GENERALIZED HOMOLOGY THEORIES
ON COMPACT METRIC SPACES

Daniel S. Kahn, Jerome Kaminker, and Claude Schochet

1. INTRODUCTION

This paper is devoted to developing useful and tractable homology theories on
the category €4 of based compact metrizable spaces, and doing this, moreover,
within the context of classical algebraic topology. In the introduction we explain why
this is desirable and we then state our main results. Let .« be the category of
abelian groups.

DEFINITION 1.1 [28]. A Steenvod homology theory hy, on €.« is a sequence
of covariant, homotopy-invariant functors hy: #.# — . such that the following
axioms hold for all n and for all X in &.#:

Exactness. If A is a closed subset of X then the sequence
hy(A) — hy(X) — hy(X/A)

is exact.
Suspension. There is a natural equivalence hy(X) A hp+1(SX).

Strong Wedge. Suppose Xj is in ©.«, j =1, 2, -+, . Then the natural map

h(UmX ;v -V X)) = I hy(x;)
Kk J
is an isomorphism.

Classical (ordinary) Steenrod homology theory is denoted_ °H, . It was invented
by Steenrod [40] and axiomatized by Milnor [34]. The theory *H, is very well-
behaved on ®.#. Steenrod showed that it is related to Cech homology by the
sequence

(1.2) 0 = lim'Hyy (X)) — *H,(X) — Hy(X) — 0,

where X = 1}_rn X; and the X; are finite complexes. Thisisa special case of the

lim! sequence of Milnor [34]
.1 .
(1.3) 0 — lim'h (X)) = hy(X) = lim hy(X) — 0,

which holds for any Steenrod homology theory.
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In [28] we showed that many other general properties of h, follow from the
axioms. For example, if X is in F@.« (finite-dimensional compact metrizable
spaces), then there is a spectral sequence of Atiyah-Hirzebruch type converging to

. 2 _s . 0
h*(X), with Ep’q = Hp(X, hq(S ).

In [16, 18], L. G. Brown, R. G. Douglas, and P. Fillmore (abbreviated BDF)
established the existence of a Steenrod homology theory &, on &.#. Let % be the
Calkin algebra, the quotient of the C*-algebra of bounded operators on a separable
complex Hilbert space by the compact operators. An exfension is a unital C*-
algebra injection 7: C(X) — %, where C(X) is the C*-algebra of continuous, com-
plex-valued functions on X € @.#. The set of unitary equivalence classes of exten-
sions is denoted &xt(X).

BDF show that &xt(X) is a covariant, homotopy-invariant functor to  and
that &xt(S2X) is naturally equivalent to &xi(X). Define

&xt(X) if n is odd,
&n(X) =
&xt(SX) if n is even.

Then &, is a Steenrod homology theory on # ..

The homology theory &, resembles homology K-theory K,. There is a natural
homomorphism y.: ¢;(X) — hom(K-!(X), Z). Here is its definition. Let
7: C(X) — % and let v: X — 2 (N) represent an element of K-1(X). Then
Yoo T) (v) = index ((7 ) 1n)v). The map v, is an isomorphism on spheres. More
generally, L. G. Brown proved the following Universal Coefficient Theorem: for any
X in € .« there is a natural split short exact sequence

(1.4) 0 —> Ext(K""(X), z) —> &, (X) —E'; hom (K*(X), Z) —> 0.

Brown’s proof uses fairly sophisticated algebraic K-theory. Of course, (1.4) re-
sembles the Universal Coefficient Theorem for K* and K, of D. W. Anderson; in
particular its splitting implies that the groups K, (X) and & ,(X) are abstractly iso-
morphic for all n and all X in %, the category of finite CW-complexes.

BDF announced [16] that there is a natural isomorphism ¢&y(X) £ Ky(X) on 97.
But &, arises naturally on €.#, not on 9. In fact, from an analysis point of view,
“compact metrizable” is a much more reasonable restriction than “finite CW-
complex.”

The question was, then, is there a Steenrod homology theory SE,l< corresponding
to any cohomology theory E* which is constructed in a concrete way, which extends
E, on 9, and which in the case of K-theory corresponds to &, ? The answer
provided here is yes.

THEOREM A. Let E* be a cohomology theory given by the spectvrum E. Then
theve is a Steenvod homology theory SE, on & .4 which is natuvally equivalent to
E, on 9.

%

We work in the Boardman-Vogt category of spectra as expounded by Adams [2,
42].

The theory SE, is defined by setting °E,(X) = E "X(F(X)), where F(X) is a CW-
approximation to the function spectrum given by the function spaces F(X, S™). Thus
Theorem A is a direct generalization of the Spanier-Whitehead duality constructions
of [38, 39].
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The theories SE* are particularly well-behaved on #&.#. For example, the
Steenrod duality theorem holds in this generality. (This was proved by Steenrod for
S

H,.)
*

THEOREM B. Lel X be a closed subset of S™1. Then
SEk(X) ~ En—k(sn+1\X)’

and the isomorphism is natuval for inclusions X CY C gntl
Finally, we relate our general construction to the BDF theory.

THEOREM C. There is a natural equivalence of Steenvod homology theories
I 6, % SK* on FeM.

Theorem C yields the assertions of BDF and generalizes their theorem [18, 7.7]
from 97 to F&./. As corollaries we obtain easy proofs of two theorems of L. G.
Brown: a Universal Coefficient Theorem (1.4) (in a somewhat more general form
(7.4) buc only on # €.« ), and the strong homotopy property for &, (7.5) (again only
on #€._4). Theorem 7.5 implies that the BDF theory is equ1va1ent to an analogous
theory announced by Kasparov [30] on # & .«.

