REGULAR NEIGHBORHOODS IN TOPOLOGICAL MANIFOLDS ## Erik Kjær Pedersen Regular neighborhoods have proved to be a very useful tool in the theory of PL manifolds. In this paper we want to make a very easy construction of regular neighborhoods in the topological category. F. E. A. Johnson [6] has constructed regular neighborhoods in topological manifolds, but only in the case of nonintersection with the boundary. R. D. Edwards [4] has announced a very general construction of regular neighborhoods; see also [3]. The present construction has the advantage of allowing a "relative" version, (Theorem 13), in the sense that if L is a complex, K is a subcomplex, and L is locally tamely embedded in a topological manifold V, then one may find a regular neighborhood of K in V, intersecting L in a regular neighborhood of K in L, in the usual PL sense. This is used in [10] to prove embedding theorems for topological manifolds. In [11] we have a proof that the opposite procedure is possible; namely, finding a spine of a topological manifold. We should emphasize that the regular neighborhoods we obtain are mapping cylinder neighborhoods; *i.e.*, if $K \subset N$, where N is a regular neighborhood of K, then there is a map $\pi \colon \partial N \to K$ such that N is homeomorphic to the mapping cylinder of π (Theorem 15). Let K be a compact topological space with a given simple homotopy structure; i.e., of the homotopy type of a finite CW-complex, with the homotopy equivalence specified up to torsion. Definition 1. A regular neighborhood N_2 of K in V is a locally flat, compact submanifold of V, of codimension 0, which is a topological neighborhood of K such that the inclusion $K \subseteq N$ is a simple homotopy equivalence, and K is a strong deformation retract of N. We also require that $\partial N \subseteq N$ - K induces an isomorphism on the fundamental group for every component. Definition 2. A regular neighborhood N of K \subset V is said to meet the boundary regularly if N \cap ∂ V is a regular neighborhood of L in ∂ V and η (N) = $\overline{\partial}$ N - \overline{N} \cap $\overline{\partial}$ V meets ∂ V transversally. Remark 3. If a regular neighborhood meets the boundary regularly, it then follows from van Kampen's theorem that $\eta(N) \to N$ - K induces an isomorphism on the fundamental group. Definition 4. $K \subset V$ is said to have arbitrarily small regular neighborhoods if for every neighborhood U of K there is a regular neighborhood N of K in V such that $N \subset U$. Definition 5. Two regular neighborhoods of $K \subseteq V$, N and \widetilde{N} , are said to be equivalent if N is homeomorphic to \widetilde{N} by a homeomorphism which is the identity on a neighborhood of K. If N and \widetilde{N} meet the boundary regularly, the homeomorphism is required to restrict to a homeomorphism of $N \cap \partial V$ to $\widetilde{N} \cap \partial V$. We now want to change a regular neighborhood into one that meets the boundary regularly. Received November 26, 1975. Revisions received November 4, 1976 and January 24, 1977. Michigan Math. J. 24 (1977). PROPOSITION 6. Let N be a regular neighborhood of K in V, and assume L = K \cap ∂ V has a regular neighborhood \overline{N} in ∂ V such that $\overline{N} \subset int(N \cap \partial V)$. Then K has a regular neighborhood which meets the boundary regularly in \overline{N} . *Proof.* Push N off ∂V outside \overline{N} using a collar of ∂V in V and of \overline{N} in ∂V outside \overline{N} . We now make some observations essentially due to F. E. A. Johnson (see [6]). PROPOSITION 7. Let N and N' be regular neighborhoods of K such that $N \subset \text{int }(N')$. If $K \cap \partial V = \emptyset$ and $\dim(V) \geq 6$, then $\overline{N'} - \overline{N}$ is homeomorphic to $\partial N \times \underline{I}$. If $K \cap \partial V \neq \emptyset$, N and N' meet the boundary regularly, and $\dim(V) \geq 7$, then $\overline{N'} - \overline{N}$ is homeomorphic to $\eta(N) \times I$. *Proof.