If D’ is a strictly pseudoconvex
domain with C? boundary such that D’ C D, then the function 4(z), defined by

u(z), z€ D-D’
i(z) =
Uy (2), z€ D/,

where y, (z) is the upper envelope of P (u(z),D’), is equal to u(z) in D.

Proof. By Theorems 3.2 and 3.3 we have u(z) = b(z) on 9D, u(z) is continuous
inD, Gy, (z) = G(z) on 8D’, and i(z) is continuous in D. Also ti{z) is g-plurisubharmonic
in D, and 0(z) is g-plurisubharmonic in {D — D’} U D’. It is obvious that i1, (z) = 1(z)
on D, since u(z) € P (4(z),D’). If we can show that {i(z) is g-plurisubharmonic in
D, then #(z) € P,(b(z),D) and #(z) = u(z) on D. Thus 4(z) = u(z) on D, and our
result is proved.

It suffices to show that if B is an open ball with closure contained in the
intersection of a (q + 1) -dimensional complex plane with D, if g is a C* plurisuper-
harmonic function in D which is continuous on D and greater than or equal to
{i(z) on 4B, and if B contains a boundary point p of aD’, then g(z) = ii(z) on B.
If {i(z,) > g(z,) for some point z, € B N {D — D'}, then our maximum principle
(Lemma 2.7) implies there exists a point z’ in {6B U dD’} N {D — D’} such that
u(z’) > g(z’), a contradiction if z' € B. If z, € B N D’, then there exists a point
z € {BU oD’} N {D’} such that a(z') > g(z’), a contradiction if z’ € B. Thus
we need only consider the case where u(z) — g(z) has a positive maximum for
B at z, € 4D’ N B. We know that @(z) =< i(z) in D’ and u(z) = G(z) in D — D/,
implying that a(z) — g(z) has a positive maximum for B at z, a contradiction
since u is g-plurisubharmonic in D.

Remark. 1t is interesting that in the statement of Theorem 3.2 we have that
if 0D is strictly q-pseudoconvex in a neighborhood of p € 4D, then

lim inf G(z) = b(p).

z—p

However, we need that D is a strictly g-pseudoconvex domain in C” to prove

lim sup a(z) = b(p).

z—p

Thus one direction is local and the other is global. If we consider the same boundary
value problem as in Theorem 3.2, but with P_(b(z),D) replaced by P, 2(b(z),D), the
class of C? plurisubharmonic functions on D whlch are less than or equal to b(z)
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on 39D, the authors have a proof that the upper envelope exists and takes on
the given boundary values. However, we need only that aD is strictly q-pseudoconvex
near p € dD to show that

lim sup u(z) < b(p).
z—p

for i the upper envelope of qu(b(z),D). Thus if we could prove that the C*
g-plurisubharmonic functions are “dense” in the q-plurisubharmonic functions, then
our boundary value problem is a local one. This is of course true in the case
q=0.

4. UNIQUENESS AND THE “ANNULUS” PROBLEM

Suppose we consider our boundary value problem of Theorem 3.2 in the case
where D is an open ball in €2 Then there exists a plurisubharmonic solution
41, and a 1-plurisubharmonic solution 4, with the same boundary values b(z), since
D is both 0 and 1-pseudoconvex. It is easy to give examples for which G, and
i, are not equal in D. However, one may ask if @, is the only continuous
plurisubharmonic solution which is also 2-plurisuperharmonic, or if u, is the only
continuous 1-plurisubharmonic solution which is also 1-plurisuperharmonic. In this
direction we state the following conjecture.

Conjecture 4.1. Let D be a strictly g-pseudoconvex domain in C", n > 1 and
2q < n, such that D = {z € €™ p(z) < 0}, where p is C” and strictly q-plurisubhar-
monic in a neighborhood of D. Let Gi(z) be the upper el}velope (of P, (b(z),D)) solution
which is g-plurisubharmonic in D, continuous in D, q-CMA in D in the sense
that @ is also (n — q — 1)-plurisuperharmonic in D, and takes on prescribed
continuous boundary values b(z) on 6D. Then u is the unique solution to this
boundary value problem with these properties.

Suppose @ is another solution with the same properties. Obviously, i <u on
D and u =1 on dD. If we could show that u — @ is (n — 1)-plurisubharmonic in
D, then i — 4 =<0 in D by the maximum principle, and =14 in D. If 4 and
ft are C® in D (it is shown in [2] that @ is not necessarily C® in D), then it
is easy to see that i1 — @ is (n — 1) -plurisubharmonic in D. ‘

It is interesting that in case D is strictly pseudoconvex and u and G are both
plurisubharmonic and (n — 1) plurisuperharmonic, that we have i1 = 1 on dD implies
4 =10 on D since u is (n — 1) -plurisuperharmonic and @ is plurisubharmonic on
D. Thus we have proved the following result.