The map I'y, is constructed via a slant pairing introduced by Atiyah and BDF
which generalizes vy, . Alternately, it may be described in a more analytic fashion
using Clifford algebras, as observed by M. F. Atiyah and G. B. Segal [10].

Edwards and Hastings [23] have defined Steenrod homology theories using pro-
categories and have verified Theorems A and B for their theories.

The paper is organized as follows. Section 2 deals with function spectra; the
necessary technical information is accumulated to formulate the definition of °E_.
In Section 3 the theory SE* is defined and Theorem A is proved. Section 4 is de-
voted to Steenrod duality in general and to Theorem B in particular. In Section 5 the
natural transformation from &, to SK),< is defined—in Section 6 it is shown to be a
natural equivalence. Section 7 contains the proofs of I.. G. Brown’s two theorems
and assorted comments.

We wish to thank M. G. Barratt, L. G. Brown, R. G. Douglas, P. Fillmore, and
I. M. Singer for their encouragement and for illuminating comments. Special thanks
are due to Graeme Segal, who suggested using function spectra. We particularly
wish to acknowledge the pervasive influence of M. F. Atiyah, who via discussions
and his papers (particularly [8]) strongly affected our work. We are most grateful.

2. FUNCTION SPECTRA

In this paper all spaces are based, functions preserve basepoints, homotopies
respect basepoints, and homology and cohomology theories are reduced. Spectra are
denoted A, B, *--. If X is a space, then its suspension spectrum is denoted S(X). A
Sfunction a: A — B is a sequence of continuous functions «,: A — B, respecting the

n
structure maps. A CW spectryum is a spectrum A where each A, is a CW complex

and SA, — A, identifies the complex SA, = A, A S! with a subcomplex of Api -
A map A — B is an equivalence class of functmns A' — B, where A' is a cofinal
CW—subspectrum of the CW-spectrum A. Homotopy classes of maps are called
moyphzsms A — B. The set of morph1sms from A to B will be denoted by [A, B].

A function @: A — B is a weak equivalence if a:m (A) — 7,(B) is an isomorphism.
In particular, this is true if each (a o)y Ti(A) — (B ) is an isomorphism. An

equivalence A — B is an invertible morphism. (See [42] for details.)
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Let X be in @.#. The function spectrum F(X, S) for X is defined as follows.
Let F(X, S") be the space of based maps X — S" with the compact-open topology.
Let A, SF(X, S") — F(X, S™*1) pe defined by A,(f At)(x) = f(x) At. Then
F(X, S) = {F(X, S"); A,}. This is not, in general, a CW-spectrum, and so
[F(X, S), A] is not defined. This essentially technical difficulty is dealt with in the
remainder of this section.

Given a spectrum A, there is a CW-spectrum A' weakly equivalent to it. The
fact that any space is weakly equivalent to a CW-complex has been well known for
25 years (cf. [25]). The situation for spectra is essentially the same—we follow
[22].

DEFINITION 2.1. A CW-substitute for a spectrum A is a CW-spectrum A'
and a function a: A' — A which is a weak equivalence.

We now show that CW-substitutes exist, that they are essentially unique, and
that they are natural in an appropriate sense.

LEMMA 2.2. LetX be a CW-complex, Y a space, and f: X — Y. Then there
exist a CW-complex Y' containing X as a subcomplex and a map £f: Y' =Y ex-
tending £ such that £,: 1(Y'") — 71,(Y) is an isomovphism for i > 1.

Proof. See [22, p. 143].
PROPOSITION 2.3. Every spectvum A has a CW-substitute.

Proof, Apply (2.2) with X = {x,5}, Y = Ay to obtain ay: Aj — Ay . Inductively

suppose that a;: A; — A; exist for j <n with aj*: ﬂi(Aj , aj) — wi(AJ., aj) an iso-

morphism for j <n and i > 1 and suppose given commutative diagrams for j <n
Sa .

1 J‘l

1
o

f——————> A.
AJ AJ

with E.Jf an inclusion of a subcomplex. Apply (2.2) with X = SAr'l_l » Y=A_  and
X — Y the map

Sa!n-l 8n—l

SA! | ——> SA_ _; ——> A,

to obtain A}, a A — A,
A'={A], €.}, and a weak equivalence a: A' — A as desired.

PROPOSITION 2.4. Suppose a: A' — A and a: A" — A gre CW-substitutes.
Then theve is a unique movphism [f]: A' — A" such that [a] = [af], and [f] is an
equivalence.

and €, _1: SA;_; — A,. This yields a CW-spectrum

Proof. The induced map @,: [A', A"] — [A', A] is an isomorphism, by [2,
Theorem 3.4], hence [a] = [@f] uniquely. By symmetry, f is an equivalence.

PROPOSITION 2.5. Suppose a: A' — A and B: B' = B arvre CW-substitutes and
f: A —B is a function. Then theve is a unique movphism [f']: A' — B' such that

[ta] = [B£].
Proof. Use [2, Theorem 3.4] again.
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Remark. 1t is possible to construct CW-substitutes functorially. Given a spec-
trum A, canonically associate a spectrum A' to it (via a telescope construction)

such that SA| C A];; and a weak equivalence A' — A (cf. [42], Prop. 8.3). Let K_
be the realization of the singular complex of Ay ; then the composite K — A' — A is
a functorial substitute. However, (2.4) and (2.5) suffice for our purposes.

