COBORDISM CLASSES REPRESENTED BY FIBERINGS WITH FIBER IRP(2k + 1)

Frank L. Capobianco

1. INTRODUCTION

Let k be a nonnegative integer. Let $\eta_{n-k}(BO(k+1))$ be the unoriented cobordism group of real (k+1)-plane bundles over closed smooth (n-k)-dimensional manifolds. Let σ_n^k : $\eta_{n-k}(BO(k+1)) \to \eta_n$ be the homomorphism defined by assigning to the (k+1)-plane bundle ξ over M^{n-k} the cobordism class of the total space $\mathbb{R}P(\xi)$ of the associated projective space bundle. Many problems in cobordism theory can be reduced or related to the computation of this homomorphism. For instance, Stong [6; 8.4] proved that the image of σ_n^k is the set of cobordism classes in

 η_n which are represented by the total space of a fibering $\mathbb{R}P(k) \xrightarrow{i} M^n \xrightarrow{\pi} B^{n-k}$ which is totally nonhomologous to zero. Another example of the usefulness of σ_n^k was described in [1]: Let J_n^k be the set of cobordism classes in η_n which are represented by a manifold admitting an involution whose fixed point set is (n-k)-dimensional. Then the image of σ_n^k contains J_n^k , which in turn contains the image of σ_n^{2k-1} .

The main results of this paper are the following:

PROPOSITION 2.3. The image of σ_n^3 equals the set of classes in η_n which are represented by a fibering with fiber $\mathbb{R}P(3)$, and is the set of classes α in η_n with $w_l^j w_{n-j}(\alpha) = 0$ for all j, $0 \leq j \leq n$.

PROPOSITION 4.4. The image of σ_n^5 equals J_n^3 , and is the set of classes α in η_n with $w_1^j w_{n-j}(\alpha) = w_1^{i-5} w_{n-i} s_5(\alpha) = 0$ for all j and i, $0 \le j \le n$, $5 \le i \le n$.

2. THE IMAGE OF σ_n^3

PROPOSITION 2.0. Let $f: M^n \to B^b$ be a smooth map and let $F = f^{-1}(p)$ be the inverse image of a regular value of f. Let $i: F \to M$ be the inclusion. Then $i_*[F] = f^*[B] \cap [M]$.

Proof. By examining tubular neighborhoods of F and p, we see by naturality that $f^*[B]$ is equal to what Milnor and Stasheff call the dual cohomology class to F in M [4, page 120]. The proposition then follows from [4; Problem 11-c].

COROLLARY. If $F^f \xrightarrow{i} M \xrightarrow{\pi} B$ is a smooth fibering, then for any class $x \in H^f(M; \mathbb{Z}_2)$ the numbers $\langle i^*(x), [F] \rangle$ and $\langle x \cup \pi^*[B], [M] \rangle$ are equal.

Received October 8, 1976. Revision received April 27, 1977.

This research was supported in part by the National Science Foundation, Grant MCS 76-06373.

Michigan Math. J. 24 (1977).

The above corollary is due to D. O'Reilly [5]. Proposition 2.0 may be well-known and was pointed out to me by C. A. McGibbon. Finally, I am indebted to R. E. Stong for the following proposition.

PROPOSITION 2.1. If $\alpha \in \eta_n$ is represented by a fibering with fiber $\mathbb{R}P(2k+1)$, then $w_1^j w_{n-j}(\alpha) = 0$ for all j, $0 \le j \le n$.

Proof. Suppose α is represented by the fibering $\mathbb{R}P(2k+1) \xrightarrow{i} M^n \xrightarrow{\pi} B^{n-2k-1}$. The tangent bundle τM of M splits as a Whitney sum $\pi^* \tau B \oplus \theta$, where θ is the (2k+1)-plane bundle tangent to the fibers. Thus for $0 \le j \le n$,

$$w_{n-j}(M) = \sum_{p+q=n-j} w_p(\theta) \pi^*(w_q(B))$$
.