* The topological s-cobordism theorem applies, since van Kampen's theorem applied to and the factoring $\partial N \subset N' - N \subset N - K$ proves that $\partial N \subset N' - N$ and $\partial N' \subset N' - N$ both induce isomorphisms on the fundamental group. Further, $K \subset N'$ is a simple homotopy equivalence which factors $K \subset N \subset N'$, where $K \subset N$ and $N \subset N'$ are both simple homotopy equivalences. Hence $\partial N \subset N' - N$ is a simple homotopy equivalence. PROPOSITION 8. If dim $(V) \ge 6$ and $K \subset int(V)$ has arbitrarily small regular neighborhoods, then any two are equivalent. If dim $(V) \ge 7$, $K \cap \partial V \ne \emptyset$, and K has arbitrarily small neighborhoods meeting the boundary regularly, then any two such neighborhoods are equivalent. *Proof.* Let N_1 and N_2 be two regular neighborhoods. By assumption, there is a regular neighborhood $N \subset \operatorname{int}(N_1 \cap N_2)$. By Proposition 7, $\overline{N_1} - \overline{N}$ and $\overline{N_2} - \overline{N}$ are both homeomorphic to $\partial N \times I$ (resp., $\eta(N) \times I$). Hence N_1 is homeomorphic to N_2 by a homeomorphism that is the identity on N. PROPOSITION 9. Let $K \subset V$ have arbitrarily small neighborhoods meeting the boundary regularly, and let N be a regular neighborhood meeting the boundary regularly. Then if $K \cap \partial V = \emptyset$ and dim $(V) \geq 6$, N - K is homeomorphic to $\partial N \times [0, \infty)$. If $K \cap \partial V \neq \emptyset$ and dim $(V) \geq 7$, then N - K is homeomorphic to $\eta(N) \times [0, \infty)$. *Proof.* By assumption, we can find a decreasing sequence of regular neighborhoods $N \supset N_1 \supset N_2 \supset \cdots \supset N_i \supset \cdots \supset K$, each contained in the interior of the next, so that $K = \bigcap_i N_i$. A homeomorphism N - K to $\eta(N) \times [0, \infty)$ is defined inductively sending $\overline{N_i - N_{i+1}}$ homeomorphically to $\eta(N) \times [i, i+1]$, using Proposition 7. We now finally consider the existence of regular neighborhoods. The main tool here is the existence of local PL structures, which follows essentially from [7], [9], and PL approximation theorems. The following theorem is due to R. T. Miller, R. Connelly, and R. D. Edwards; we quote from [2]. THEOREM 10. Let V be a PL manifold and K a finite complex locally tamely embedded in V, such that $K \cap \partial V = L$ is a subcomplex of K, PL-embedded in ∂V . Further, assume K - L is of codimension greater than or equal to 3 in V. Then there is an ambient ϵ -isotopy h^t of V, with compact support, fixing ∂V , such that the composition $K \subset V^{h_1} \to V$ is PL. LEMMA 11. For $n \geq 5$, let $D^p \subset V^n$ be a locally flat embedding, meeting the boundary transversally, such that $\partial V \cap D^p = \partial D^p$. If n = 5, assume also that ∂V is stable. Then D^p has a neighborhood U with a PL structure. *Proof.