Note that in the future we confuse maps with morphisms by deleting brackets
when this causes no harm.

The next order of business is the determination of the relationship of function
spectra to wedges. Let X; be a sequence of spaces. Fix the following notation;

k
\/Xj = lim(\/ XJ-), the weak wedge;
k 1

k
II Xj = lim (H Xj), the weak product;
1

D

J —

J k

k
lim (\/ XJ. ) , the strong wedge;
1

=
>
I

k
j lim (H X; ) , the strong product;
j k 1

and similarly for spectra. Note that II jX; is the natural Cartesian product (for

spaces) and \/J- Xj is the wedge used in the CW-category (for spaces and for
spectra).

PROPOSITION 2.6. Let _A_(j), i=1,2, -, be a sequence of spectva, and sup-
pose that each Al(,j) is of the homotopy type of a CW-complex. Then the natural
Junction t: \/-éﬁ) I jé(j) is a weak equivalence.

Proof. Suppose first that each é(j) is a CW-spectrum. Then the natural func-
tion L:\/T_A_(j) — Hll{é(j) induces an equivalence, by [2, Prop. 3.14]. Since direct
limits commute with 7., the map ¢,: 7, \/j é(j)> — Ty (Hjé(j)) is an iso-
morphism. Inthe general case, choose CW-substitutes v;: Cl) — AG) such that
each 4E Cr(lj) - AQ) is a weak equivalence. Then each yj is an egtgvalence, since
Aﬁlj) is of the homotopy type of a CW-complex. Thus \/J- g(i) — \/j é(j) is a weak

equivalence. Furthermore, ng(j) — Hjé(j) is a weak equivalence, and so is t',
by the first part of the proof. Since the diagram
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ot Y T ot

j

‘_<l
e
I:> -«

o<|

)t [ AU
J

commutes, L is a weak equivalence.
PROPOSITION 2.7. Let X = lim X, wheve each X; is in € .#(. Then the
natuval map lim ’ITJ-(F(Xi, sM) — ‘JTJ-(F(X, S™) is a bijection for all j > 0.
i

Proof. For j = 0, this is the continuity property for cohomotopy [42, p. 3217].

In general, note that X A S© = lim (X; AS™) and that there is a natural isomorphism
;(F(Y, SM) = 1y(F(Y A s}, S™)). The lemma follows.

We now prove the technical result which will eventually yield the wedge axiom
for SE,. Recall from [33] that if Y is a compact metric space, then F(Y, S") is of
the homotopy type of a countable CW complex. Let F(X) be a CW-substitute for the
function spectrum F(X, S).

PROPOSITION 2.8. Suppose {X } is a sequence in € A. The natuval function

p: \/ F(X )— F (\/ X ) is an equivalence. Thus F converts strong wedges into
weak wedges

Proof. The function p is the composite of t: \/ FXj) HJE(XJ-) (which is a
weak equivalence by (2.6)) and

. k
H .E(X_]) = hmg(\\/XJ) - _F_(\/ XJ) ’
j k 1 j

which is a weak equivalence by the spectrum version of (2.7). Weak equivalences of
CW-spectra are equivalences [2, p. 150], completing the argument.

3. THE BASIC CONSTRUCTION

Suppose that E* is a cohomology theory represented by a spectrum E. Then
setting E,(X) =[S, E A X], = 7,(E A X) yields a homology theory E_ on o,
finite complexes In this sectmn we define a Steenrod homology theory E* on
@.« which extends E,. Note that if h, is a homology theory on /, then
h,(X) = 7,(E AX) for some spectrum E by [13,43,1], and so h,, extends to some
Steenrod homology theory h on &./4.

Recall from (1.1) that a Steenrod homology theory h, is a homology theory on
% ./ satisfying exactness (for any closed A C X), suspension, and wedge—which now
takes the form

(3.1) hy, (\/ XJ-> = I h(X;)
j

j
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Remark. To obtain unreduced theories on compact pairs, set
h! (X, A) = h_(X/A) .

Then h, satisfies the Eilenberg-Steenrod axioms (except dimension)vas well as

strong excision: h,(X, A) = h (X/A), pt) for all compact pairs. The Cech extension
of a theory on 97 usually satisfies strong excision but not exactness. The singular
extension satisfies exactness but not strong excision. Steenrod homology theories
satisfy both!

If h, is a Steenrod homology theory with hj(SO) =0 for j # 0, then .
hi(X) = °H(X; hy(s%),

by Milnor’s uniqueness theorem [34]. The other basic example of a Steenrod homol-
ogy theory is the Brown-Douglas-Fillmore theory &, discussed in Section 1. For
general information on Steenrod homology theories, the reader is referred to [34,
28].

Let E be a spectrum with associated cohomology theory E* on the Boardman-
Vogt category of CW-spectra and on CW-complexes in the usual fashion. Define
SEk: %u/{ i od by

(3.2) SEr(X) = ENFEX)),
where we recall that F(X) denotes a CW-substitute for the function spectrum of X.

Propositions (2.4) and (2.5) imply that each °E, is a covariant functor.

THEOREM A. Let E be a spectvrum. Then SE, is a Steenvod homology theory
on @« and theve is a natuval equivalence SE,(X) = 14(E AX) = E(X) on 9¢.