Since i is an embedding with trivial normal bundle, $i^*(w_1(M)) = w_1(\mathbb{R}P(2k+1)) = 0$, and from the Serre spectral sequence, $w_1(M) \in \operatorname{image} \pi^*$. Because B is (n-2k-1)-dimensional, θ is (2k+1)-dimensional, and $w_1^j(M) \in \operatorname{image} \pi^*$, we conclude that $w_1^j w_{n-j}(M) = w_{2k+1}(\theta) w_1^j (M) \pi^*(w_{n-j-2k-1}(B))$. Since

$$\langle i^*(w_{2k+1}(\theta)), [\mathbb{R}P(2k+1)] \rangle = \langle w_{2k+1}(\mathbb{R}P(2k+1)), [\mathbb{R}P(2k+1)] \rangle = 0,$$

the proposition now follows from O'Reilly's theorem.

By Proposition 2.1, the set of classes α in η_n with $w_1^j w_{n-j}(\alpha) = 0$, $0 \le j \le n$, contains the image of σ_n^3 . We shall now show that the reverse statement is also true.

Let (n_1, n_2, n_3, n_4) be a partition of n - 3. Let

$$\pi: \mathbb{R}P(n_1, \dots, n_4) \to \mathbb{R}P(n_1) \times \dots \times \mathbb{R}P(n_4)$$

be the projective space bundle associated to $\lambda_1 \oplus \cdots \oplus \lambda_4 \to \mathbb{R}P(n_1) \times \cdots \times \mathbb{R}P(n_4)$, where λ_i is the pullback of the canonical line bundle over the ith factor. Since by [2] $\eta_*(BO(4))$ is the ideal over η_* generated by the bundles

$$\lambda_1 \oplus \cdots \oplus \lambda_4 \to {\rm I\!RP}(n_1) \times \cdots \times {\rm I\!RP}(n_4)$$
 ,

the image of σ_*^3 is the ideal generated by the Stong manifolds $\mathbb{R}P(n_1, \cdots, n_4)$. In [6; 8.3] Stong exhibited for each integer n, $(n \neq 2^s, 2^s - 1)$ a partition (n_1, \cdots, n_4) of n - 3 such that the class x_n of $\mathbb{R}P(n_1, \cdots, n_4)$ is indecomposable in η_* . For n = 2^s , s > 2, Stong also exhibited a partition (n_1, \cdots, n_4) of n - 3 such that the class y_n of $\mathbb{R}P(n_1, \cdots, n_4)$ has $s_{2^{s-1}}, s_{2^{s-1}}(y_n) = 1 \mod 2$.

Let x_2 be the class of $\mathbb{R}P(2)$, and let x_2 be the class of $\mathbb{R}P(2^s) \cup \mathbb{R}P(2)^{2^{s-1}}$ for s>1. It is a classical result of Thom [7] that η_* is a \mathbb{Z}_2 -polynomial algebra on the classes x_n .

PROPOSITION 2.2. The numbers $w_1^j w_{n-j}^{}$, $0 \le j \le n$, distinguish the classes x_2^i and $x_{2^{r_1}} \cdots x_{2^{r_t}} x_2^k$ where $n = 2i = 2^{r_1} + \cdots + 2^{r_t} + 2k$ for $i, k \ge 0$ and $r_1 > \cdots > r_t \ge 2$.

Proof. Suppose $n = 2^{r_1} + \dots + 2^{r_t} + 2k$ for $k \ge 0$ and $r_1 > \dots > r_t \ge 2$. Let

 $\begin{array}{l} \omega_k \ \ \text{denote the ordered tuple} \ (2^{r_1} \ , \ \cdots \ , \ 2^{r_t} \ , \ 2k) \ \ \text{and} \ \ x_{\omega_k} \ \ \ \text{denote the product} \\ x_{2^{r_1}} \cdots x_{2^{r_t}} x_2^k \ . \ \ \text{Since} \ w_n(x_2^i) = 1 \ \ \text{Mod} \ 2 \ \ \text{while} \ \ w_n(x_{\omega_k}) = 0 \ \ \text{Mod} \ 2 \ \ \text{for all} \ \ k, \ \text{and} \\ \text{since} \ \ w_1^n(x_{\omega_k}) = 1 \ \ \text{Mod} \ 2 \ \ \text{for} \ \ k \leq 2 \ \ \text{while} \ \ w_1^n(x_{\omega_k}) = 0 \ \ \text{Mod} \ 2 \ \ \text{for} \ \ k \geq 2, \ \ \text{it suffices} \\ \text{to prove the numbers} \ \ w_1^j \ w_{n-j} \ \ \text{distinguish the classes} \ \ x_{\omega_k} \ \ \text{for} \ \ 2 \leq k < n/2. \ \ \text{Define} \\ \omega_p < \omega_q \ \ \text{if} \ \ p > q. \ \ \text{Suppose} \ \omega_p < \omega_q \ \ \text{and} \\ \end{array}$