* By [5], if we let $\widetilde{V} = V \cap \partial V \times [0, 1)$, then D^p has a PL neighborhood \widetilde{U} in \widetilde{V} . By Brown's collaring theorem [1], $\widetilde{U} \cap \partial V$ has a neighborhood $\widetilde{\widetilde{U}}$ in \widetilde{U} such that $(\widetilde{\widetilde{U}}, \widetilde{U} \cap \partial V)$ is homeomorphic to $(\widetilde{U} \cap \partial V \times \mathbb{R}, \widetilde{U} \cap \partial V \times 0)$. By [7] we can now change the PL structure of \widetilde{U} so that it is a product structure on \widetilde{U} and hence induces a PL structure on $U = V \cap \widetilde{U}$, a neighborhood of $\phi(D^p)$ in V. To do this for n = 5, we need ∂V to be stable. Remark 12. Although we do not strictly need it in this paper, it follows from Theorem 10 and Lemma 11 that under the assumptions of Lemma 11, $D^p \subset V$ extends to an embedding $$(D^p \times \mathbb{R}^{n-p}, \partial D^p \times \mathbb{R}^{n-p}) \le (V, \partial V).$$ This follows for n - p = 1 and 2 by [1] and [8] respectively. For $n - p \ge 3$, first tame D^p and then either use block bundle theory to see that the normal block bundle is trivial, hence as described above; or use [12] to see that the "topological normal bundle" is trivial. We now finally consider the existence of regular neighborhoods. THEOREM 13. Let V^n be a topological manifold and L a locally tamely embedded PL complex of codimension greater than or equal to 3 such that $\partial L = L \cap \partial V$ is a subcomplex of L of codimension greater than or equal to 3 in ∂V . Let K be a subcomplex of L. Denote $\partial L \cap K$ by ∂K . Then if $n \geq 7$, or if $n \geq 6$ and ∂K is empty, K has a regular neighborhood meeting the boundary regularly, so that the intersection with L is a regular neighborhood of K in L. *Proof.* First let us consider the case where ∂K is empty. Triangulate L so that K is a full subcomplex. The 0-skeleton of K is the disjoint union $K^{(0)} = \bigcup D_i^0$ of a finite number of 0-discs. We extend $D_i^0 \subset V$ to disjoint embeddings $$D_i^0 \times {\rm I\!R}^n \subset V$$, and consider $L \cap D_i^0 \times {\rm I\!R}^n$. By Theorem 10, we can change the PL structure of $D_i^0 \times {\rm I\!R}^n$ so that a neighborhood of D_i^0 in L is PL-embedded in $D_i^0 \times {\rm I\!R}^n$. Therefore, after shrinking $D_i^0 \times {\rm I\!R}^n$, we may assume that $L \cap D_i^0 \times {\rm I\!R}^n$ is PL-embedded in $D_i^0 \times {\rm I\!R}^n$. Triangulate $D_i^0 \times {\rm I\!R}^n$ such that $L \cap D_i^0 \times {\rm I\!R}^n$ is a full subcomplex and let N_i^0 be a derived neighborhood of D_i^0 . Define $$v_1 = \overline{v - U \, \mathbf{N}_i^0}; \quad \partial_1 \, v_1 = \partial v_1 \, \cap \, U \, \mathbf{N}_i^0; \quad \text{and} \quad \partial_2 \, v_1 = \partial v_1 \, \cap \, \partial v \, .$$ Clearly, $\partial_1 V_1 \cap \partial_2 V_1 = \emptyset$. Consider the higher skeleta $K^{(j)}$ of K. Note that $K^{(j)} \cap V_1$ is $K^{(j)}$ with a regular neighborhood of $K^{(0)}$ removed, just as $L \cap V_1$ is L with a regular neighborhood of $K^{(0)}$ removed. Therefore, $K^{(1)} \cap V_1$ is a disjoint union of 1-discs meeting $\partial_1 V_1$ transversally: $K^{(1)} \cap V_1 = \bigcup_{i=1}^{n} D_i^1$. We use Lemma 11, or rather Remark 12, to extend $D_i^l \subset V_l$ to disjoint embeddings $D_i^l \times {\rm I\!R}^{n-l} \subset V_l$, and we change PL structure and shrink so that $L \cap D_i^l \times {\rm I\!R}^{n-l} \subset D_i^l \times {\rm I\!R}^{n-l}$ is a PL embedding. We then triangulate so that $$K \, \cap \, D_i^l \times {\rm I\!R}^{n-l} \, \subset L \, \cap \, D_i^l \times {\rm I\!R}^{n-l} \, \subset D_i^l \times {\rm I\!R}^{n-l}$$ are inclusions of full subcomplexes, and take a derived neighborhood \mathbf{N}_i^1 of \mathbf{D}_i^1 . We put $$\mathbf{v}_2 = \overline{\mathbf{v}_1 - \mathbf{U} \mathbf{N}_i^1}; \quad \partial_1 \mathbf{v}_2 = \partial \mathbf{v}_2 \cap \left(\mathbf{U} \mathbf{N}_i^0 \cup \mathbf{U} \mathbf{N}_i^1 \right); \quad \text{and} \quad \partial_2 \mathbf{v}_2 = \partial \mathbf{v}_2 \cap \partial \mathbf{v}.