Proof. The functors °E_ are homotopy-invariant by (2.5). The wedge axiom is

verified as follows. If X = \/j X;, then there is an equivalence

p:V Fx) — E(%),

J

by (2.8). Then, since p* is an isomorphism and E* is additive,

1k

SE,(X) = E™NFX) = E“(\_/ E(XJ-)) II e™EX)) = II °E, (X)).
j j j

It remains to define the suspension transformations and to verify the suspension and
exactness axioms.

PROPOSITION 3.3. SE, satisfies the suspension axiom.

Proof. Let p,: F(X, S?) — F(SX, S*"!) be defined by p,(f) (x At) = £(x) A t.
For a loopspace QY, let X: QY — QY be the map which reverses the direction of
each loop. Let £, : F(SX, S®) — QF(X, S") be the canonical homeomorphism defined
by £,(6) (®) () = f(x A 1),

LEMMA 3.4. Let i, = §r‘h{1 ox"o&, 41 0. Then the diagrams
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Sp
n
SF(X, s") ———> SF(SX, sntl)

J'An (X) An+1(SX)

n+1

i
F(X, s*Tl) ——» F(sx, s7*?)

homotopy commute, and the homotopies may be chosen to be natural with respect to
maps X = Y.

Proof. By explicit computation, one verifies that

fx) N(1-s)At, nodd;
M18X) oS, EAY (xAs) =
fx) A sAt, n even;

and

f(x) ANt As, n odd;
b1 O A, XK)EA) (XA S) =
fx) At A(1-3s), neven.

Natural homotopies are then obtained by choosing once and for all the homotopies
XAN1~Tand 1~ To(x A1), where T: 82 =81 A8l — 8l AS! js the map which
switches factors.

Fix the homotopies of (3.4). The maps fi : F(X, §") — F(SX, S™*!) do not in-
duce a function on spectra, since diagrams there must strictly commute. This is a
technical problem which may be solved by the use of the telescope spectrum
Fel(F(X)) (cf. [42]). (Note that if the homotopies are functorial, then so is the
telescope construction.) Let 7: 7 el(F(X)) — F(X) be the canonical weak equiva-
lence. The homotopies of (3.4) fit together to define a function

v: 7el(F(X)) — F(SX)

of degree -1. Then by [42, p. 252}, there is a commutative diagram
5!
7_1 (F(X)) ———* 7 (7 el(F(X))) ——~> 7_y._1(F(8X))

’[g T;

HX(X; 8) > H¥t(sx, 5) ,

where S is the sphere spectrum and ¢ is the suspension isomorphism of the theory
H*(-; S) Thus vy is an isomorphism, so v is a “weak equivalence” of degree -1.

The weak equivalences F(X) < Fel(FX) —%> F(SX) then induce the suspension
isomorphism, for (with T — Jel(X) a CW-substitute) one has

*En(X)

E™FX)) £ E™T) (via 7)
= E-1(F(8X)) (via v)

= *En1(8X),
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yielding a natural equivalence 0: sEn — SE_ 41 © S, and completing the proof of
(3.3).

PROPOSITION 3.5. SE, satisfies the exaciness axiom,

Proof. Let A be a closed subset of X in €-#. By [24], the sequence
Fo(X/A, 87) — F((X, S™) — Fg(A, SP) is a fibration (where F(Y, S™) denotes the
path component of the constant map). Thus the sequence

(3.6) FX/A) — F(X) — F(A)

induces a long exact sequence in homotopy. As is well known, this implies that (3.6)
is a cofibration in the Boardman-Vogt category. Since E* converts cofibrations to
exact sequences, the sequence

E(F(4)) ——> ET(FRX)) —> ETH(F(X/A))

SE,(A) > SE_(X) —— > SE_(X/A)

is exact. This proves (3.5).

We defer the proof that SEx(X) is naturally equivalent to 74(E A X) on 9 until
Section 4. It follows the proof of Theorem B.

4. STEENROD DUALITY
If X is a closed subset of SP*1  then Steenrod [40] has shown
(4.1) SH (X) T BN\ X).

This section is devoted to generalizing the Steenrod duality theorem (4.1) to the
Steenrod homology theories created by Theorem A. (In fact, our results imply (4.1)
as well.) Our method is to use the fact that if X embeds in S™t! , then

E_n §(Sn+1 \X)

k
is a CW-substitute for F(X, S). (Here 27 is the translation suspension functor on
ey )
spectra; 27 means “formally desuspend n times”.)

Note the difference between (4.1) and Alexander duality isomorphism

B X) = H__, (S"*\X),
where H, is singular homology.

The following theorem of J. C. Moore provides the starting place for our inves-
tigation.

THEOREM 4.2 [35]. Let X be a compact metvic space of dimension d < .
Then theve is a natural homomovrphism

pg/: HF(X, §%) - H*9X)

which is an isomovphism if ¢ < 2(n - d).
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The element py € H(F(X, S™) A X) is defined as follows. Let
er: FX, SHYAX — S

be the evaluation map. Then pp =e% t, where ¢, € H”S" is the generator.
Now assume that X is a closed subset of S®™"! which contains the south pole but
misses the north pole. Define ep: (SP*1\X) A X — S” to be the composite

(Sn+1\X)/\X __1&_>. (Sn+1 A Sn+1)\D ~ SZ(n+1)\D

l

s”,

where (north pole, south pole) is the basepoint of SP*1 A 82*1 D ~ gntl g the
diagonal, and s2(n*1)\ D — ST g the canonical deformation retraction. Define
bp=eft,. Let ép: sntl\ X — F(X, SM) be adjoint to ep. Then an easy check
shows that

pr/8ouw) = (ep A D) ug)/w = py/w,

so that the diagram

&p,
Hy ("' \X) ——— H,(F(X, %))

(4.3) uD/\ / pg/

commutes for all q.
LEMMA 4.4. &g : Hq(sn’rl \X) — Hy(F(X, §)) is an isomoyphism for
%
q<2(n-d), d=dm(X).