$$\omega_{\rm p} = (2^{\rm pl}, \dots, 2^{\rm pt}, 2p)$$
 and $\omega_{\rm q} = (2^{\rm ql}, \dots, 2^{\rm qu}, 2q)$.

Let a be the integer such that p_i = q_i for i < a and $q_a > p_a$. Let j = 2^{q_a} . Then $w_1^j \ w_{n-j}(x_{\omega_p})$ = 0 Mod 2 while $w_1^j \ w_{n-j}(x_{\omega_q})$ = 1 Mod 2. Furthermore, if $\omega_g < \omega_p$, then $w_1^j \ w_{n-j}(x_{\omega_g})$ = 0 Mod 2. This completes the proof.

Since the numbers $w_1^j w_{n-j}$, $0 \le j \le n$, all vanish on the products $x_{2^{s-1}}^2 x_2^i$ and $x_{2^{s-1}}^2 x_2^{r_1} \cdots x_{2^{r_t}} x_2^k$, s > 2, we see that the set of classes in η_* with $w_1^j w_{n-j} = 0$ contains all products of generators for η_* except those listed in Proposition 2.2. Therefore if $n = 2^s$, s > 2, then the class $y_n = x_{2^{s-1}}^2$ modulo the ideal generated by lower dimensional classes in the image of σ_*^3 . Hence the image of σ_*^3 contains all products of generators for η_* except those listed in Proposition 2.2. Therefore, the image of σ_*^3 is the ideal generated by the x_n , $n \ne 2^s$, and the classes y_{2^s} , s > 2; and, we have proven

PROPOSITION 2.3. The image of σ_n^3 equals the set of classes in η_n which are represented by a fibering with fiber RP(3), and is the set of classes α in η_n with $w_{n-j}^j(\alpha)$ = 0 for all j, $0 \leq j \leq n.$

We should point out that Proposition 8.3 of [6] is false, and that Proposition 2.3 gives the correct version.

3. NECESSARY CONDITIONS FOR CLASSES BELONGING TO J_n^3

Since the image of σ_n^3 contains J_n^3 , if α is in J_n^3 then $w_1^j w_{n-j}(\alpha) = 0$ for all j, $0 \le j \le n$. In this section we shall show that $w_1^{i-5} w_{n-i} s_5(\alpha) = 0$ for all i, $5 \le i \le n$, as well. Suppose α is represented by the manifold M^n with involution T whose fixed set F^{n-3} has codimension 3. Let $\nu^3 \to F^{n-3}$ be the normal bundle. By [3; 24.2], M^n is cobordant to $\mathbb{R}P(\nu^3 \oplus \mathbb{R})$, where $\mathbb{R}P(\nu^3 \oplus \mathbb{R})$ is the total space of the projective space bundle associated to $\nu^3 \oplus \mathbb{R} \to F^{n-3}$. Therefore, it suffices to show $w_1^{i-5} w_{n-i} s_5(\mathbb{R}P(\nu^3 \oplus \mathbb{R})) = 0$ for all i, $5 \le i \le n$.

