REGULAR NEIGHBORHOODS IN TOPOLOGICAL MANIFOLDS

Erik Kjær Pedersen

Regular neighborhoods have proved to be a very useful tool in the theory of PL manifolds. In this paper we want to make a very easy construction of regular neighborhoods in the topological category. F. E. A. Johnson [6] has constructed regular neighborhoods in topological manifolds, but only in the case of nonintersection with the boundary. R. D. Edwards [4] has announced a very general construction of regular neighborhoods; see also [3]. The present construction has the advantage of allowing a "relative" version, (Theorem 13), in the sense that if L is a complex, K is a subcomplex, and L is locally tamely embedded in a topological manifold V, then one may find a regular neighborhood of K in V, intersecting L in a regular neighborhood of K in L, in the usual PL sense. This is used in [10] to prove embedding theorems for topological manifolds. In [11] we have a proof that the opposite procedure is possible; namely, finding a spine of a topological manifold.

We should emphasize that the regular neighborhoods we obtain are mapping cylinder neighborhoods; *i.e.*, if $K \subset N$, where N is a regular neighborhood of K, then there is a map $\pi \colon \partial N \to K$ such that N is homeomorphic to the mapping cylinder of π (Theorem 15).

Let K be a compact topological space with a given simple homotopy structure; i.e., of the homotopy type of a finite CW-complex, with the homotopy equivalence specified up to torsion.

Definition 1. A regular neighborhood N_2 of K in V is a locally flat, compact submanifold of V, of codimension 0, which is a topological neighborhood of K such that the inclusion $K \subseteq N$ is a simple homotopy equivalence, and K is a strong deformation retract of N. We also require that $\partial N \subseteq N$ - K induces an isomorphism on the fundamental group for every component.

Definition 2. A regular neighborhood N of K \subset V is said to meet the boundary regularly if N \cap ∂ V is a regular neighborhood of L in ∂ V and η (N) = $\overline{\partial}$ N - \overline{N} \cap $\overline{\partial}$ V meets ∂ V transversally.

Remark 3. If a regular neighborhood meets the boundary regularly, it then follows from van Kampen's theorem that $\eta(N) \to N$ - K induces an isomorphism on the fundamental group.

Definition 4. $K \subset V$ is said to have arbitrarily small regular neighborhoods if for every neighborhood U of K there is a regular neighborhood N of K in V such that $N \subset U$.

Definition 5. Two regular neighborhoods of $K \subseteq V$, N and \widetilde{N} , are said to be equivalent if N is homeomorphic to \widetilde{N} by a homeomorphism which is the identity on a neighborhood of K. If N and \widetilde{N} meet the boundary regularly, the homeomorphism is required to restrict to a homeomorphism of $N \cap \partial V$ to $\widetilde{N} \cap \partial V$.

We now want to change a regular neighborhood into one that meets the boundary regularly.

Received November 26, 1975. Revisions received November 4, 1976 and January 24, 1977.

Michigan Math. J. 24 (1977).

PROPOSITION 6. Let N be a regular neighborhood of K in V, and assume L = K \cap ∂ V has a regular neighborhood \overline{N} in ∂ V such that $\overline{N} \subset int(N \cap \partial V)$. Then K has a regular neighborhood which meets the boundary regularly in \overline{N} .

Proof. Push N off ∂V outside \overline{N} using a collar of ∂V in V and of \overline{N} in ∂V outside \overline{N} .

We now make some observations essentially due to F. E. A. Johnson (see [6]).

PROPOSITION 7. Let N and N' be regular neighborhoods of K such that $N \subset \text{int }(N')$. If $K \cap \partial V = \emptyset$ and $\dim(V) \geq 6$, then $\overline{N'} - \overline{N}$ is homeomorphic to $\partial N \times \underline{I}$. If $K \cap \partial V \neq \emptyset$, N and N' meet the boundary regularly, and $\dim(V) \geq 7$, then $\overline{N'} - \overline{N}$ is homeomorphic to $\eta(N) \times I$.