Proof. The map pp/ is essentially Alexander duality (c¢f. [42]), so (4.2) and
(4.3) imply the lemma.

THEOREM 4.5. Let X be a compact metvic space of dimension d < «, and
suppose that X embeds as a closed subset of Svtl | Then & induces a movphism

(4.6) &: 277 s(s™\X) - F(X, 8)

which is a CW-substitute.

Proof. There are maps f,,,: SK(SP1\ X) — F(X, Sntk) defined via

&
sk(sntl\x) ~ gotktl\x — D 5 px gntk),

Since S(S™"1\X) is a CW-spectrum, these maps may be deformed to a morphism of
spectra
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- -n
&, : 2 SE"I\X) - F(X, §).
The maps £ ,, induce homology isomorphisms in the stable range, by (4.4), and
hence homotopy isomorphisms. Thus én is a weak equivalence.

Remark 4.1. Propositions (2.4), (2.5) guarantee the naturality of €,. Asa
digression, however, we consider the question directly. If A is a CW-spectrum and
B is an arbitrary spectrum, then a Whitehead map f: A — B is a sequence of maps
fn: A, — B, which respect the structure maps up to homotopy A Whitehead map is
(Whitehead) homotopic to a function g: A — B, but in general g may not be unique
(see [42]). The function g is unique when 11m1 Bk-1(4,) = 0. In the case at hand,

T

with A = 27 S(S"*1\X) and B = F(X, S), we have (for k large),
[S(sk-m(s"* 1\ X)), F(X, 8)]; i

[sk-n(gntl\x), F(X, sk 1)] = [sKt\X, F(x, s1)].

Bk'l(Ak)

The maps in the inverse sequence
- k+2 k
[s¥*1\X, F(X, s*71)] « [$""°\X, F(X, §9)]

are isomorphisms for k large, since the fiber of the map SF(X, Sk-1) — F(X, s¥) is
2k - dim(X) connected. Hence lim! Bk-1(4,) = 0.

—

k

The duality theorem now follows easily.
THEOREM B. Let X be a closed subset of S™*1 . Then

SEk(X) ER- k(Sn+1 \X)

and the isomorphism is natuval for inclusions X c Y € sntl,

Proof. By definition and by (4.5),

SEL(X) = E-KEX)) = E-k(E'n §(Sn“\x)) = EPKgrtl\x).

To complete the proof of Theorem A, it remains to show that *E (X) is natural-
ly equivalent to ‘ﬂi(E AX) on 9. Let X e o and let D, (X) be a strong deforma-
tion retract of SP*1\X, with n large. Then by Theorem B and by [43],

SE,(X) ¥ EPKs™\X) = EPND,(X)) £ ml(E AX).

The isomorphisms are natural for n large, and they yield the desired natural
equivalence on %f.

We now indicate more prec1se1y the relation between classical Alexander duality
and Steenrod duality. Let X C S™! pe closed. Then there exist sequences of finite
complexes {X;}, {Y;} embeddedin S™*! such that
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(i) Y; © Yj4; as a subcomplex and sntI\X = Uj Y;;
(iii) Xj is a Spanier-Whitehead dual of YJ- in SPtl |

If X is a finite complex, then S?*1\ X is of the homotopy type of a finite com-
plex; namely, D, X, the Spanier-Whitehead dual, and E;(X) = E;(X). In this event
the Steenrod duality isomorphism of Theorem B (denoted by 6) may be identified
with Alexander duality (c¢f. [41])

(4.8) 0;: By (X;) ¥ EP M),

and the following proposition is obtained.

PROPOSITION 4.9. LetX be closed in S™*! and let {X;}, {Y;} ve chosen as
above. Then theve is a commutative diagram

0 — > lim! By (X;) ——> “E(X) > limEy(X;) ———> 0

l}i_ml 0 lg ll}ﬁ’ 6

0 —> lim! E* " I(y)) ——— EP K\ X) ——— LmE"K(Y;) —> 0

velating Milnor's lim! sequences, with vertical maps all isomorphisms.

Proof. The upper row is the lim! sequence (1.3) obtained from X = }i_mXi .
The lower row is the more familiar lim! sequence obtained from the CW-complex
Sntl\ X = lim Y;. The diagrams

—_—

SEk(X) _— > Ek(Yj)

I I’
En-k(sn+l\x) R En'k(Yj)

commute for each j, and a look at the explicit constructions of the sequences com-
pletes the proof.

5. CONSTRUCTION OF I',: &, — °K,

This section and Section 6 are devoted to proving Theorem C.

THEOREM C. Theve is a natuval equivalence of Steenrod homology theories
Ty: &, — °K, on F €M, wheve &, is the BDF theory and °K, is the theory con-
structed by Theovem A corresponding to complex K-theory.

In this section, I', is defined and shown to be a natural transformation of
Steenrod homology theories on F%.#. The first step is the construction of certain
maps

wX/: &,(X) - K4(F(X, 87)

for n odd and X € @.#. Then an argument which requires X € # & .« yields T,.