Following [3], $H^*(\mathbb{R}P(\nu^3 \oplus \mathbb{R}))$ is a free $H^*(\mathbb{F}^{n-3}; \mathbb{Z}_2)$ -module via the map p^* indiced by the projection on classes 1, c, c^2 , c^3 where c is the characteristic class of the canonical line bundle over $\mathbb{R}P(\nu^3 \oplus \mathbb{R})$. Multiplication in

$$H^*(\mathbb{R}P(\nu^3 \oplus \mathbb{R}); \mathbb{Z}_2)$$

is subject to the relation $c^4 = c^3 p^*(v_1) + c^2 p^*(v_2) + cp^*(v_3)$, where v_i , $1 \le i \le 3$,

denotes the ith Whitney class of ν^3 . Furthermore,

$$w(\mathbb{R}P(\nu^3 \oplus \mathbb{R}P)) = p^*(w(F^{n-3}))(1 + p^*(v_1) + p^*(v_1)c + p^*(v_2) + p^*(v_3) + p^*(v_1)c^2).$$

If w_i denotes the jth Whitney class of \mathbf{F}^{n-3} , then $w_1(\mathbb{R}P(\nu \oplus \mathbb{R})) = p^*(w_1 + v_1)$ and

$$w_{n-i}(\mathbb{R}P(\nu \oplus \mathbb{R})) = p^*(w_{n-i-3}v_3 + w_{n-i-2}v_2 + w_{n-i-1}v_1 + w_{n-i})$$

$$+ p^*(w_{n-i-3}v_1)c^2 + p^*(w_{n-i-2}v_1)c.$$

From [2],

$$s_5(\mathbb{R}P(\nu \oplus \mathbb{R})) = p^*(s_5(\mathbb{F}^{n-3}) + s_5(\nu)) + p^*(s_4(\nu))c + p^*(s_1(\nu))c^4$$
.

Because F is (n - 3)-dimensional, this means

$$\begin{split} \mathbf{w}_{1}^{\mathbf{i}-5} \, \mathbf{w}_{\mathbf{n}-\mathbf{i}} \, \mathbf{s}_{5} (\mathbf{RP}(\nu \oplus \mathbf{R})) \, &= \, \mathbf{p}^{*} ((\mathbf{w}_{1} + \mathbf{v}_{1})^{\mathbf{i}-5} \, \mathbf{w}_{\mathbf{n}-\mathbf{i}-3} \, \mathbf{v}_{1} \, \mathbf{s}_{4}(\nu)) \, \mathbf{c}^{3} \\ &+ \mathbf{p}^{*} ((\mathbf{w}_{1} + \mathbf{v}_{1})^{\mathbf{i}-5} \, (\mathbf{w}_{\mathbf{n}-\mathbf{i}-3} \, \mathbf{v}_{3} + \mathbf{w}_{\mathbf{n}-\mathbf{i}-2} \, \mathbf{v}_{2} + \mathbf{w}_{\mathbf{n}-\mathbf{i}-1} \, \mathbf{v}_{1} + \mathbf{w}_{\mathbf{n}-\mathbf{i}}) \, \mathbf{s}_{1}(\nu)) \, \mathbf{c}^{4} \\ &+ \mathbf{p}^{*} ((\mathbf{w}_{1} + \mathbf{v}_{1})^{\mathbf{i}-5} \, \mathbf{w}_{\mathbf{n}-\mathbf{i}-3} \, \mathbf{v}_{1} \, \mathbf{s}_{1}(\nu)) \, \mathbf{c}^{6} + \mathbf{p}^{*} ((\mathbf{w}_{1} + \mathbf{v}_{1})^{\mathbf{i}-5} \, \mathbf{w}_{\mathbf{n}-\mathbf{i}-2} \, \mathbf{v}_{1} \, \mathbf{s}_{1}(\nu)) \, \mathbf{c}^{5} \, . \end{split}$$

Because
$$s_{2r}(\nu) = v_1^{2r}$$
 and $c^4 = c^3 p^*(v_1) + c^2 p^*(v_2) + cp^*(v_3)$,
$$w_1^{i-5} w_{n-i} s_5(\mathbb{R}P(\nu \oplus \mathbb{R}))$$

reduces even further to

$$p^*((w_1 + v_1)^{i-5}(w_{n-i}v_1^2 + w_{n-i-1}v_1^3 + w_{n-i-2}v_1^4))c^3$$
.

Therefore, the number

We shall show that this number is zero by considering the canonical line bundle $\lambda \to \mathbb{RP}(\nu^3)$.