THEOREM 4.2. Let D be a strictly pseudoconvex domain in C" such that
D = {z € C™ p(z) < 0}, where p(z) is C* and strictly plurisubharmonic in a neighbor-
hood of D. If a continuous function b(z) is given on aD, then there exists one and
only one solution (the upper envelope solution ©) which is continuous on D,
plurisubharmonic and (n — 1) -plurisuperharmonic in D, and equal to b(z) on 3D.

Remark. In [2] Bedford and Taylor give a distributional definition for the
complex Monge-Ampere equation which can be applied to continuous plurisubhar-
monic functions in D. For a strictly pseudoconvex domain D C C®, they find a



A GENERALIZED DIRICHLET PROBLEM 309

solution to their homogeneous complex Monge-Ampere equation which takes on
the given boundary values b(z). Then by using their minimum principle, they
show that their solution is actually Bremermann’s upper envelope solution u. In
this case, their solution satisfying the homogeneous complex Monge-Ampere
equation is equivalent to our continuous solution being in the intersection class
of plurisubharmonic and (n — 1)-plurisuperharmonic functions on D.

Now we turn our attention to an “annulus” problem. Let D, and D, be bounded
domains in C” such that D, C D,. Let D = D, — D, and suppose that there exists
a function p,(z) which is C® and plurisubharmonic in a neighborhood of 8D, so
that 0D, = {z € C"p,(z2) =0}, D, = {z € C" p,(z) <0}, and dp, # O on aD,. Also
assume there exists another function p,(z) which is C® in a neighborhood 4D,
and such that dD, = {z € C™ p,(z) =0}, D, = {z € C ":p,(z) <0}, and dp, #0 on
aD,,.

THEOREM 4.3. Let D be defined as above. Then there exists a continuous
plurisubharmonic function w(z) in D such that w(z) = 1 on 0D,, w(z) = 0 on aD,,
and w(z) is 0-CMA in D in the sense that w(z) is (n — 1)-plurisuperharmonic in

D. This solution w(z) solves the complex Monge-Ampere equation (as in [2]) in
D.

Proof. First we show that there exists a continuous plurisubharmonic function
f(z) in D such that f(z) = 1 on aD, and f(z) = 0 on dD,. Given 3 > 0 sufficiently
small, there exists a domain D, with D, C D, C D, C D, such that p,(z) <0 in
D, — D, and p,(z) < —5 on dD,. Now we can multiply p, by a suffitiently large
positive constant K such that Kp,(z) is less than —1 on dD,. Then the function
f(z) = f,(z) + 1, where f,(z) is defined as the maximum of Kp,(z) and —1 on D-D,
and as —1 on D, is the desired continuous plurisubharmonic function.

By the maximum principle for plurisubharmonic functions, we know that the
upper envelope w(z) of all plurisubharmonic functions in D which are less than
or equal to 1 on 9D, and less than or equal to 0 on 9D, exists. Since f(z) is
in this class of functions, we have that w(z) = 1 on dD, and w(z) = 0 on 3D,.

Now consider the function eX*2® — 1, where K’ is a positive constant still

to be chosen. Now for i, j = 1, ...n we have :

2¢ K'pg _ 2
d°(e” "2 1)=K'ap2e' 29P2 P2

02,07 0Z,0Z; 0z; 0% ;

Since dp, # 0 on dD,, we can choose K’ sufficiently large so that e**>—1 is (n — 1)-
plurisubharmonicin a neighborhood of 9D,. This function e¥*2®—1 is a new defining
function for D,, which for the sake of simplicity we rename p,(z). The function
—po(z) is (n — 1)-plurisuperharmonic in a neighborhood of 4D, and is positive on
the intersection of this neighborhood with D. Given a & > 0 sufficiently small,
there exists a domain D, with D, C D, C D, C D, so that —p,(z) > & on aD,. By
multiplying —p,(z) by a sufficiently large positive constant L, we have that
—Lp,(z) > 1 on aD;. Then the function g(z) defined as the minimum of —Lp,(z)

and 1 on D— D, and as 1 on D, is a continuous (n — 1)-plurisuperharmonic function
on D.



