COBORDISM CLASSES REPRESENTED BY
FIBERINGS WITH FIBER IRRP(2k + 1)

Frank L. Capobianco

1. INTRODUCTION

Let k be a nonnegative integer. Let 7, _;(BO(k + 1)) be the unoriented cobord-
ism group of real (k + 1)-plane bundles over closed smooth (n - k)-dimensional

manifolds. Let orliz N, .1 (BOk + 1)) — 5 be the homomorphism defined by assign-

ing to the (k + 1)-plane bundle £ over M™-K the cobordism class of the total space
RP(¢) of the associated projective space bundle. Many problems in cobordism
theory can be reduced or related to the computation of this homomorphism. For in-
stance, Stong [6; 8.4] proved that the image of oﬁ is the set of cobordism classes in
n, Which are represented by the total space of a fibering RP(k) L mn L gn-k which
is totally nonhomologous to zero. Another example of the usefulness of crﬁ was
described in [1]: Let Jlri be the set of cobordism classes in 7,, which are repre-
sented by a manifold admitting an involution whose fixed point set is (n - k)-dimen-
sional. Then the image of oﬁ contains Jlri , Which in turn contains the image of
o2k-1,

The main results of this paper are the following:

PROPOSITION 2.3. The image of ai equals the set of classes in n,, which are
vepresented by a fibeving with fiber RP(3), and is the set of classes a in 1, with
wi‘ wn_j(a) =0 forall j, 0<j<n.

PROPOSITION 4.4. The image of og equals Jr31 , and is the set of classes « in
Ny With WJ1 wn_j(a) = wi'Swn_i ss(a) =0 forall jand i, 0<j<n, 5<i<n

2. THE IMAGE OF o}

PROPOSITION 2.0. Let f: M™ — BP be a smooth map and let F = £-1(p) be the
inverse image of a vegular value of f. Let i:'F — M be the inclusion. Then
i, [F]=1*[B] n [M].

Proof. By examining tubular neighborhoods of ¥ and p, we see by naturality
that £*[B] is equal to what Milnor and Stasheff call the dual cohomology class to F
in M [4, page 120]. The proposition then follows from [4; Problem 11-c].

COROLLARY. If Ff LM E B is a smooth fibering, then for any class
x € Hi(M; Z,) the numbers (i*(x), [F]> and (x U n*[B], [M]) are equal.
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The above corollary is due to D. O’Reilly [5]. Proposition 2.0 may be well-
known and was pointed out to me by C. A. McGibbon. Finally, I am indebted to
R. E. Stong for the following proposition.

PROPOSITION 2.1. If a € 5, is vepresented by a fibering with fiber
RP(2k + 1), then w] w, (@) =0 forall j, 0 <j<n.

i T
Proof. Suppose ¢ is represented by the fibering RP(2k + 1) — M? — gn-2k-1
The tangent bundle 7TM of M splits as a Whitney sum 7* 7B @ 0, where 60 is the
(2k + 1)-plane bundle tangent to the fibers. Thus for 0 <j <n,

wa i (M) = 2 w(8)m¥(wg(B)) .
ptq=n-j

Since i is an embedding with trivial normal bundle, i*(w;(M)) = w; (RP(2k + 1)) = 0,
and from the Serre spectral sequence, w;(M) € image 7*. Because B is

(n - 2k - 1)-dimensional, 9 is (2k + 1)-dimensional, and w»} (M) € image 7*, we con-
clude that w w,, (M) = w2k+1(9)w31 (M) (W, 5 2101 (B)). Since

(i*(wyy1(0)), [RP(2k + D]) = {wypy; (RP(2Kk + 1)), [RP(2k + 1)]) = 0,

the proposition now follows from O’Reilly’s theorem.

By Proposition 2.1, the set of classes a in 7, with in L (@) =0, 0<j<n,
contains the image of 013; . We shall now show that the reverse statement is also
true.