From [3], $\lambda \to \mathbb{R}P(\nu)$ bords as an element of η_{n-1} (BO(1)). Hence all the characteristic numbers of $\lambda \to \mathbb{R}P(\nu)$ vanish. If e denotes the characteristic class of λ , and q: $\mathbb{R}P(\nu) \to \mathbb{F}^{n-3}$ denotes the projective space bundle associated to $\nu^3 \to \mathbb{F}^{n-3}$, then we have the following facts [3]: $H^*(\mathbb{R}P(\nu); \mathbb{Z}_2)$ is a free $H^*(\mathbb{F}^{n-3}; \mathbb{Z}_2)$ -module via q^* on the classes 1, e, e^2 subject to the relation $e^3 = e^2 q^*(v_1) + eq^*(v_2) + q^*(v_3)$.

$$w(\mathbb{R}P(\nu)) = q^*(w(\mathbb{F}^{n-3}))(1+q^*(v_1)+e+q^*(v_2)+e^2)$$
.

Therefore, $w_1(\mathbb{R}P(\nu)) + e = q^*(w_1 + v_1)$ and

$$\mathbf{w_{n-j}}(\mathbf{IRP}(\nu)) \; = \; \mathbf{q*(w_{n-j} + w_{n-j-1} \, v_1 \, + w_{n-j-2} \, v_2)} \; + \; \mathbf{q*(w_{n-j-1})} \; \mathbf{e} \; + \; \mathbf{q*(w_{n-j-2})} \; \mathbf{e^2} \; .$$

Thus for each i, 5 < i < n,

$$\begin{split} (\mathbf{w}_1(\mathbf{R}\mathbf{P}(\nu)) + \mathbf{e})^{\mathbf{i} - 5}(\mathbf{w}_{\text{n-i} + 4}(\mathbf{R}\mathbf{P}(\nu)) + \mathbf{w}_{\text{n-i} + 3}(\mathbf{R}\mathbf{P}(\nu))\mathbf{e} + \mathbf{w}_{\text{n-i} + 1}(\mathbf{R}\mathbf{P}(\nu))\mathbf{e}^3 \\ &+ \mathbf{w}_{\text{n-i}}(\mathbf{R}\mathbf{P}(\nu))\mathbf{e}^4) = \mathbf{q}^*((\mathbf{w}_1 + \mathbf{v}_1)^{\mathbf{i} - 5}(\mathbf{w}_{\text{n-i}} \, \mathbf{v}_1^2 + \mathbf{w}_{\text{n-i-1}} \, \mathbf{v}_1^3 + \mathbf{w}_{\text{n-i-2}} \, \mathbf{v}_1^4))\mathbf{e}^2 \,. \end{split}$$

Therefore,

$$\begin{split} \left\langle (w_1 + v_1)^{i-5} (w_{n-i} v_1^2 + w_{n-i-1} v_1^3 + w_{n-i-2} v_1^4), \; [\mathbf{F}^{n-3}] \right\rangle \\ &= \left\langle (w_1 (\mathbb{R}P(\nu)) + \mathbf{e})^{i-5} (w_{n-i+4} (\mathbb{R}P(\nu)) + w_{n-i+3} (\mathbb{R}P(\nu)) \mathbf{e} + w_{n-i+1} (\mathbb{R}P(\nu)) \mathbf{e}^3 + w_{n-i} (\mathbb{R}P(\nu)) \mathbf{e}^4 \right\rangle, \; [\mathbb{R}P(\nu)] \right\rangle = 0 \,. \end{split}$$

This proves

PROPOSITION 3.1. J_n^3 is contained in the set of classes α in η_n with $w_1^j w_{n-j}(\alpha) = w_1^{i-5} w_{n-i} s_5(\alpha) = 0$ for all j and i, $0 \le j \le n$, $5 \le i \le n$.

4. A GENERATING SET FOR J_{\star}^{3}

In this section we shall show that J_*^3 contains certain classes which comprise a generating set for the set of classes α in η_n with $w_i^j w_{n-j}(\alpha) = w_1^{i-5} w_{n-i} s_5(\alpha) = 0$ for all j and i, $0 \le j \le n$, $5 \le i \le n$.