310 L. R. HUNT and JOHN J. MURRAY

Let u € Py(b(z),D), where b(z) = 1 on 0D, and b(z) = 0 on dD,. By the maximum
principle for the function u(_z) — g(z) on D, we have that u(z) — g(z) =0 on D,
implying that w(z) = g(z) on D. Thus w(z) = 1 on dD, and w(z) = 0 on dD,.

The solution w(z) also solves the complex Monge-Ampere equation in D in
the sense of Bedford and Taylor [2]. Let D’ be a strictly pseudoconvex domain
contained in D with a C” boundary. Define the function

{W(Z), z€D-D’
w(z) =
Wp(z), z € D’

analogously to the way we defined ((z) in the proof of Lemma 3.4. As in that
proof, it is true that w(z) = W(z) in D. But W(z) solves the complex Monge-Ampere

equation in the Bedford-Taylor sense in D’, and so w(z) solves this equation in
D.

Remark. The last part of this proof shows that in the case of continuous
plurisubharmonic functions our concept of a 0-CMA function is equivalent to a
solution of the homogeneous complex Monge-Ampere equation of Bedford and Taylor.

Remark. The technique used in the proof of Theorem 4.3 may be useful in
finding a solution of the boundary value problem involving the nonhomogenerous
complex Monge-Ampere equation with Dirac 3 right hand side and continuous
boundary values. This problem for the unit ball in C? is considered in [2].

Remark. Theorem 4.3 and the method developed in its proof may also give
an approach to defining the “capacity” of a Stein manifold.

5. THE NONLINEAR CAUCHY-RIEMANN EQUATIONS

As mentioned in the introduction, Bremermann points out that for an arbitrary
domain of holomorphy D C C" the boundary values cannot be prescribed on the
whole boundary of D, but only on the Silov boundary S(D) of the function algebra
of holomorphic functions in D which are continuous in D. Also Rossi showed that
if D is C? then the set S(D) is just the closure of the strictly pseudoconvex
boundary points.

We consider a g-pseudoconvex domain D C C™ with a C? boundary. We prove
results which indicate that the boundary values b(z) for our generalized Dirichlet
problem (i.e., taking the upper envelope of all continuous functions in D which
are q-plurisubharmonic in D and less than or equal to b(z) on dD) should be
described only on the closure of the strictly g-pseudoconvex boundary points of
D for 2q < n. In doing this we make use of the g-holomorphic functions of Basener
[1], and we prove results which indicate the relationships of the real part and
log of the modulus of such functions to the g-plurisubharmonic functions and
the homogeneous complex Monge-Ampere equation. In addition, we prove results
concerning complex fiberings in the sense of Rossi [7] and Freeman [5] for certain
boundary points of D which are not strictly g-pseudoconvex.
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For the remainder of this section q will be an integer between and including
0 and n — 1 except when we discuss our generalized Dirichlet problem, in which
case we assume that 2q < n.

Let Q be an open subset of C” (or more generally Q can be a complex manifold).
The following definition is found in [1]. This definition is given for C* functions,
but it and the results found in [1] are certainly true for C® functions.

Definition 5.1. Let fbe a C” function defined on Q and q a nonnegative integer.
Then f is a g-holomorphic function on Q) if f satisfies
af A (33F)* = afA (09fA ...A 30f) =0
————
q times

on Q. Thus f satisfies a system of nonlinear partial differential equations (for q > 0)
which can be regarded as a generalization of the usual Cauchy-Riemann equations

(@ =0).
Let z = (z,, ..., z,)} be coordinates for C". If f is C* in Q and z, € Q, we define

f_i (Zo) a_f (Zo) T
z, 0z
M; (f) = ot (zo) ot (zo)
? 02,07, 2,07,
a*f o%f
92,07 , (z0) 2,07, (z0)

Then Basener has proved the following result.

PROPOSITION 5.2 [1]. If f € C*(Q), then of A (33f)? = 0 on Q if and
only if

rank M; (f) = q for all z, € Q.

Basener [1] shows that the g-holomorphic functions define a notion of convexity
which is related (at least locally) to q-pseudoconvexity. Also the collection of
g-holomorphic functions on € does not form a function algebra if q > 0.

It is well known that the real part of a holomorphic function in an open set
Q C C" has a zero complex Hessian at every point of Q. The function z,z , is
1-holomorphic in any open set in €?, but its real part does not even satisfy the
homogeneous complex Monge-Ampere equation [3d (Re z,z,)]° = 0. However, Re(z,Z)
is a 1-plurisubharmonic function in €2 This leads us to our first result in this
direction.