Proof. The topological s-cobordism theorem applies, since van Kampen's theorem applied to

and the factoring $\partial N \subset N' - N \subset N - K$ proves that $\partial N \subset N' - N$ and $\partial N' \subset N' - N$ both induce isomorphisms on the fundamental group. Further, $K \subset N'$ is a simple homotopy equivalence which factors $K \subset N \subset N'$, where $K \subset N$ and $N \subset N'$ are both simple homotopy equivalences. Hence $\partial N \subset N' - N$ is a simple homotopy equivalence.

PROPOSITION 8. If dim $(V) \ge 6$ and $K \subset int(V)$ has arbitrarily small regular neighborhoods, then any two are equivalent. If dim $(V) \ge 7$, $K \cap \partial V \ne \emptyset$, and K has arbitrarily small neighborhoods meeting the boundary regularly, then any two such neighborhoods are equivalent.

Proof. Let N_1 and N_2 be two regular neighborhoods. By assumption, there is a regular neighborhood $N \subset \operatorname{int}(N_1 \cap N_2)$. By Proposition 7, $\overline{N_1} - \overline{N}$ and $\overline{N_2} - \overline{N}$ are both homeomorphic to $\partial N \times I$ (resp., $\eta(N) \times I$). Hence N_1 is homeomorphic to N_2 by a homeomorphism that is the identity on N.

PROPOSITION 9. Let $K \subset V$ have arbitrarily small neighborhoods meeting the boundary regularly, and let N be a regular neighborhood meeting the boundary regularly. Then if $K \cap \partial V = \emptyset$ and dim $(V) \geq 6$, N - K is homeomorphic to $\partial N \times [0, \infty)$. If $K \cap \partial V \neq \emptyset$ and dim $(V) \geq 7$, then N - K is homeomorphic to $\eta(N) \times [0, \infty)$.

Proof. By assumption, we can find a decreasing sequence of regular neighborhoods $N \supset N_1 \supset N_2 \supset \cdots \supset N_i \supset \cdots \supset K$, each contained in the interior of the next, so that $K = \bigcap_i N_i$. A homeomorphism N - K to $\eta(N) \times [0, \infty)$ is defined inductively sending $\overline{N_i - N_{i+1}}$ homeomorphically to $\eta(N) \times [i, i+1]$, using Proposition 7.

We now finally consider the existence of regular neighborhoods. The main tool here is the existence of local PL structures, which follows essentially from [7], [9], and PL approximation theorems. The following theorem is due to R. T. Miller, R. Connelly, and R. D. Edwards; we quote from [2].

THEOREM 10. Let V be a PL manifold and K a finite complex locally tamely embedded in V, such that $K \cap \partial V = L$ is a subcomplex of K, PL-embedded in ∂V . Further, assume K - L is of codimension greater than or equal to 3 in V. Then

there is an ambient ϵ -isotopy h^t of V, with compact support, fixing ∂V , such that the composition $K \subset V^{h_1} \to V$ is PL.

LEMMA 11. For $n \geq 5$, let $D^p \subset V^n$ be a locally flat embedding, meeting the boundary transversally, such that $\partial V \cap D^p = \partial D^p$. If n = 5, assume also that ∂V is stable. Then D^p has a neighborhood U with a PL structure.

Proof. By [5], if we let $\widetilde{V} = V \cap \partial V \times [0, 1)$, then D^p has a PL neighborhood \widetilde{U} in \widetilde{V} . By Brown's collaring theorem [1], $\widetilde{U} \cap \partial V$ has a neighborhood $\widetilde{\widetilde{U}}$ in \widetilde{U} such that $(\widetilde{\widetilde{U}}, \widetilde{U} \cap \partial V)$ is homeomorphic to $(\widetilde{U} \cap \partial V \times \mathbb{R}, \widetilde{U} \cap \partial V \times 0)$. By [7] we can now change the PL structure of \widetilde{U} so that it is a product structure on \widetilde{U} and hence induces a PL structure on $U = V \cap \widetilde{U}$, a neighborhood of $\phi(D^p)$ in V. To do this for n = 5, we need ∂V to be stable.