In analogy with section 2, suppose (n_1, \cdots, n_6) is a partition of n-5. Then the class of the Stong manifold $\mathbb{R}P(n_1, \cdots, n_6)$ lies in the image of σ_n^5 , which is in turn contained in J_n^3 . A useful property [6; 3.4] of these manifolds is that the class of $\mathbb{R}P(n_1, \cdots, n_6)$ is indecomposable in η_* if and only if $\binom{n-1}{n_1} + \cdots + \binom{n-1}{n_6}$ is odd.

PROPOSITION 4.1. For each integer $n \ge 9$ (n ≠ 2^s, 2^s - 1), J_n^3 contains an indecomposable class x_n .

Proof. By the discussion preceding this Proposition, it suffices to exhibit a partition (n_1, \dots, n_6) of n-5 for each integer $n \ge 9$, $(n \ne 2^s, 2^s-1)$ such that $\mathbb{R}P(n_1, \dots, n_6)$ is indecomposable. If $\binom{n-1}{n-5} = 0 \mod 2$, then $\mathbb{R}P(n-5, \underbrace{0, \dots, 0}_{5})$

is as required. Suppose $\binom{n-1}{n-5}=1$ Mod 2. Since $\binom{n-1}{n-5}=\binom{n-1}{4}$, the dyadic expansion of n-1, say $2^{r_1}+\cdots+2^{r_t}$, $r_1>\cdots>r_t\geq 0$, contains 2^2 as a term. Since $n\geq 9$, if $r_t=2$ or if $r_t=0$ and $r_{t-1}=2$, then $\mathbb{R}P(n-7,1,1,0,0,0)$ is as required. If $r_t=1$, since $n\geq 9$, $n\neq 2^s$, 2^s-1 , there exists an integer i, $1\leq i\leq t-2$, such that $r_i>r_{i+1}+1$. Then

$$\mathbb{RP}(2^{r_1} + \dots + 2^{r_i} - 2, 2^{r_{i+1}} + \dots + 2^{r_t} - 6, 4, 0, 0)$$

is as required.

Because $\mathbb{R}P(n_1, \dots, n_6)$ is the total space of the projective space bundle associated to $\lambda_1 \oplus \dots \oplus \lambda_6 \to \mathbb{R}P(n_1) \times \dots \times \mathbb{R}P(n_6)$ we can explicitly describe its cohomology and Whitney class [3]: $H^*(\mathbb{R}P(n_1, \dots, n_6); \mathbb{Z}_2)$ is a free

$$H^*(\mathbb{R}P(n_1) \times \cdots \times \mathbb{R}P(n_6); \mathbb{Z}_2)$$
-module

via the map p^* induced by the projection on the classes 1, c, ..., c^5 where c is the characteristic class of the canonical line bundle over $\mathbb{R}P(n_1, \dots, n_6)$ and satisfies the relation $c^6 = c^5 p^*(v_1) + c^4 p^*(c_2) + \dots + p^*(v_6)$, where v_i , $1 \le i \le 6$, is the ith Whitney class of $\lambda_1 \oplus \dots \oplus \lambda_6$.

$$w(\mathbb{R}P(n_1, \dots, n_6))$$
= $p^*(w(\mathbb{R}P(n_1) \times \dots \times \mathbb{R}P(n_6)))((1+c)^6 + (1+c)^5 p^*(v_1) + \dots + p^*(v_6))$.

PROPOSITION 4.2. If $n=2^s$, s>2, then J_n^3 contains a class y_n with s_{2s-1} , $_{2^{s-1}}(y_n)=1$ Mod 2.

Proof. If suffices to exhibit a partition (n_1, \dots, n_6) of n-5 for each $n=2^s$, s>2, such that

$$w_2^{2^{s-1}}(\mathbb{R}P(n_1, \dots, n_6)) = s_{2^{s-1}}, (\mathbb{R}P(n_1, \dots, n_6)) = 1 \mod 2$$

From the paragraph preceding this proposition, we conclude that if n = 8, $\mathbb{R}P(3, \underbrace{0, \cdots, 0}_{E})$ is as required, while if $n = 2^{s}$, s > 3,

$$\mathbb{R}P(2^{s-2}-2, 2^{s-2}-1, 2^{s-2}-1, 2^{s-2}-1, 0, 0)$$

is as required.