THEOREM 5.3. Let Q be an open subset of C". If f € C” (Q) is a q-holomorphic
function in Q, then Re f is a q-plurisubharmonic function in ().
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Proof. We must show that if f satisfies of A (39f)® = 0 on Q, then

a°Re f .
; Lj=1,..,n,
02;0Z;

has at least (n — q) nonnegative eigenvalues on Q. It suffices to prove this for
n=q+ 1, since for n>q + 1 we can then proceed as follows. Let z, € Q and
diagonalize

d°Re f .
, L)j=1,..,n,
0Z;0Z;

at z,. Suppose fewer than (n — q) eigenvalues are nonnegative, so that at least
(q + 1) are negative. Pull back to the (q + 1)-dimensional subspace E of C" through
z, spanned by the eigenvectors belonging to these eigenvalues. Here we have

3| A (03f]5) = O,

l:azRe f ]
07,07

restricted to E has no nonnegative eigenvalues at z,,.

but

) Tht{s we want to prove if Q is an open set in C**' and f € C” (Q) satisfies
of A (00f)? = 0, then

[62Re f

- ]1 i,j=1,~-:Q+1,
02;,0Z;

has at least 1 nonnegative eigenvalue at an arbitrary point z, € Q. By Proposition
5.2 we know that the matrix

o’f o
) Lj=1,..,q+1,

02,0Z;

is singular at z,. Hence there exists a nonzero (q, 0)-form « such that aaddf =0
when evaluated at z,. Then

anddRe fA@ = anddfra + anddafaa
= aA(@9fra) = —an (93fra)
= —an (@Addf) =0

at z,. Hence the matrix
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8°Re f(z,) )
- _ b i!.] = 1) seey Q+1;
07,0 ;

cannot be definite, and Re f is q-plurisubharmonic in Q.

The following corollary to Theorem 5.3 is a result of the relation
log| f|* = 2Re(log f),

for a gq-holomorphic function f.

COROLLARY 5.4. Let Q) be an open set in C". If f € C” (Q) is a q-holomorphic
function in Q, then log |f| is a C”q-plurisubharmonic function in Q except at the
zeros of f.

Earlier we gave an example of a 1-holomorphic function f in C? whose real
part failed to satisfy the homogeneous complex Monge-Ampere equation

[0d(Re )] = 0.

However, we find that the following general result is true.

THEOREM 5.5. Let Q be an open set in C". If f € C” (Q) is a g-holomorphic
function in Q and if 2q <n, then we have [0d(Re £)]**' =0 in Q. Moreover,
log | f| satisfies [8d(log [£])]**"" = O in Q except at the zeros of f.

Proof. Since f is g-holomorphic,
[ d°Re f

02,0Z;

:I’ i9j=1)---) n,

has at least (n — q) nonnegative eigenvalues at each point of Q by Theorem 3.3.
This also applies to —f so that
[azRe f ]
02,0z

also has at least (n — q) nonpositive eigenvalues at each point. Suppose that
[ d°Re f ]
02,0z

has k zero eigenvalues at a point p € ). This implies that

[00Ref]"=0  forr > (n — k) at p.

Counting eigenvalues we have at least n — q — k positive, at least n —q— k
negative, and k zero eigenvalues at p. Thus (h—q—k) + (n—q—k) + k =n and
(n — k) = 29 < 2q + 1. Thus [8dRe f]**"* = 0. The statement concerning log |f|
follows from the equation preceding Corollary 5.4.



314 L. R. HUNT and JOHN J. MURRAY
Alternatively, we can argue that
[03£]%* =0 and [90f]° =0
imply

[93(f + £)]%%** = (99f + 9af)>**}

Tl f2q+1) . . — :
= 2 ( q_ )(aaf)’/\ (@af)> ' = 0.

j=0 ]

Let D be our bounded g-pseudoconvex domain in C* with C? boundary. Recall
that a g-plurisubharmonic function in D which is upper semicontinuous on D
assumes its maximum for D on 8D. The next result gives the relationship between
the strictly q-pseudoconvex boundary points of D and the points on 4D where
g-plurisubharmonic functions in D can assume their peak values. A point p € 8D
is a peak point for the family of g-plurisubharmonic functions in D which are
upper semicontinuous on D if there is such a function with u(p) = 1 and u(z) < 1
for all points z € D with z # p. The value u(p) is the peak value of u on D.

THEOREM 5.6. If p € oD is a strictly q-pseudoconvex boundary point of D,
then there exists a q-plurisubharmonic function u in D which is continuous on
D such that u assumes its peak value on D at p. Conversely, if u is a C?
q-plurisubharmonic function in D which peaks at some point p € 8D, then p must
be contained in the closure of the strictly q-pseudoconvex boundary points of D.