$$ Again, $\partial_1 V_2 \cap \partial_2 V_2 = \emptyset$. Now $K^{(2)} \cap V_2$ is a disjoint union of 2-discs meeting the boundary regularly, since at every point of the boundary they meet the boundary transversally in some PL structure. In the inductive step, we have $$V_j = V - \bigcup_{s < j} (N_i^s); \quad \partial_1 V_j = \partial V_j \cap \bigcup_{s < j} (N_i^s); \quad \text{and} \quad \partial_2 V_j = V_j \cap \partial V;$$ and $L \cap V_j$ is L with a regular neighborhood of $K^{(j-1)}$ removed, just as $K^{(s)} \cap V_j$ is $K^{(s)}$ with a regular neighborhood of $K^{(j-1)}$ removed. Thus $K^{(j)} \cap V_j$ is a disjoint union of j-discs meeting the interior of $\partial_1 V_j$ regularly. The inductive step is now completely analogous to the first step. Let $N = \bigcup_{j=1}^{\dim K} \left(\bigcup N_i^j\right)$. We claim N is a regular neighborhood of K in V, and N intersects L in a regular neighborhood of K in L. The latter is clear by construction. By a standard codimension-3 argument, $\partial N \subseteq N$ - K induces an isomorphism on the fundamental group. The inclusion $K \subseteq N$ factors $$K \subset K \cup \left(\bigcup N_i^0\right) \subset K \cup \left(\bigcup N_i^0 \cup \bigcup N_i^1\right) \subset \cdots \subset N.$$ Since N_i^j was obtained as a PL-regular neighborhood, $K \cup \bigcup_{s \leq j} \left(\bigcup N_i^s\right)$ can be strongly deformed into $K \cup \bigcup_{s \leq j-1} \left(\bigcup N_i^s\right)$ by a sequence of elementary simplicial collapses, so it follows by induction that K is a strong deformation retract of N and $K \subset N$ is a simple homotopy equivalence. This uses the result of Edwards [4] that the simple homotopy type of a topological manifold is given by the handlebody structure. In case $\partial K \neq \emptyset$, we proceed as above except at boundary points. We first tame K in the boundary, and then relative to the boundary. We triangulate L such that the inclusions $\partial K \subset K \subset L$ and $\partial K \subset \partial L$ are inclusions of full subcomplexes. In the inductive step of the proof, we have constructed V_i , $\partial_1 V_i$, and $\partial_2 V_i$, where $$\partial_1 v_j = \partial v_j \cap \left(\bigcup_{s < j} \left(\bigcup N_i^s \right) \right), \quad \partial_2 v_j = \partial v_j \cap \partial v,$$ and $\partial_2 V_j \cap \partial L$ is L with a regular neighborhood of $\partial K^{(j-1)}$ deleted, while $V_j \cap L$ is L with a regular neighborhood of $K^{(j-1)}$ deleted. Further, $\partial_1 V_j$ has a collar in V_j and $\partial_1 V_j \cap L$ has a PL collar in L such that in a neighborhood of $\partial_1 V_j$, the inclusion $V_j \cap L \subset V_j$ is a product inclusion $\partial_1 V_j \cap L \times [0, 1) \subset \partial_1 V_j \times [0, 1) \subset V_j$. As before, $K^{(j)} \cap V_j$ is a disjoint union of j-discs, but now some of these are contained in $\partial_2 V_j$, meeting $\partial(\partial_2 V_j) = \partial_1 V_j \cap \partial_2 V_j$ regularly. Thus extend $D_i^j \subset \partial_2 V_j$ to $D_i^j \times \mathbb{R}^{n-j-1} \subset \partial_2 V_j$, and extend to $D_i^j \times \mathbb{R}^{n-j-1} \times [0, 1) \subset V_j$, using a collar of $\partial_2 V_j$ in V_j . The collar of $\partial_1 V_j \cap L$ in L gives a collar of ∂D_i^j in D_i^j , which induces a collar of $\partial D_i^j \times \mathbb{R}^{n-j-1} \times [0, 1)$ in $D_i^j \times \mathbb{R}^{n-j-1} \times [0, 1)$. It is easy to see that the extension can be made so that this collar agrees with the given collar of $\partial_1 V_j$. We now change the PL structure of $D_i^j \times \mathbb{R}^{n-j-1} \times [0, 1)$ by an isotopy to make $L \cap D_i^j \times \mathbb{R}^{n-j-1} \times [0, 1)$ be PL embedded