Let (n;, n,, n;, ny be a partition of n - 3. Let
7: RP(n,, -*-, ny) — RP(n;) X -+ X IRP(n,)

be the projective space bundle associated to 1] @ - @24 — RP(n;) X -+« X RP(ny),
where A; is the pullback of the canonical line bundle over the ith factor. Since by
[2] 7,(BO(4)) is the ideal over 7, generated by the bundles

A @D @Dry — RP(n)) X - X RP(ny),

the image of oi is the ideal generated by the Stong manifolds RP(n,, ---, n4). In
[6; 8.3] Stong exhibited for each integer n, (n # 2%, 2° - 1) a partition (n;, -, ny)
of n - 3 such that the class x, of RP(nj, ---, ng) is indecomposable in 7, . For
n =2%, s> 2, Stong also exhibited a partition (n,, <-, ny) of n - 3 such that the
class y, of RP(n;, ---, ng) has 5 5-1 Zs_1(yn) =1 Mod 2.

-1
Let x, be the class of RP(2), and let x__ be the class of RP(2%) U RP(2)2°
for s > 1. It is a classical result of Thom [7] that 7, is a Z,-polynomial algebra
on the classes x,, .

PROPOSITION 2.2. The numbers w-} Wn-js 0 <j < n, distinguish the classes

xi and x o x  xK wheve n=2i = 2T 4+ 5 + 2Tt 4+ 2k for i, k > 0 and
2 271 Tt 2 -

ry > >r, > 2.

Proof. Suppose n=2"1 + ... + 2%t 4 2k for k>0and r; > - >r; > 2. Let
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w). denote the ordered tuple (21, ..., 2"t 2k) and Xy, denote the product

kS i) = - _
erl xzrtx2 . Since wn(xlz) 1 Mod 2 while wn(xwk) 0 Mod 2 for all k, and

since w}(x, ) =1 Mod 2 for k <2 while wi(x, ) =0 Mod 2 for k > 2, it suffices
k k

to prove the numbers wj1 LA distinguish the classes ka for 2 <k <n/2. Define

Wy < Wy if p > q. Suppose M < Wy and
Wp = (2131 y T 2131;, 2p) and Wq = (2(]1 y T zqu, ZQ)-

Let a be the integer such that p; =q; for i <a and q, > p,. Let j= 2%2 | Then

w) W, _i{x, ) =0 Mod 2 while w) wn_j(qu) =1 Mod 2. Furthermore, if w, <

j . = 1
then w) wn_J(xwg) 0 Mod 2. This completes the proof.

p,

Since the numbers le Wn_js 0 <j < n, all vanish on the products xzs_l xi2 and
2 k

ase 3 3 J .=
xzs_1 xZrl le‘tx?_ » 8> 2, we see that the set of classes in 1, with Wi Wp 0

contains all products of generators for n, except those listed in Proposition 2.2.
Therefore if n=2%, s> 2, then the class y, = XZS , modulo the ideal generated by
5=

lower dimensional classes in the image of oi . Hence the image of oi contains all

products of generators for 7, except those listed in Proposition 2.2. Therefore, the
3
s > 2;

image of o is the ideal generated by the x_, n # 2%, and the classes yZS s

and, we have proven

PROPOSITION 2.3. The image of 01?; equals the set of classes in m,, which are
vepresented by a fibering with fiber RP(3), and is the set of classes a in 1 with
w) wn_j(a) =0 forall j, 0<j<n,

We should point out that Proposition 8.3 of [6] is false, and that Proposition 2.3
gives the correct version.

3. NECESSARY CONDITIONS FOR CLASSES BELONGING TO Ji

Since the image of Uf’l contains Jf’l, if @ isin Jf’l then le wn_j(oz) =0 for all j,
0 <j < n. Inthis section we shall show that wi"r’wn_i sg(@) =0 for all i, 5 <1i<n,
as well. Suppose « is represented by the manifold M" with involution T whose

fixed set F*~3 has codimension 3. Let v> — F®~3 be the normal bundle. By [3;
24.2], M" is cobordant to RP(v3 @ IR), where RP(v3 @ IR) is the total space of the

projective space bundle associated to p3 @R — Fo-3, Therefore, it suffices to
show wil'5wn_is5(]RP( v3@R)) =0 for all i, 5 <i<n.