Remark 12. Although we do not strictly need it in this paper, it follows from Theorem 10 and Lemma 11 that under the assumptions of Lemma 11, $D^p \subset V$ extends to an embedding

$$(D^p \times \mathbb{R}^{n-p}, \partial D^p \times \mathbb{R}^{n-p}) \le (V, \partial V).$$

This follows for n - p = 1 and 2 by [1] and [8] respectively. For $n - p \ge 3$, first tame D^p and then either use block bundle theory to see that the normal block bundle is trivial, hence as described above; or use [12] to see that the "topological normal bundle" is trivial.

We now finally consider the existence of regular neighborhoods.

THEOREM 13. Let V^n be a topological manifold and L a locally tamely embedded PL complex of codimension greater than or equal to 3 such that $\partial L = L \cap \partial V$ is a subcomplex of L of codimension greater than or equal to 3 in ∂V . Let K be a subcomplex of L. Denote $\partial L \cap K$ by ∂K . Then if $n \geq 7$, or if $n \geq 6$ and ∂K is empty, K has a regular neighborhood meeting the boundary regularly, so that the intersection with L is a regular neighborhood of K in L.

Proof. First let us consider the case where ∂K is empty. Triangulate L so that K is a full subcomplex. The 0-skeleton of K is the disjoint union $K^{(0)} = \bigcup D_i^0$ of a finite number of 0-discs. We extend $D_i^0 \subset V$ to disjoint embeddings

$$D_i^0 \times {\rm I\!R}^n \subset V$$
,

and consider $L \cap D_i^0 \times {\rm I\!R}^n$. By Theorem 10, we can change the PL structure of $D_i^0 \times {\rm I\!R}^n$ so that a neighborhood of D_i^0 in L is PL-embedded in $D_i^0 \times {\rm I\!R}^n$. Therefore, after shrinking $D_i^0 \times {\rm I\!R}^n$, we may assume that $L \cap D_i^0 \times {\rm I\!R}^n$ is PL-embedded in $D_i^0 \times {\rm I\!R}^n$. Triangulate $D_i^0 \times {\rm I\!R}^n$ such that $L \cap D_i^0 \times {\rm I\!R}^n$ is a full subcomplex and let N_i^0 be a derived neighborhood of D_i^0 . Define

$$v_1 = \overline{v - U \, \mathbf{N}_i^0}; \quad \partial_1 \, v_1 = \partial v_1 \, \cap \, U \, \mathbf{N}_i^0; \quad \text{and} \quad \partial_2 \, v_1 = \partial v_1 \, \cap \, \partial v \, .$$

Clearly, $\partial_1 V_1 \cap \partial_2 V_1 = \emptyset$. Consider the higher skeleta $K^{(j)}$ of K. Note that $K^{(j)} \cap V_1$ is $K^{(j)}$ with a regular neighborhood of $K^{(0)}$ removed, just as $L \cap V_1$ is L with a regular neighborhood of $K^{(0)}$ removed. Therefore, $K^{(1)} \cap V_1$ is a disjoint union of 1-discs meeting $\partial_1 V_1$ transversally: $K^{(1)} \cap V_1 = \bigcup_{i=1}^{n} D_i^1$. We use Lemma

11, or rather Remark 12, to extend $D_i^l \subset V_l$ to disjoint embeddings $D_i^l \times {\rm I\!R}^{n-l} \subset V_l$, and we change PL structure and shrink so that $L \cap D_i^l \times {\rm I\!R}^{n-l} \subset D_i^l \times {\rm I\!R}^{n-l}$ is a PL embedding. We then triangulate so that

$$K \, \cap \, D_i^l \times {\rm I\!R}^{n-l} \, \subset L \, \cap \, D_i^l \times {\rm I\!R}^{n-l} \, \subset D_i^l \times {\rm I\!R}^{n-l}$$

are inclusions of full subcomplexes, and take a derived neighborhood \mathbf{N}_i^1 of \mathbf{D}_i^1 . We put

$$\mathbf{v}_2 = \overline{\mathbf{v}_1 - \mathbf{U} \mathbf{N}_i^1}; \quad \partial_1 \mathbf{v}_2 = \partial \mathbf{v}_2 \cap \left(\mathbf{U} \mathbf{N}_i^0 \cup \mathbf{U} \mathbf{N}_i^1 \right); \quad \text{and} \quad \partial_2 \mathbf{v}_2 = \partial \mathbf{v}_2 \cap \partial \mathbf{v}.$$

Again, $\partial_1 V_2 \cap \partial_2 V_2 = \emptyset$. Now $K^{(2)} \cap V_2$ is a disjoint union of 2-discs meeting the boundary regularly, since at every point of the boundary they meet the boundary transversally in some PL structure.

