LOCAL EXTENSION OF CR FUNCTIONS FROM WEAKLY PSEUDOCONVEX BOUNDARIES

Eric Bedford and John Erik Fornæss

Let $\Omega = \{z \in \mathbb{C}^n : r(z) < 0\}$ be a domain in \mathbb{C}^n , $r \in C^2(\mathbb{C}^n)$, $dr \neq 0$ on $\partial\Omega$, and let $\bar{\partial}_b$ denote the tangential Cauchy-Riemann equations on $\partial\Omega$. A CR-function f on $\partial\Omega$ is a solution of $\bar{\partial}_b f = 0$; the exact sense in which this equation is interpreted may vary with the regularity of f and $\partial\Omega$. A basic result concerning CR-functions is the following local extension phenomenon, which holds at any strongly pseudoconvex point $p \in \partial\Omega$:

for each neighborhood $U' \subset \mathbb{C}^n$ of p, there exists a neighborhood U'' of p such that each CR-function f on $\partial\Omega \cap U'$ has a holomorphic extension to $\Omega \cap U''$

(see the references in the survey article by Henkin and Chirka [2]). An important factor in the proof of (*) is that a strongly pseudoconvex boundary can be made (locally) strictly convex by a holomorphic change of coordinates. It is therefore immediate that (*) holds for $f \in \mathcal{O}(\partial \Omega \cap U')$. This local convexity is not true for weakly pseudoconvex domains (see Kohn and Nirenberg [3]), and the proof of (*) in this case is more delicate. Hill and MacKichan [1] have shown that (*) holds for the Kohn-Nirenberg example; they construct a family of disks rather differently from the way it is done below.

THEOREM. Let Ω be a domain in \mathbb{C}^n which is real analytic and (weakly) pseudoconvex in a neighborhood of $p \in \partial \Omega$. Then (*) holds at p if and only if there is no germ of a complex variety V of codimension one with $p \in V \subset \partial \Omega$.

Proof. Let us first show that if (*) holds there can exist no germ of a complex hypersurface $V \subset \partial \Omega$. The condition that V has codimension one means that its normal bundle is given by $\partial r \wedge \bar{\partial} r$ and so it is a manifold. Thus there exists a function f holomorphic in a neighborhood of p such that $\{f=0\}$ defines V at p and d Re f(p) = dr(p). A suitable branch of the function $F(z) = \exp(-f(z)^{-1/2})$ will define a C^{∞} , CR-function on a neighborhood of p in $\partial \Omega$ which cannot be continued to $\Omega \cap U''$ for any neighborhood U'' of p.

Now we show that (*) holds if V does not exist. More precisely, we will obtain a family of disks satisfying (i) and (ii) below which can be used to construct the extension. (A modern treatment of this is given, for instance, in Polking and Wells [4].) The proof that the function f can actually be extended can be carried

Received July 5, 1977.

The work of the first author was partially supported by NSF grant MCS 76-23465 A01, and the work of the second author was partially supported by NSF grant MCS 75-09629 A02.

Michigan Math. J. 25 (1978).

out just as in the strongly pseudoconvex case. Since we assume that r(z) is real analytic at p, we may introduce a change of coordinates so that p = 0 and

$$r(z) = \text{Re}(z_1 + f(z)) + \sum_{\substack{|I| \ge 1 \ |J| \ge 1}} a_{I,J} z^I \bar{z}^J,$$

where f(z) is holomorphic and vanishes to second order at 0, $I=(i_1,...,i_n)$, $J=(j_1,...,j_n)$ are multi-indices, and $z^I=z_1^{i_1},...,z_n^{i_n}, \bar{z}^J=\bar{z}_1^{j_1},...,\bar{z}_n^{j_n}$. Changing coordinates again by $z_1^*=z_1+f(z), z_j^*=z_j, 2\leq j\leq n$ we may assume that f=0. Now the function $r(0,z_2,...,z_n)$ cannot be identically zero for otherwise $\partial\Omega$ contains a complex hypersurface through 0. Thus in the coordinates $z=(z_1,z')$, we may write

$$r(0, z') = P_k(z') + O(||z'||^{k+1})$$

where $P_k = P_k(z_2, ..., z_n)$ is a nonzero polynomial homogeneous of degree k.

Now we claim that P_k is a plurisubharmonic function. The defining function for the surface $\partial\Omega$ is given by

$$r(z) = \text{Re } z_1 + P_k(z') + O(|z'|^{k+1}) + O(|z'| \text{Im } z_1) + O(|\text{Im } z_1|^2).$$

Let us compute the Levi form L of $\partial\Omega$. If $(\dot{t}_1,...,t_n)$ is tangent to $\partial\Omega$, then

$$\sum_{j=1}^{n} t_{j} \frac{\partial \mathbf{r}}{\partial z_{j}} = 0.$$

Thus at a point $z \in \partial \Omega$ with Im $z_1 = 0$,

$$t_1 = O(|z'|^{k-1})|(t_2, ..., t_n)|.$$

Since $\partial \Omega$ is pseudoconvex at this point,

$$L(t_{1},...,t_{n}) = O(|z'|^{k-1})|t|^{2} + \sum_{i,j\geq 2} \frac{\partial^{2} P_{k}(z')}{\partial z_{i} \partial \bar{z}_{j}} t_{i} \bar{t}_{j} \geq 0.$$

The second derivatives of P_k are of order k-2, and so the summation must be non-negative, which shows that P_k is plurisubharmonic.