Following [3], H¥*(IRP(v3 ®R)) is a free H¥(F*~3; Z.,)-module via the map p*
indiced by the projection on classes 1, ¢, ¢c2, ¢3 where c is the characteristic class
of the canonical line bundle over RP(v3 (P R). Multiplication in

HYRP(v> @ R); Z,)

is subject to the relation ¢ = ¢3p*(v;) + c2p*(v,) + cp*(v3), where v,, 1 <i<3,
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denotes the ith Whitney class of v3. Furthermore,

w(RP(v3 @ RP)) = p*(w(F?-3)) (1 +p*(v|) + p*(v}) c + p*(v,) + p*(v3) + p*(v,)c?).
If w; denotes the jth Whitney class of F2-3  then wi(RP(v D R)) = p¥(w; +v;) and

— %
wn—i(IRP(V @ ]R')) =P (wn—i—3v3 + Wh-i-2V2 + Wh-i-1V1 + Wn—i)

+p*(w,__; 5v,)e? +p*w e .

n-i-Zvl
From [2],

ss(RP(v DR)) = p*(s(FP-3) + s5 (1)) +p*(s,(¥))e +pXs (v)) e .
Because F is (n - 3)-dimensional, this means
wil'5wn_iss(IRP(v @R)) = p*(w, +v)iPw__. ;v s,v))c3

+p*(w, +v) ) (W, i 3Vs +W 5 vyt W v tw ) s (0) et

+p*((w, +v) ) Pw_ . s vy s (v) c® +p*(w, +v))cw_ . v s (p))ed.

Because szr(v) = vfr and ¢4 = c3p*(v,) + cZ2p*(v,) +cp*(v,),

wil‘swn_iSS(lRP(v ® R))
reduces even further to
* i-5 2 3 4 3
prwy +v )" w, vitw vy tw L vD)e.

Therefore, the number
(wi-bw__ s (RP(v ®R)), [RP(v DR)])

— i-5 2 3 4 -

= <(W1 v w vy tw vy tw ), [P 31).
We shall S;lOW that this number is zero by considering the canonical line bundle
A — RP(v°7).

From [3], A = RP(v) bords as an element of 7,_, (BO(1)). Hence all the char-
acteristic numbers of A —IRRP(v) vanish. If e denotes the characteristic class of
A, and q: RP(v) — F2-3 denotes the projective space bundle associated to
v3 — Fn-3, then we have the following facts [3]: H*(RP(v); Z,) is a free
H*(Fn-3; Z,)-module via gq* on the classes 1, e, e2 subject to the relation
el = ezq*(vl) +eq*(v,) +q*(v,).

w(RP(r)) = q*(w(F™™2)) (1 +q*(v;) +e +q*(v,) +e?) .

Therefore, w; (RP(v)) +e =q*w; +v;) and

Wn-j(IRP(V)) - q*(wn-j + Yn-j-1V1 + wn-j-ZVZ) * q*(Wn—j—l) e+ q*(wn-j-z) e?.

Thus for each i, 56 <i <n,
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(w1 (RP()) + €)' ->(w,, ;1 4(RP(V)) + wy_;13(RP(v))e +w, ;1 (RP(v))e3
+w__(RP(v))e?) = q*((w, +v)) P w__vi+w_ .  vi+w . ,vi)e?.
Therefore,
Clwy + vt Gwy, s vE +w, Vi + WiV [F7 )
= (W, (RP(W)) + €)% (w,, ;4 4 (RP(¥)) + Wy, _33 RP(¥))e + wy, ;1 (RP(v))e3
+w__; (RP(v))ed), [RP(¥)]) = 0.

This proves

PROPOSITION 3.1. Jg is contained in the set of classes « in 1, with
wjl wn_j(a) = w11'5w .85(@) =0 forall jand i, 0<j<n, 5<i<n

n-1

4. A GENERATING SET FOR J2

In this section we shall show that J ;9; contains ce;‘tain classes which comprise a
generating set for the set of classes a in 7, with wg wn_j(a) = w11'5wn_i s5(a) =0
for all jand i, 0<j<n, 56 <i<n.