In the inductive step, we have

$$V_j = V - \bigcup_{s < j} (N_i^s); \quad \partial_1 V_j = \partial V_j \cap \bigcup_{s < j} (N_i^s); \quad \text{and} \quad \partial_2 V_j = V_j \cap \partial V;$$

and $L \cap V_j$ is L with a regular neighborhood of $K^{(j-1)}$ removed, just as $K^{(s)} \cap V_j$ is $K^{(s)}$ with a regular neighborhood of $K^{(j-1)}$ removed. Thus $K^{(j)} \cap V_j$ is a disjoint union of j-discs meeting the interior of $\partial_1 V_j$ regularly. The inductive step is now completely analogous to the first step. Let $N = \bigcup_{j=1}^{\dim K} \left(\bigcup N_i^j\right)$. We claim N is a regular neighborhood of K in V, and N intersects L in a regular neighborhood of K in L. The latter is clear by construction.

By a standard codimension-3 argument, $\partial N \subseteq N$ - K induces an isomorphism on the fundamental group. The inclusion $K \subseteq N$ factors

$$K \subset K \cup \left(\bigcup N_i^0\right) \subset K \cup \left(\bigcup N_i^0 \cup \bigcup N_i^1\right) \subset \cdots \subset N.$$

Since N_i^j was obtained as a PL-regular neighborhood, $K \cup \bigcup_{s \leq j} \left(\bigcup N_i^s\right)$ can be strongly deformed into $K \cup \bigcup_{s \leq j-1} \left(\bigcup N_i^s\right)$ by a sequence of elementary simplicial collapses, so it follows by induction that K is a strong deformation retract of N and $K \subset N$ is a simple homotopy equivalence. This uses the result of Edwards [4] that the simple homotopy type of a topological manifold is given by the handlebody structure.

In case $\partial K \neq \emptyset$, we proceed as above except at boundary points. We first tame K in the boundary, and then relative to the boundary. We triangulate L such that the inclusions $\partial K \subset K \subset L$ and $\partial K \subset \partial L$ are inclusions of full subcomplexes. In the inductive step of the proof, we have constructed V_i , $\partial_1 V_i$, and $\partial_2 V_i$, where

$$\partial_1 v_j = \partial v_j \cap \left(\bigcup_{s < j} \left(\bigcup N_i^s \right) \right), \quad \partial_2 v_j = \partial v_j \cap \partial v,$$

and $\partial_2 V_j \cap \partial L$ is L with a regular neighborhood of $\partial K^{(j-1)}$ deleted, while $V_j \cap L$ is L with a regular neighborhood of $K^{(j-1)}$ deleted. Further, $\partial_1 V_j$ has a collar in V_j and $\partial_1 V_j \cap L$ has a PL collar in L such that in a neighborhood of $\partial_1 V_j$, the

inclusion $V_j \cap L \subset V_j$ is a product inclusion $\partial_1 V_j \cap L \times [0, 1) \subset \partial_1 V_j \times [0, 1) \subset V_j$. As before, $K^{(j)} \cap V_j$ is a disjoint union of j-discs, but now some of these are contained in $\partial_2 V_j$, meeting $\partial(\partial_2 V_j) = \partial_1 V_j \cap \partial_2 V_j$ regularly. Thus extend $D_i^j \subset \partial_2 V_j$ to $D_i^j \times \mathbb{R}^{n-j-1} \subset \partial_2 V_j$, and extend to $D_i^j \times \mathbb{R}^{n-j-1} \times [0, 1) \subset V_j$, using a collar of $\partial_2 V_j$ in V_j . The collar of $\partial_1 V_j \cap L$ in L gives a collar of ∂D_i^j in D_i^j , which induces a collar of $\partial D_i^j \times \mathbb{R}^{n-j-1} \times [0, 1)$ in $D_i^j \times \mathbb{R}^{n-j-1} \times [0, 1)$. It is easy to see that the extension can be made so that this collar agrees with the given collar of $\partial_1 V_j$. We now change the PL structure of $D_i^j \times \mathbb{R}^{n-j-1} \times [0, 1)$ by an isotopy to make $L \cap D_i^j \times \mathbb{R}^{n-j-1} \times [0, 1)$ be PL embedded in a neighborhood of D_i^j . We do this by first finding an isotopy of $\partial D_i^j \times \mathbb{R}^{n-j-1} \times [0, 1)$ moving a neighborhood of ∂D_i^j in $L \cap D_i^j \times \mathbb{R}^{n-j-1} \times [0, 1)$ to a PL embedding. We extend this isotopy to a neighborhood of $\partial D_i^j \times \mathbb{R}^{n-j-1} \times [0, 1)$ as a product isotopy, using the given collar, and further to $D_i^j \times \mathbb{R}^{n-j-1} \times [0, 1)$. After shrinking fibers, we may then assume that

