LOCAL EXTENSION OF CR FUNCTIONS FROM WEAKLY
PSEUDOCONVEX BOUNDARIES

Eric Bedford and John Erik Fornass

Let @ = {z € C":r(z) <0} be a domain in C*, r € CZ(C"), dr # 0 on 4Q, and
let 8, denote the tangential Cauchy-Riemann equations on 4. A CR-function
f on 8Q) is a solution of 8, f = 0; the exact sense in which this equation is interpreted
may vary with the regularity of f and 3€). A basic result concerning CR-functions
is the following local extension phenomenon, which holds at any strongly pseudocon-
vex point p € aQ):

for each neighborhood U’ C .C™ of p, there exists a neighborhood U” of
*) p such that each CR-function f on dQ N U’ has a holomorphic extension
toQ N U”

(see the references in the survey article by Henkin and Chirka [2]). An important
factor in the proof of (*) is that a strongly pseudoconvex boundary can be made
(locally) strictly convex by a holomorphic change of coordinates. It is therefore
immediate that (*) holds for f € £ (@Q N U’). This local convexity is not true
for weakly pseudoconvex domains (see Kohn and Nirenberg [3]), and the proof
of (*) in this case is more delicate. Hill and MacKichan [1] have shown that
(*) holds for the Kohn-Nirenberg example; they construct a family of disks rather
differently from the way it is done below.

THEOREM. Let Q be a domain in C" which is real analytic and (weakly)
Dpseudoconvex in a neighborhood of p € 0Q. Then (*) holds at p if and only if
there is no germ of a complex variety V of codimension one with p € V C ().

Proof. Let us first show that if (*) holds there can exist no germ of a complex
hypersurface V C dQ. The condition that V has codimension one means that its *
normal bundle is given by dr A dr and so it is a manifold. Thus there exists a
function f holomorphic in a neighborhood of p such that {f = 0} defines V at
p and d Re f(p) = dr(p). A suitable branch of the function F (z) = exp (—f(z) */?)
will define a C”, CR-function on a neighborhood of p in 4Q which cannot be
continued to & N U” for any neighborhood U” of p.

Now we show that (*) holds if V does not exist. More precisely, we will obtain
a family of disks satisfying (i) and (ii) below which can be used to construct
the extension. (A modern treatment of this is given, for instance, in Polking and
Wells [4].) The proof that the function f can actually be extended can be carried
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out just as in the strongly pseudoconvex case. Since we assume that r(z) is real
analytic at p, we may introduce a change of coordinates so that p = 0 and

r(z) = Re (z, + f(2)) + z ay;2'2’,

|[I|=1
{Ji=1

where f(z) is holomorphic and vanishes to second order at 0, I=(i,,...,1i,),
J =@y, -+ ju) are multi-indices, and z' =z%, ..., z}», 27 = 21, .., 2'», Changing
coordinates again by z} = z, + f(2), z} = z;, 2 = j < n we may assume that
f = 0. Now the function r(0, z,, ..., z,) cannot be identically zero for otherwise

d£) contains a complex hypersurface through 0. Thus in the coordinates z = (z,, z’),
we may write

r(0,z') =P, (z’) + O(|z’||**")

where P, = P, (z,, ..., 2z,) is a nonzero polynomial homogeneous of degree k.

Now we claim that P, is a plurisubharmonic function. The defining function
for the surface a2 is given by

r(z) =Rez, + P (z’) + O(|z'|**") + O(|z’ | Im z,) + O(|Im z,|?).
Let us compute the Levi form L of 8Q. If (t,, ..., t,) is tangent to 8%, then
2 ar
i=1 j
Thus at a point z € 9Q with Imz, =0,
t,=0(z"|* )|ty ... to)].
Since 9 is pseudoconvex at this point,

%P, (z’) _
L(ty, .., t,) = O(z" |5 | t|2 + 2 — X " t3.=0.

- 1 J
=2 aziazj

The second derivatives of P, are of order k — 2, and so the summation must
be non-negative, which shows that P, is plurisubharmonic.

After a rotation in the (z,, ..., z,,) coordinates, we may assume that
P.,...,0,z,) #0.

Let us set

k-1
P(z,) =P, (0, ..., 0,2,) = > a;zi 2}~
j=1



LOCAL EXTENSION OF CR FUNCTIONS ' 261

where a; = a,_; and at least one a; is nonzero. Since P is subharmonic, it follows
thatk = 2/ forsome /7 = 1. Subharmonicity (the subaveraging property) also implies
thata, > 0.

We have

P(z,) = 2 2|z, |" Rea;z2 @ +a,|z,|%"

o<j<z/

For 3 > 0 we define the holomorphic function

h(z, §) = 2 28%a,2°" + (a,8%/2)

o<j<s
and the complex manifold D, = {(—h(z, 3), 0, ..., 0, z)‘ 1lz| <8}. If 8 > 0 is suffi-
ciently small, the following conditions hold:
(@) D;,NQ+#9
(ii) aD, = {(-h(z3),0,...,0,8):|z| =8} is disjoint from Q.
It is clear that (i) holds, since the point (—(a_8%*/2), 0, ... 0) is in the intersection.
For (ii), observe that with h, = h(3e'’, 3),
r(-h,;,0,...,0,8e) = —Reh, + O((Imh;)*) + O(Imh,) O (3)
+Reh, +a,3*/2+0(3°")
= (a,3%/2) + 0(3*"")

which is positive for 8 small.

Remark 1. 1t would be desirable to remove the hypothesis of real analyticity
from the Theorem. The proof given above applies to C? boundaries that have
the special form {0 = Rez, + r(z,, ..., z,)}. It also works when 9Q is C” and does
not have the following property:

for each integer k = 1 there is a germ of a regular complex hypersurface M
at p such that r|,, vanishes to order k at p.

With a different (and easier) proof, the Theorem is true if 4Q is a C', convex
surface.

Remark 2. If Q2 N U is a real analytic subset of U, then

S={z€4Q N U:thereisagermV,
of an analytic hypersurfacez € V, C aQ N U}

is a closed subset of dQ N U.

Proof. Let H(0Q) denote the holomorphic tangent bundle to Q. If V, is an
analytic hypersurface, then TV, = H(9Q)|y,. Thus for some neighborhcod W of
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z, V, N W may be obtained as the union of all real analytic curves in W starting
at z whose tangents lie in H(9Q). Since dQ is real analytic, the integrability
condition is preserved along each curve, and the union of all curves in U starting
at z whose tangents lie in H(3Q) is a complex submanifold V,, and
V,cV,caQ n U. Now if {z;} is a sequence in S converging to z,, then \'A
converges to V .If V, contains an open subset of §Q, then H(9), is not 1ntegrable
at some z € V Thls “contradicts the fact that H 0Q)| Yag , is integrable.

We conclude that if 9Q is pseudoconvex and real analytic, then the set where
(*) does not hold is closed. If 4Q is pseudoconvex and C*, however, this is not
true. Let

30 = {(z,w) € C®’:Rew + ¢(z) = 0}

where ¢ is convex, ¢(0) =0, ¢ =0, ¢ is not harmonic in a neighborhood of 0,
but there are infinitely many disks clustering at 0 on which ¢ is linear. It is
easily seen that (*) holds at (0,0), but (*) does not hold on the interior of a disk
where ¢ is harmonic.
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