In analogy with section 2, suppose (n;, ---, ng) is a partition of n - 5. Then the
class of the Stong manifold ]RP(n1 y 0t n6) lies in the image of 0151, which is in turn
contained in J I31 . A useful property [6; 3.4] of these manifolds is that the class of

RP(n,, ---, ng) is indecomposable in 7 if and only if (n i 1) + e+ (n ) 1) is
m Ng
odd.

PROPOSITION 4.1. For each integeyv n> 9 (n# 2%, 2° - 1), Jr31 contains an
indecomposable class x,,.

Proof. By the discussion preceding this Proposition, it suffices to exhibit a
partition (n;, ---, ng) of n - 5 for each integer n> 9, (n # 2%, 25 - 1) such that

RP(n;, ---, ng) is indecomposable. If (2: ;) =0 Mod 2, then RP(n- 5, 0, ---, 0)
' 5

-1 . n-1 n-1 .
)=1Mod2. Since (n_5)=( 4 ), the dyadic

-5
expansion of n - 1, say 2 1 + - +2"t, r; > --- >r, >0, contains 22 as a term.
Since n>9, if r,=2 orif ry,=0 and ry_; =2, then RP(n- 7,1, 1,0, 0, 0) is as
required. If r, =1, since n>9, n# 2%, 25 - 1, there exists an integer i,
1<i<t-2, suchthat r; > r;;; +1. Then

is as required. Suppose (E

RP(2"! + .. + 271 -2 2"+l 4 ... 4 27t _ 6,4, 0,0, 0)

is as required.

Because RP(n;, ---, ng) is the total space of the projective space bundle as-
sociated to A} D -+ D 1y — RP(n;) X --- X RP(ng) we can explicitly describe its
cohomology and Whitney class [3]: H*(RP(n;, -, n¢); Z;) is a free
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H*(RP(n}) X = X RP(ny); Z,)-module

via the map p* induced by the projection on the classes 1, ¢, ---, ¢5 where ¢ is the
characteristic class of the canonical line bundle over IRP(n;, -+, ng) and satisfies

the relation ¢® = ¢5p*(v ) +cip*(c,) + -+ +p*(vg), where v;, 1<i<86, is the ith
Whitney class of X @D - D 2rq.

W(IRP(HI JRRLEIN né))
= p*(w(RP(n;) X - X RP(n)))((1 +¢)® + (1 + ¢)5 p*(v;) +--- + p*(vy)) .

PROPOSITION 4.2. If n= 2%, s> 2, then Ji contains a class y, with
S,5-1 s-1(yy) =1 Mod 2.

Proof. If suffices to exhibit a partition (n;, -+, ng) of n - 5 for each n = 2%,
s > 2, such that

s-1
w3 (RP(nj, =+, ng)) = S,6-1 ZS_I(IRP(nl ,ymg)) =1 Mod2.

From the paragraph preceding this proposition, we conclude that if n = §,
RP(3, 0, ---, 0) is as required, while if n = 2%, s> 3,
\'\/~/‘

5
]RP(zs—z - 2, 25-2 _ 1’ 28-2 _ 1’ 25-—2 - 1, 0, 0)

is as required.

Let x, be the cobordism class of IRP(2); let x; be the class of RP(2, 0, 0, 0);
let x4 be the class of RP(6) U RP(2) x RP(4); if n=2°%, s > 1, let x_ be the class

-1
of RP(25) U RP(2)2° " . Then N, is a Z,-polynomial algebra on the classes x
given here and in Proposition 4.1.

A direct computation shows that xg is the class of RP(2, 2, 1, 0, 0, 0), that
Xz X, is the class of RP(3, 2, 1, 0, 0, 0) UIRP(2) X RP(2, 1, 1, 0, 0, 0), and that x%
is the class of RP(3, 2, 2, 0, 0, 0) U RP(2) X RP(2, 2, 1, 0, 0, 0).