The following pairings will be needed:
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(5.1) A :KEX)Q@KS(Y) = KPS AY);
(5.2) /KX AY)® ¢,(Y) —» K" 73%X) (slant product);
(5.3) N KX ¢ X - ¢, X) (cap product) .

The pairing (5.1) exists since K is a ring spectrum. Let a € K-2(S% be the

Bott generator. Then A a: KS(Y) — K5-2(Y) = K%(82Y) is (topological) Bott peri-
odicity.

The pairings (5.2) and (5.3) are due to BDF [18]. We recall the definition of the
slant product in the case K-1(X AY)® ¢;(Y) = K %(X). Let = lim#(n), so

K IXAY)=[XAY, ], and let u* denote the invertible elements of the Calkin
algebra, so KO(X) = [X, a”]. Let a: X AY - %(N) and 7: C(Y) — %. Then the

] TX0IN
composite X T > % (N)Y ——L %* gives an element in KO(X). Compose
with periodicity to obtain a/T € K-2(X). (Note that if 7 is deformed continuously
through extensions, then the image in K-2(X) is left unchanged. This will be useful
in connection with strong homotopy invariance in Section 7.) Take the adjoint of /,
set X =80, s =1, r = -1, and obtain Vi €1(Y) = hom (K- 1(y), Z). In fact, this is
reversible; y y1e1ds / by treating Y as a parameter space following Atiyah-
Singer [9; HI]

The cap product is basic. It gives (for r =0, s = 1) a K%(X)-module structure
to ¢;(X). Its definition is due essentially to Atiyah [8]. Here we recall the BDF
formulatmn briefly. Let E | X be a vector bundle represented by a projection-
valued function pg: X — M, [7, p. 31]. Let 7: C(X) — % be an extension. Then
define EN 7: M (X) — ¥ by (ENn7)@) =(r®1)(pg - f), where

M, (X) = CX)® M,
and we use the fact that & xt(X) may also be defined by C*-algebra injections
M, (X) —u [18].

Note. We shall use certain properties of the BDF pairings [18] which have been
verified by L. G. Brown. These properties yield in essence the key steps to our
proofs of (5.8) and (5.11).

The following maps will be needed:

(1) A FX, S?) AS! — F(X, s™1), defined by A, (f A t) (x) = £(x) At;

(2) the evaluation e : F(X, 8") A X — S";

(3) p: F(X, 8"2) A 82 — F(X, §7), defined by p,(f At)(x) = f(x) At.
The following lemma is easily verified.

LEMMA 5.4. The diagram

1AT A
FX, S")AX AS? —— > FX, S"H)ASPAX 22— FX, S?) AX

len—Z/\l len

smn-2 A 82 > §°
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commutes, wheve T intevchanges the last two factors.

Let d; € K~ 1(s!) be represented by S! =#(1) — %, and inductively define
d, =aAd,_» € K'1(8") for n odd. Then d, is the Bott generator in 7, (%) and
may be concretely realized using Clifford algebras by a map S" — % Z(n 1)/2y (see

7.8).

Note that A is graded commutative, so T*(a A x) = x A a. We use this implicit-
ly in the following lemma.

LEMMA 5.5. (1 AT)*p, A1D*ekXd, =aA (e} ,d,_5) in the group

K HF(X, "% AX AS?).

Proof. By (5.4),
(AINATp, AN D*eXd, = (e,.2 AN DXaANd,_2) = aN(ef_pd,_2).

Now following Atiyah [8], define u € K-I(F(X, S™) A X) for n odd by letting
u be the homotopy class of the compos1te

e d

F(X, ™) AX 2 »8 > .

Then (5.5) immediately implies:
LEMMA 5.6. (1 AT)*(p, A D)*pX =aApX , in K-I(F(X, SP-2) AX A S2).
The class ur)f should be thought of as a K-theory Spanier-Whitehead duality
class. The existence of ur}f immediately yields a homomorphism

(5.7 pX/: e,(x) - KAF(E, s7)

which is clearly natural in X, for fixed n. The following lemma shows that the map
is “independent of n” in a reasonable sense.

LEMMA 5.8. For n odd and X € &-4 there is a commutative diagram

p/
& ,(X) = > K™(F(X, 5™)

luff_z/ lpﬁ

A
K-2(F(X, sS™"2)) ELIANEN K-2(F(X, S"-2) AS2) .

Proof. Let T € &(X). Then by (5.6) and by [18, (5.8)],
pXwX /1) = (AN, AD*uX)/7 = @npf)/7 =an@wX/1),

as required.

Now suppose that X € #&.#. Choose n to be odd and large, so that X embeds
n S™"1 Then (4.5) implies that

6 2 S(E"I\X) - F(X, 8)



GENERALIZED HOMOLOGY THEORIES 217
is a CW-substitute. Hence by periodicity and by Steenrod duality,
K-Z(Sn+1 \X) ~ Kn-l(sn+l \X) ~ sK1 (X) ,

and so

(5.9) K 2(s?HI\X) = K, (X).
Define l"i(n (for n odd) to be the composite

wy/ &
€¢,(X) —> K2(F(X, S")) ———> K-2(sntl\X)

l; (5.9)

°K; (X)

LEMMA 5.10. The collection {I‘i( n } defines a natural tvansformation of
functors T': &) — °K| on F:€. 4. ’

Proof. (Cf. [39] for an analogous argument in greater detail.) Suppose
X C©S?" C 8™ with n, m odd. Then a routine check involving (5.8) shows

Iy, =Tf .. Thus T¥ is well-defined. Naturality will follow if &% is natural for
n > dim X. Suppose f: X — Y, with n >>2dim X, 2dim Y. Then &,(W) is a

2(n - dim W) equivalence (W =X or Y), so there is a unique homotopy class of maps
g: Sntl\y — gn*l\ X, making the diagram

&, (Y)
sntl\y ——— > F(y, sB)

lg R lF(f)
é,(X) f

I\ X —— F(X, SP)
homotopy-commute. This implies that &* is natural.