Let x_2 be the cobordism class of $\mathbb{R}P(2)$; let x_5 be the class of $\mathbb{R}P(2, 0, 0, 0)$; let x_6 be the class of $\mathbb{R}P(6) \cup \mathbb{R}P(2) \times \mathbb{R}P(4)$; if $n=2^s$, s>1, let x_n be the class of $\mathbb{R}P(2^s) \cup \mathbb{R}P(2)^{2^{s-1}}$. Then η_* is a \mathbb{Z}_2 -polynomial algebra on the classes x_n given here and in Proposition 4.1.

A direct computation shows that x_5^2 is the class of $\mathbb{R}P(2, 2, 1, 0, 0, 0)$, that x_5x_6 is the class of $\mathbb{R}P(3, 2, 1, 0, 0, 0) \cup \mathbb{R}P(2) \times \mathbb{R}P(2, 1, 1, 0, 0, 0)$, and that x_6^2 is the class of $\mathbb{R}P(3, 2, 2, 0, 0, 0) \cup \mathbb{R}P(2) \times \mathbb{R}P(2, 2, 1, 0, 0, 0)$.

By Proposition 2.3, the image of σ_*^3 is generated by the x_n , $n \neq 2^s$, given here and the y_{2^s} , s > 2, given in Proposition 4.2. We claim that J_*^3 , which is contained in the image of σ_*^3 , contains all products of generators for η_* contained in the image of σ_*^3 except those of the form $x_2^j x_5$, $x_{2^{r_1}} \cdots x_{2^{r_t}} x_2^k x_5$, $x_2^j x_6$, and $x_{2^{r_1}} \cdots x_{2^{r_t}} x_2^k x_6$. This claim follows from:

PROPOSITION 4.3. The numbers $w_1^{i-5}w_{n-i}\,s_5$, $5\leq i\leq n$, distinguish the classes $x_2^j\,x_5$, x \cdots x $x_2^k\,x_5$, and the classes $x_2^j\,x_6$, x \cdots x $x_2^k\,x_6$, where $j,\,k\geq 0$ and $r_1>\cdots>r_t\geq 2$.

Proof. Since $x_2^j x_5$ and $x_2^{r_1} \cdots x_2^{r_t} x_2^k x_5$ are odd-dimensional, while $x_2^j x_6$ and $x_2^{r_1} \cdots x_2^{r_t} x_2^k x_6$ are even-dimensional, the former terms cannot appear with any of

the latter. Thus we may divide the proof into separate arguments.

Suppose $n=2^{r_1}+\cdots+2^{r_t}+2k+5$ for $k\geq 0$ and $r_1>\cdots>r_t\geq 2$. Let ω_k denote the ordered tuple $(2^{r_1},\cdots,2^{r_t},2k+5)$ and x_{ω_k} denote the product $x_2\cdots x_2^r x_2^k x_2^k x_5$. Since $w_{n-5}\,s_5(x_2^j x_5)=1$ Mod 2 for n=2j+5, while $w_{n-5}\,s_5(x_{\omega_k})=0$ Mod 2 for all k, and since $w_1^{n-5}\,s_5(x_{\omega_k})=1$ Mod 2 for k<2 while $w_1^{n-5}\,s_5(x_{\omega_k})=0$ Mod 2 for $k\geq 2$, it suffices to prove the numbers $w_1^{i-5}\,w_{n-i}\,s_5$ distinguish the classes x_{ω_k} for $2\leq k<(n-5)/2$. Define $\omega_p<\omega_q$ if p>q. Suppose $\omega_p<\omega_q$ and

q. Suppose
$$\omega_p < \omega_q$$
 and

$$\omega_{\rm p} = (2^{\rm p_1}, \, \cdots, \, 2^{\rm p_t}, \, 2{\rm p} + 5)$$
 and $\omega_{\rm q} = (2^{\rm q_1}, \, \cdots, \, 2^{\rm q_u}, \, 2{\rm q} + 5)$.