After a rotation in the $(z_2, ..., z_n)$ coordinates, we may assume that

$$P_{k}(0, ..., 0, z_{n}) \neq 0$$

Let us set

$$P(z_n) = P_k(0, ..., 0, z_n) = \sum_{j=1}^{k-1} a_j z_n^j \bar{z}_n^{k-j}$$

where $a_j = \bar{a}_{k-j}$ and at least one a_j is nonzero. Since P is subharmonic, it follows that $k = 2\ell$ for some $\ell \ge 1$. Subharmonicity (the subaveraging property) also implies that $a_\ell > 0$.

We have

$$P(z_n) = \sum_{0 < j < \ell} 2|z_n|^{2j} \operatorname{Re} a_j z_n^{2\ell-2j} + a_{\ell}|z_n|^{2\ell}.$$

For $\delta > 0$ we define the holomorphic function

$$h(z, \delta) = \sum_{0 < j < \ell} 2 \delta^{2j} a_j z^{2(\ell-j)} + (a_{\ell} \delta^{2\ell}/2)$$

and the complex manifold $D_{\delta} = \{(-h(z, \delta), 0, ..., 0, z) : |z| < \delta\}$. If $\delta > 0$ is sufficiently small, the following conditions hold:

- (i) $D_{\delta} \cap \Omega \neq \emptyset$
- (ii) $\partial D_{\delta} = \{(-h(z, \delta), 0, ..., 0, \delta) : |z| = \delta\}$ is disjoint from $\bar{\Omega}$.

It is clear that (i) holds, since the point $(-(a_{\delta}\delta^{2}/2), 0, ... 0)$ is in the intersection. For (ii), observe that with $h_{\delta} = h(\delta e^{i\theta}, \delta)$,

$$\begin{split} r(-h_{\delta}, 0, ..., 0, \delta e^{i\theta}) &= -\operatorname{Re} h_{\delta} + O((\operatorname{Im} h_{\delta})^{2}) + O(\operatorname{Im} h_{\delta}) O(\delta) \\ &+ \operatorname{Re} h_{\delta} + a_{\delta} \delta^{2 \ell} / 2 + O(\delta^{2 \ell + 1}) \\ &= (a_{\delta} \delta^{2 \ell} / 2) + O(\delta^{2 \ell + 1}) \end{split}$$

which is positive for δ small.

Remark 1. It would be desirable to remove the hypothesis of real analyticity from the Theorem. The proof given above applies to C^2 boundaries that have the special form $\{0 = \text{Re } z_1 + r(z_2, ..., z_n)\}$. It also works when $\partial \Omega$ is C^{∞} and does not have the following property:

for each integer $k \ge 1$ there is a germ of a regular complex hypersurface M at p such that $r|_M$ vanishes to order k at p.

With a different (and easier) proof, the Theorem is true if $\partial \Omega$ is a C¹, convex surface.

Remark 2. If $\partial \Omega \cap U$ is a real analytic subset of U, then

$$S = \{z \in \partial\Omega \cap U : \text{there is a germ } V_z$$
 of an analytic hypersurface $z \in V_z \subseteq \partial\Omega \cap U\}$

is a closed subset of $\partial \Omega \cap U$.

Proof. Let $H(\partial\Omega)$ denote the holomorphic tangent bundle to $\partial\Omega$. If V_z is an analytic hypersurface, then $TV_z = H(\partial\Omega)|_{V_z}$. Thus for some neighborhood W of

z, $V_z \cap W$ may be obtained as the union of all real analytic curves in W starting at z whose tangents lie in $H(\partial\Omega)$. Since $\partial\Omega$ is real analytic, the integrability condition is preserved along each curve, and the union of all curves in U starting at z whose tangents lie in $H(\partial\Omega)$ is a complex submanifold \tilde{V}_z , and $V_z \subset \tilde{V}_z \subset \partial\Omega \cap U$. Now if $\{z_j\}$ is a sequence in S converging to z_o , then \tilde{V}_{z_j} converges to \tilde{V}_{z_o} . If \tilde{V}_{z_o} contains an open subset of $\partial\Omega$, then $H(\partial\Omega)_z$ is not integrable at some $z \in \tilde{V}_{z_o}$. This contradicts the fact that $H(\partial\Omega)|_{\tilde{V}_{z(j)}}$ is integrable.

We conclude that if $\partial\Omega$ is pseudoconvex and real analytic, then the set where (*) does not hold is closed. If $\partial\Omega$ is pseudoconvex and C^{∞} , however, this is not true. Let

$$\partial \Omega = \{(z, w) \in \mathbb{C}^2 : \text{Re } w + \varphi(z) = 0\}$$

where φ is convex, $\varphi(0) = 0$, $\varphi \ge 0$, φ is not harmonic in a neighborhood of 0, but there are infinitely many disks clustering at 0 on which φ is linear. It is easily seen that (*) holds at (0,0), but (*) does not hold on the interior of a disk where φ is harmonic.

REFERENCES

- 1. C. D. Hill and B. MacKichan, personal communication.
- 2. G. Henkin and E. Chirka, Boundary properties of holomorphic functions of several complex variables. J. Soviet Math. 5 (1976), 612-687.
- 3. J. Kohn and L. Nirenberg, A pseudo-convex domain not admitting a holomorphic support function. Math. Ann. 201 (1973), 265-268.
- 4. J. Polking and R. O. Wells, Hyperfunction boundary values and a generalized Bochner-Hartogs theorem. Proc. Symp. Pure Math. 30 (1977) 187-193.

Department of Mathematics Princeton University Princeton, New Jersey 08540