Let a/A: K .(X) — SK_, ,(X) be the composite

K. (X) = KT(EX) —1 > KT 2(FE)) = K, ,X),

and let o: °K_(X) — °K.,,(SX) be suspension. Define I'y as follows. The map
T', 1is the composite

I3
4
(aN)k
€ o(X) 5K, (X)
A
gl
rPX

’
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and I',, ., is the composite

FX
2kl g
€211 (X) — — — —> "K;pp11(X)
(an)k
X
1
&) > K ,(X)

It remains to relate I', to periodicity and suspension. Topologlcal perlodlclty
and BDF periodicity may both be eXpressed as cap products. Let p: Xt — 80 pe the
canonical map, and define ay = p*a e K- (X ). Then the BDF periodicity is

aXﬂ: éal(SZX) = (g_l(X) - (g)l(X)
and the topological periodicity is
n. s 2 — S
ayN: °K;(8*X) — °K;(X),
where this latter map is defined to be the composite

> o2 s an
°K, (8°X) ———> °K_,(X) ———> °K|(X)

(which agrees with the usual cap product on finite complexes).
PROPOSITION 5.11. The diagram

rS¢x
1
&,(82X) ——— SK,(8%2X)
I‘X
é”I(X) L , SKI(X) commutes.
Proof. After unraveling a large diagram, the problem reduces to showing that
s%x
2 Hnt2 2ere mt?
&,(8°X) ———> K" 4(F(8%X, s"*<))
(5.12) *
ay N Y
v % pX Y
& (X) — K 4(F(X, s)

commutes, where ¥: F(X, S7) — F(S°X, SnJrZ)2 is the double suspension map:
Y() (x A t) = f(x) At. It is immediate that en+2 o (Y A1) = eX A 1. Hence

W A 1)*un+2 = (@ A DHESEX Y, N a) = (X AKX A a) = pXAa.

Thus
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2
WRud, /1) = (WA DS XN /1 = XA/

= X utAag))/7 = pf/lax N1).

proving the proposition.
Finally, the section concludes with its main result.

THEOREM 5.13. I,: &, — °K, is a natural transformation of Steenvod ho-
mology theovies on F € Al

Proof. By (5.10), it suffices to show that I, commutes with suspension. After
unraveling again, the relevant commutative diagram is (5.12).

6. PROOF OF THEOREM C

THEOREM C. There is a natural equivalence of Steenvod homology theovies
Iy ¢, — %K, on FEM.

Proof. Theorem (5.13) defines a natural transformation of Steenrod homology
theories I', on F € A(. Such a natural transformation induces a morphism of spec-
tral sequences [28] which on the EZ level is the coefficient homomorphism
SHp(X; é°q(So)) — sHp(X; SKq(SO)) and which on the E® level is an associated graded

0
map to I'y. To prove Theorem C, then, it suffices to show that I‘*S is an isomor-

1
phism. This is equivalent to checking 1"? (by periodicity), which corresponds to
showing that the composite

b/ g
&, ——> KO(F@S!, sm) ———> KOst sl)

is an isomorphism, where g, = éDn: sptl\ X — F(s!, s?) as in (4.4), and n is odd.
Proving (6.1), then, is the remaining step.

LEMMA 6.1. g¥ o (un/): &,(8") — KOS™*!\8") is an isomovphism, for n
odd.

Proof. Let o¢ be the Hardy space H2(S!) (those L2 functions on S! with
analytic extensions to the whole disk) and & = Z(H). Let & be the C*-algebra
generated by <, I, and the Toeplitz operator T _, . Then

z

~ T
cish) 2 e/ — w

represents a generator of &,(8!) =Z, and 7(z) = (T _1)- Note that
Z

7[7](151) = index (Tz_l) = 1.

Since K9(sn*1\8!) = Z also, it suffices to verify that g*(u_/[7]) generates

KOs\ s!). Explicitly writing down the element is an easy task. Choose an in-

.clusion Sn-1 — snt1\ Sl which generates m__;(S**1\S!). Then our problem re-
1 T®1y

duces to showing that the composite S™-! —® s NS —— > oF

generates 7 _,( % ¥) = Z, where ¢ is the composite
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éD ﬁ 1
Sn—l S Sn+l \Sl - 5 F(Sl , Sn) - @/S

; T

o (N)S'

But the adjoint ¢#: S™~ L ASl - a(N) is homotopic to d_, the Bott generator of

7 (%(N)) = Z. Atiyah’s proof [9] of periodicity implies that for N large,

('r ® 1n),: [P, Q)] — [s™~!, % *] induces the periodicity isomorphism (for
our particular cho1ce of 7!). Hence (1 ® 1) o ¢ generates m,_;(« "), and the
proof is complete.

Remark 6.2. Suppose 1" & " sK were another natural equlvalence of
Steenrod homology theories, and 1"*|W T, [@/f Then ¢, =TI’y 0 F*l. Ky — Ky
is a natural equivalence, and ¥, =1 on %. Then(y - 1): BUXZ —-BUX Z isa
map of spaces which vanishes when restricted to skeleta. Since BU X Z has no
phantom self-maps, we conclude ¢ - 1 = 0; hence I', = T‘_* on F€A. Thus T, is
canonical in a very strong sense.