Let a be the integer such that $p_i = q_i$ for i < a and $q_a > p_a$. Let $j = 2^{q_a}$. Then $w_1^j w_{n-j-5} s_5(x_{\omega_p}) = 0$ Mod 2 while $w_1^j w_{n-j-5} s_5(x_{\omega_q}) = 1$ Mod 2. Furthermore, if $\omega_g < \omega_p$, then $w_1^j w_{n-j-5} s_5(x_{\omega_g}) = 0$ Mod 2. This proves that the numbers $w_1^{i-5} w_{n-i} s_5$, $5 \le i \le n$, distinguish the classes $x_2^j x_5$ and $x_2^{r_1} \cdots x_2^{r_t} x_2^k x_5^k$.

To complete the proof, we remark that the argument for terms ending in x_6 may be obtained simply by substituting x_6 for x_5 and letting

$$\omega_{k} = (2^{r_{1}}, \dots, 2^{r_{t}}, 2k + 6)$$

in the above paragraph.

Let us summarize our arguments to this point: From Section 3, J_n^3 is contained in the set of classes α in η_n with $w_1^j w_{n-j}(\alpha) = w_1^{i-5} w_{n-i} s_5(\alpha) = 0$ for all j and i, $0 \le j \le n$, $5 \le i \le n$. By Proposition 4.1, J_n^3 contains the indecomposable class x_n for each integer $n \ge 9$, $n \ne 2^s$, $2^s - 1$. Furthermore, J_*^3 contains x_5^2 , $x_5 x_6$, and x_6^2 . By Proposition 4.2, J_n^3 contains a class y_n , $n = 2^s$, s > 2, such that $s_{2^{s-1}}, s_{2^{s-1}}(y_n) = 1$ Mod 2. Since the numbers $w_1^{i-5} w_{n-i} s_5$, $5 \le i \le n$, all vanish on the products x_2^2 x_2^j x_5 , x_2^2 $x_2^{r_1}$ \cdots $x_{2^{r_t}}$ x_2^k x_5 , x_2^r x_2^r x_3^r x_4^s x_5 , x_2^r x_2^r x_3^r x_5 , and

$$x_{2r}^{2} x_{2r_{1}}^{r_{1}} \cdots x_{2r_{t}}^{r_{t}} x_{2}^{k} x_{6}^{r_{t}}$$
 for $r > 1$,

we conclude by Proposition 4.3 that the numbers $w_1^{i-5}w_{n-i}s_5$, $5 \le i \le n$, vanish on all products of generators for η_* contained in the image of σ_*^3 except those listed in Proposition 4.3. Thus $y_{2^S} = x_{2^{S-1}}^2$, s > 2, modulo the ideal generated by lower dimensional classes of J_*^3 . Therefore, J_*^3 contains all products of generators for η_* contained in the image of σ_*^3 except those listed in Proposition 4.3. Since the generators for J_*^3 we have constructed all lie in the image of σ_*^5 , we have proved

PROPOSITION 4.4. The image of σ_n^5 equals J_n^3 , and is the set of classes α in η_n with $w_l^j \, w_{n-j}(\alpha) = w_l^{i-5} \, w_{n-i} \, s_5(\alpha) = 0$ for all j and $i, \ 0 \leq j \leq n, \ 5 \leq i \leq n.$

REFERENCES

- 1. F. Capobianco, Manifolds with involution whose fixed set has codimension four. Proc. Amer. Math. Soc. 61 (1976), 157-162.
- 2. P. E. Conner, The bordism class of a bundle space. Michigan Math. J. 14 (1967), 289-303.
- 3. P. E. Conner and E. E. Floyd, *Differentiable periodic maps*. Ergebnisse der Mathematik und ihrer Grenzgebiete, N.F., Band 33. Academic Press Inc., New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964.
- 4. J. W. Milnor and J. D. Stasheff, *Characteristic classes*. Princeton University Press, Princeton, N.J., 1974.
- 5. D. F. X. O'Reilly, Cobordism classes of fiber bundles (Dissertation). Stanford University, 1975.
- 6. R. E. Stong, On fibering of cobordism classes. Trans. Amer. Math. Soc. 178 (1973), 431-447.
- 7. R. Thom, Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28 (1954), 17-86.

University of Wisconsin Madison, Wisconsin 53706

Current address:

Department of Mathematics Washington and Jefferson College Washington, Pennsylvania 15301