$$L \cap D_i^j \times \mathbb{R}^{n-j-l} \times [0, 1) \subset D_i^j \times \mathbb{R}^{n-j-l} \times [0, 1)$$

is a PL embedding in a neighborhood of $\partial D_i^j \times \mathbb{R}^{n-j-l} \times [0, 1)$, so we can change PL structure relative to a neighborhood and shrink fibers to be able to assume that we have $L \cap D_i^j \times \mathbb{R}^{n-j-l} \times [0, 1)$ PL embedded and the PL structure near

$$\partial D_i^j \times \mathbb{R}^{n-j-1} \times [0, 1)$$

is the product structure given by the collar of $\partial_1 V_j$. We triangulate so that all relevant inclusions are inclusions of full subcomplexes, and let N_i^j be a second derived neighborhood of D_i^j . We can still assume that the triangulation near $\partial_1 V_j$ is the product triangulation, so that N_i^j is a product given by the collar near $\partial_1 V_j$, and we then proceed as before. In the region between a second derived neighborhood and a first derived neighborhood of D_i^j everything looks like a product, and this product fits together with the collar of $\partial_1 V_i$ to give a collar of $\partial_1 V_{i+1}$, as desired.

THEOREM 14. Let V^n be a topological manifold, $n \geq 5$. If n = 5 assume also that V is a stable manifold. Let K be a locally flatly embedded topological handle-body of codimension greater than or equal to 3. Then K has a regular neighborhood in V.

Proof. We proceed totally analogously to the above construction, doing it handle by handle.

Remark. It is usual in regular neighborhood theory to require the existence of a map $\pi \colon \partial N \to K$ (N a regular neighborhood of K) such that N is the mapping cylinder of π . In this direction, R. D. Edwards pointed out to me that we may prove the following, using a trick due to M. M. Cohen.

THEOREM 15. Let K be a complex or a closed topological handlebody locally tamely embedded in V^n , V a topological manifold and dim V - dim K \geq 3, n = dim V \geq 6. Let N be a regular neighborhood of K in V. Then there is a map π : $\partial N \to K$ such that N is homeomorphic to the mapping cylinder Z_{π} of π , by a homeomorphism which is the identity on K.

Proof. By uniqueness of regular neighborhoods, we may assume that N is obtained as in the construction in Theorems 13 and 14. Let us consider the case of Theorem 13, where K is complex. Assume we have constructed a regular neighborhood N^k of K^k , the k-skeleton of K, and a map $\pi^k \colon \partial N^k \to K^k$ such that $N^k = Z_\pi k$.

Further assume inductively that $N^k\cap K$ and the mapping cylinder of $\pi^k\big|\partial N^k\cap K$ are equal as sets. The procedure of Theorem 13 is now to attach handles $D^{k+1}\times D^{n-k-1}$ to N^k via a map $S^k\times D^{n-k-1}\subset N^k$ such that $D^{k+1}\times D^{n-k-1}$ is a regular neighborhood of a (k+1)-cell in $K^{k+1}-N^k$ in $V-N^k$, in some PL structure defined locally, intersecting $K^{k+1}-N^k$ in a regular neighborhood of the (k+1)-cell. We want to find $\pi^{k+1}\colon \partial N^{k+1}\to K^{k+1}$. We may assume without loss of generality that N^{k+1} is obtained from N^k by attaching only one (k+1)-handle, since otherwise we may repeat the argument.