]

7. APPLICATIONS AND REMARKS

Theorem C yields short proofs of two results obtained first by L. G. Brown.
His methods involve algebraic K-theory and are quite interesting. Our proofs (7.1)
and (7.5) are completely topological in nature but more limited—they hold only in
F & .. The section closes with assorted remarks.

THEOREM 7.1 (L. G. Brown). Theve is a natural Universal Coefficient se-
quence

0 — Ext(K°(X), 2) — &xt(X) - hom(Kl(X), Z) — 0

on F& M. Theve is a similar sequence for &,(X). Both sequences split (unnatu-
rally).

-n
Proof. Let W= 27 S(S™1\X). Then there is a natural Universal Coefficient
sequence [44, 4]

(7.2) 0 — Ext(K,(W), Z) — K™Y(W) — hom(K_;(W), Z) — 0.

Then by definition and by Theorem C, K-1(W) = °K,(X) = &xt(X), and
-n ) .
K;(W) = Kj(E 8(s™I\X) ) = K;j_,(8"*"1\X) = KI(X),

by Alexander duality [41]. These isomorphisms are natural. Thus (7.2) yields (7.1)
by translating. The sequence (7.1) splits (unnaturally), since Ext(A, Z) is algebrai-
cally compact and hom(B, Z) is torsion-free for any abelian groups A, B.

Remark 1.3. Let G be a finitely generated abelian group and let M be a Moore
space of type (G, 2). Then coefficients may be introduced in the theory &, by de-
fining & (X; G) = ¢, ,(X A M) and this new theory satisfies the Universal Coeffi-
cient sequence
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(7.4) 0 — Ext(K™"(X), G) - &_(X; G) - hom(K*(X), G) — 0

for all X €e F&€ 4.

THEOREM 7.5 (L. G. Brown). (“Strong homotopy invariance”) Lef X € & &
and let 7 C(X) — % be a continuous path of extensions, 0 < s < 1. Then
(1ol =[7,] in &xt(X).

Proof. Let T: C(X) XI — % by 7(f, s) = 7,(f). Then un /T gives a homotopy,
which implies ,ur}f /To~ pX /7, , and this yields T' ,([74]) = T ([7;]). Since T, is
an isomorphism, [74] =[7,].

Remark 7.6. Theorem 7.5 implies that &xt(X) = [C(X), %], where the right-
hand side denotes homotopy classes of extensions (in the category of C*-algebras
w1th 1dent1ty) There is then the following amusing fact: °K; (X) = [C(X), 2] and
K!(X) 2 [SX, @ 4¥]. BDF first noted that Theorem 7.5 implies that

ext(X) = m,(E11(X)),

answering Atiyah’s question [8] as to the suitable equivalence relation to be put on
E11(X). This shows that the homology theory of Kasparov [30] coincides with &,

Remark 1.1. Suppose h, is a Steenrod homology theory with h_(S SO of finite
type. Then the lim! sequence splits, and so h (X) is unnaturally 1somorphlc to the
direct sum lim h (X )@ hm h, 1(X) where X = lim X;. Thus the groups h «X)

are uniquely speclfled by the behavior of h, on 9. A stronger uniqueness theorem
seems to require some additional axiom spemfylng the relation of h, to h*. For
example, suppose one assumes the existence of a slant product

h™(X A ¥) ® hy(X) 4 h-K(y)

and a duality class p € h™(X A F(X)) with obvious proEertles Take Y = F(X), and
one obtains a natural map of theories 1/: hy(X) — h®*(F(X)) which is easily seen
to be a natural equivalence. (This is essentially the argument in Sections 5-6.) This
would imply that the Steenrod homology theory sh* produced by Theorem A is na-
turally isomorphic to h, on F € A. A strong uniqueness theorem would result.
Suppose h, and k, are Steenrod homology theories “with slant products”, and sup-
pose I'gp: h 9 — k ]W is anatural equivalence. Then I'gy extends to a natural
equivalence I‘: h, — k on & &« (or even on &.« if the duality class existed).
Even in such circumstances I‘ would not be unique; there might be phantom natural
equivalences on h, or k, which were the identity on 9¢ but not on # €.#. This
fortunately does not occur for K,.

Remark 7.8. Here is an analytic description of I'; due to Atiyah and Segal.
First recall the Clifford algebra description [9] of the generator d,, _; € 7y, _1(#%).
Let H,, -+, H, be complex N X N matrices (N =27°1) with H;H; = -H;H; (i # j)

2n
and HZ = -I. Define 6, _:R2"- {0} — GL(N, €) by 8, _,(x) = EJ | x;H;, where
x =({xy, **, X, ). The restriction of this map to S?-! is in the homotopy class of
dzn-1-

Now suppose X C €™ =1R2n and 7 € &xt(X). Then I'j(7) is the homotopy class
of the composite

#

¢ 9n-1 7T ® 1IN
C"\X —> F(X, €™\ {0}) —— F(X, GL(N, €)) —> o @M,
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where ¢(d) (x) =x - A, and an easy check shows that I';(7) is the map

2n
Ab~> 2 (7(p;) - 1) @ Hy,
j=1

where p;: X — IR are the coordinate functions. A detailed description of the Atiyah-
Segal map may be found in [10].
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