Proof. Suppose p € 3D is an arbitrary strictly g-pseudoconvex boundary point
of D. Basener proves in [1] that there exists an open neighborhood U of p in
C" and a q-holomorphic function f in U such that f(p) =1 and 0 < |f| <1 in
UN D — {p}. Then by Corollary 5.4., log |f| is a C* g-plurisubharmonic function
in U which peaks locally at p. Suppose —» < log |f| <a <1 for all z € U N D,
where o > 0. Then the maximum u of the functions log |f| and «/2 is a g-plurisub-
harmonic function on D which is continuous on D and has its peak value at

P.

The converse statement is proved by applying the arguments of Rossi [7] with
plurisubharmonic and strictly pseudoconvex replaced by g-plurisubharmonic and
strictly q-pseudoconvex respectively.

It is interesting that Theorem 5.6 is also true for the modulus of a g-holomorphic
function (with the exception that one direction is only local). The first conclusion
in the following theorem is proved by Basener in [1]. The converse statement
is proved by replacing u in the statement of Theorem 3.6 by log |f| and applying
Corollary 5.4.

THEOREM 5.7. If p € aD is a strictly q-pseudoconvex boundary point of D,
then there exists a neighborhood U of p'in C" and a C® q-holomorphic function
f in U such that the peak value of |f| on DN U is assumed at p. Conversely,
if f is a C* q-holomorphic function in a neighborhood of p in C" such that |f|
peaks at some point p € 3D, then p must be contained in the closure of the strictly
q-pseudoconvex boundary points of D.
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Theorems 5.6 and 5.7 indicate that the boundary values for our generalized
Dirichlet problem should be given at most on the closure of the strictly q-pseudocon-
vex boundary points for our g-pseudoconvex domain D. The following result, the
proof of which is a direct analogue of one due to Bremermann, shows that we
should not fail to give boundary values on an open neighborhood of a peak point
of a function which is g-holomorphic in a neighborhood of D.

THEOREM 5.8. Let D be a q-pseudoconvex bounded domain in C". Suppose
p € 3D is a peak point for the modulus of some function which is q-holomorphic
in a neighborhood of D. If the boundary values b(z) for our generalized Dirichlet
problem are prescribed in such a way that a neighborhood of the point p is omitted,
then the upper envelope of the class of q-plurisubharmonic functions in D, which
are upper semicontinuous on D and less than or equal to b(z) on that part of
dD where b(z) is given, does not exist.

As conjectured by Rossi (and proved for n = 2) in [7], it is probably true that
in the case that D is a domain of holomorphy in C" with C® boundary, a point
p € D which is not in the closure of the strictly pseudoconvex boundary points
of D must be contained in a complex variety of complex dimension at least one
and contained in aD.

THEOREM 5.9. Let D be a g-pseudoconvex domain in C* with C* boundary.
Let p € 0D and suppose that the Levi form has exactly s negative eigenvalues
and t zero eigenvalues for all points in an open neighborhood of p in dD. Then
for some sufficiently small neighborhood of p in C" there exist a complex variety
M of complex dimension s through p and contained in D (actually intersecting
oD only at p) and a complex variety N of complex dimension t through p and
contained in dD. Moreover, M and N intersect transversally at p. ’

Proof. If t >0 the work of Freeman in [5] assures us that there exists a
complex variety N of dimension t and an open neighborhood U of p in €C” such
that NN U C D N U and p € N. Choose coordinates for C"and 4D at p so that
p =0 and N is the z,, ... z, plane. Fixing the coordinates z,, ... z, at 0, we have
a hypersurface (9D restricted by z, =0, ..., z, = 0) in C""* such that the Levi form
on this hypersurface at p has s negative and no zero eigenvalues (i.e., this
hypersurface is strictly s-pseudoconvex at p in C"*). By Proposition 6 in [1]
there exists a complex variety M of dimension s and an open neighborhood V
of pin C*" *such that MN VC DN Vand 4D N (M N V)= {p}. Assume that
we have chosen coordinates in C" so that M is thez,, ,,...,z_,, plane. It is obvious
that M and N intersect transversally at p.

Remark. The following question seems to be a difficult one to answer. Given
the hypothesis of Theorem 5.9, does there exist a complex variety of dimension
(s + t) through p and contained in D? If so and if (s + t) = q + 1, then by the
maximum principle for g-holomorphic functions in [1], p cannot be a peak point
for such functions.
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