Given f: X \rightarrow Y, we orient the mapping cylinder Z_f so that $x \in X$ is identified with $(x, 0) \in Z_f$, (x, 1) = f(x). Since the handle $D^{k+1} \times D^{n-k-1}$ was constructed in an entirely PL situation, there is a map $p \colon D^{k+1} \times S^{n-k-2} \to D^{k+1}$ such that if we identify the handle with the mapping cylinder Z_p , $K \cap D^{k+1} \times D^{n-k-1}$ is the mapping cylinder of $p \mid P \cap D^{k+1} \times S^{n-k-2}$. We denote the part of N^k which is the mapping cylinder of $\pi^k \mid S^k \times D^{n-k-1}$ by B and denote $B \cap N^k$ by $\eta(B)$. Since $\eta(B)$ is the mapping cylinder of $p \mid \partial \eta(B)$, a point in B can be denoted by (x, s, t), where $x \in \partial \eta(B) = S^k \times S^{n-k-2}$, and $s, t \in [0, 1]$.

Let C be a smaller copy of the handle $D^{k+1} \times D^{n-k-1} = Z_p$ corresponding to s-coordinate in [1/2, 1]. We now define $\pi^{k+1} \colon \partial(N^k \cup C) \to K^{k+1}$ by $\pi^{k+1} = \pi^k$ when restricted to $\overline{\partial N^k} - \overline{\eta}B$. Since $\pi^{k+1}(x, 1/2) = p(x)$ for $(x, 1/2) \in \overline{\partial C - B}$, we now need to define π^{k+1} on $\overline{\eta}B - C \cap \partial N^k$, which are the points of B with coordinates (x, s, 0), $s \in [0, 1/2]$. We may consider $[0, 1] \times [0, 1]$ as the mapping cylinder of a map $\chi \colon [0, 1/2] \times 0 \to [0, 1] \times 1 \cup 1 \times [0, 1]$, and we now finish the inductive step by defining $\pi^{k+1}(x, s, 0) = (x, \chi(s, 0))$. It is easy to see that π^{k+1} has all the required properties, since the points in $B \cap K$ are exactly the points (x, s, t) with either s = 1 or t = 1 or $x \in \partial \eta B \cap K$.

REFERENCES

- 1. M. Brown, Locally flat embeddings of topological manifolds. Ann. of Math. 75 (1962), 331-341.
- 2. R. D. Edwards, *The equivalence of close PL embeddings*. General Topology and Appl. 5 (1975), 147-180.
- 3. ——, The topological invariance of simple homotopy type for polyhedra, UCLA (1973), preprint.
- 4. ——, TOP regular neighborhoods, UCLA (1973), preprint.
- 5. J. Hollingsworth and R. B. Sher, *Triangulating neighborhoods in topological manifolds*. General Topology and Appl. 1 (1971), 345-348.
- 6. F. E. A. Johnson, Lefschetz duality and topological tubular neighborhoods. Trans. Amer. Math. Soc. 172 (1972), 95-110.
- 7. R. C. Kirby and L. C. Siebenmann, On the triangulation of manifolds and the Hauptvermutung. Bull. Amer. Math. Soc. 75 (1969), 742-749.
- 8. ——, Normal bundles for codimension 2 locally flat embeddings. Lecture Notes in Mathematics. Geometric Topology Conference 1974, Park City, Utah. Springer-Verlag, Berlin-New York, 1974.

- 9. R. Lashof and M. Rothenberg, Triangulation of manifolds I. Bull. Amer. Math. Soc. 75 (1969), 750-754.
- 10. E. K. Pedersen, *Embeddings of topological manifolds*. Illinois J. Math. 76 (1975), 440-448.
- 11. ——, Spines of topological manifolds. Comment. Math. Helv. 50 (1975), 41-44.
- 12. C. P. Rourke and B. J. Sanderson, On Topological Neighborhoods. Compositio Math. 22 (1970), 387-424.

Department of Mathematics University of Odense 5000 Odense, Denmark