By Proposition 2.3, the image of 01 is generated by the x,, n # 2%, given here

and the st , 8> 2, given in Proposition 4.2. We claim that Ji, which is contained

in the image of o3, contains all products of generators for 7, contained in the

* .
5 3 J k J
image of o3 except those of the form X5 X s xZrl xzrtx2 Xp, X5X, and
X -+ x xFx_ . This claim follows from:
rl r{ 276
2 2
PROPOSITION 4.3. The numbers w'™>w, ;ss, 5 <i<n, distinguish the
j k J k
classes xhx., X - X XSXg, and the classes X, X, , X r X | X3X,, where
271 2"t 2 2t
i» k>0 and r, > e >rt22.
i ] k -di - ; J
Proof. Since X5 X, and xzrl xzrtX2X5 are odd-dimensional, while X5 X, and
X e X xlgx ¢ are even-dimensional, the former terms cannot appear with any of

271 2%t
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the latter. Thus we may divide the proof into separate arguments.

Suppose n=2"1 + -+ +2"t +2k+5 for k >0 and r; > - >r, > 2. Let wy
denote the ordered tuple (2°1, ..., 2"t 9k +5) and Xy denote the product

xZrl XZ txl?f 5 - Since w_ _¢ s5(xf'7_x5) =1 Mod 2 for n = 2j + 5, while

W, _5 s5(xw ) =0 Mod 2 for all k, and since w}> s5(xw ) =1 Mod 2 for k <2
while wi- 5 SS(Xw ) =0 Mod 2 for k > 2, it suffices to prove the numbers

widw . s d1st1ngulsh the classes x, for 2 <k <(n - 5)/2. Define w, < wy

p > q. Suppose W, < Wq and

P P
wp=(21,--~,2t,2p+5) and w,. = (2

q
, 2%, 29 +5).
Let a be the integer such that p; =q; for i <a and q, > p,. Let j= 292 Then

wlw, 55 s5(x ) = 0 Mod 2 while WiWy,_j-585(Xw ) = 1 Mod 2. Furthermore, if

wy < wp,, then wjl W, 5.5 s5(xw ) =0 Mod 2. This proves that the numbers
wi-Sw _;s5, 5<i<n, dlstlngulsh the classes xJ,x. and erl e X rtx12(X5 .

To complete the proof, we remark that the argument for terms ending in xg
may be obtained simply by substituting x4 for xg and letting

w, = (21, -, 2t % +6)

in the above paragraph.

Let us summarize our arguments to this point' From Section 3, Jr31 is contained

in the set of classes a in 7, with WJ W, _ (a) = i 5wn ;Ss(@) =0 for all j and i,

0<j<n, 5<Li<n By Proposition 4 1, J contains the indecomposable class x
for each integer n > 9, n # 2%, 25 - 1. Furthermore, J3 contains X%, X5 X, and

x% . By Proposition 4.2, J131 contains a class y,, n=2%, s > 2, such that

1

S 5.1 Zs_l(yn) =1 Mod 2. Since the numbers wi->w__.sg;, 5 <i<n, all vanish
xgrx?zxé, and

2 2 k
on the products XZrXZXS’ xzrle‘l ertx 5

X X e X X
r r r
2 21 21:

2 l?fx() forr > 1,
we conclude by Proposition 4.3 that the numbers wil"5 W,_; S5, 5 <i<n, vanish on
all products of generators for 7, contained in the image of 01 except those listed

in Proposition 4.3. Thus y‘ZS = ng-l , S > 2, modulo the ideal generated by lower

dimensional classes of J3 . Therefore, J3 contains all products of generators for
71 4, contained in the image of cr-:" except those listed in Proposfuon 4.3. Since the
generators for J we have constructed all lie in the image of 02, we have proved

PROPOSITION 4. 4 The image of 0 equals Jn, and is the set of classes « in
N, wzthWJ (a)— Sw sS(a)—Ofo'rall]andl,0<3<n,5<1<n

n-i

*?
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