in a neighborhood of D_i^j . We do this by first finding an isotopy of $\partial D_i^j \times \mathbb{R}^{n-j-1} \times [0, 1)$ moving a neighborhood of ∂D_i^j in $L \cap D_i^j \times \mathbb{R}^{n-j-1} \times [0, 1)$ to a PL embedding. We extend this isotopy to a neighborhood of $\partial D_i^j \times \mathbb{R}^{n-j-1} \times [0, 1)$ as a product isotopy, using the given collar, and further to $D_i^j \times \mathbb{R}^{n-j-1} \times [0, 1)$. After shrinking fibers, we may then assume that $$L \cap D_i^j \times \mathbb{R}^{n-j-l} \times [0, 1) \subset D_i^j \times \mathbb{R}^{n-j-l} \times [0, 1)$$ is a PL embedding in a neighborhood of $\partial D_i^j \times \mathbb{R}^{n-j-l} \times [0, 1)$, so we can change PL structure relative to a neighborhood and shrink fibers to be able to assume that we have $L \cap D_i^j \times \mathbb{R}^{n-j-l} \times [0, 1)$ PL embedded and the PL structure near $$\partial D_i^j \times \mathbb{R}^{n-j-1} \times [0, 1)$$ is the product structure given by the collar of $\partial_1 V_j$. We triangulate so that all relevant inclusions are inclusions of full subcomplexes, and let N_i^j be a second derived neighborhood of D_i^j . We can still assume that the triangulation near $\partial_1 V_j$ is the product triangulation, so that N_i^j is a product given by the collar near $\partial_1 V_j$, and we then proceed as before. In the region between a second derived neighborhood and a first derived neighborhood of D_i^j everything looks like a product, and this product fits together with the collar of $\partial_1 V_i$ to give a collar of $\partial_1 V_{i+1}$, as desired. THEOREM 14. Let V^n be a topological manifold, $n \geq 5$. If n = 5 assume also that V is a stable manifold. Let K be a locally flatly embedded topological handle-body of codimension greater than or equal to 3. Then K has a regular neighborhood in V. *Proof.* We proceed totally analogously to the above construction, doing it handle by handle. *Remark.* It is usual in regular neighborhood theory to require the existence of a map $\pi \colon \partial N \to K$ (N a regular neighborhood of K) such that N is the mapping cylinder of π . In this direction, R. D. Edwards pointed out to me that we may prove the following, using a trick due to M. M. Cohen. THEOREM 15. Let K be a complex or a closed topological handlebody locally tamely embedded in V^n , V a topological manifold and dim V - dim K \geq 3, n = dim V \geq 6. Let N be a regular neighborhood of K in V. Then there is a map π : $\partial N \to K$ such that N is homeomorphic to the mapping cylinder Z_{π} of π , by a homeomorphism which is the identity on K. *Proof.* By uniqueness of regular neighborhoods, we may assume that N is obtained as in the construction in Theorems 13 and 14. Let us consider the case of Theorem 13, where K is complex. Assume we have constructed a regular neighborhood N^k of K^k , the k-skeleton of K, and a map $\pi^k \colon \partial N^k \to K^k$ such that $N^k = Z_\pi k$. Further assume inductively that $N^k\cap K$ and the mapping cylinder of $\pi^k\big|\partial N^k\cap K$ are equal as sets. The procedure of Theorem 13 is now to attach handles $D^{k+1}\times D^{n-k-1}$ to N^k via a map $S^k\times D^{n-k-1}\subset N^k$ such that $D^{k+1}\times D^{n-k-1}$ is a regular neighborhood of a (k+1)-cell in $K^{k+1}-N^k$ in $V-N^k$, in some PL structure defined locally, intersecting $K^{k+1}-N^k$ in a regular neighborhood of the (k+1)-cell. We want to find $\pi^{k+1}\colon \partial N^{k+1}\to K^{k+1}$. We may assume without loss of generality that N^{k+1} is obtained from N^k by attaching only one (k+1)-handle, since otherwise we may repeat the argument. Given f: X \rightarrow Y, we orient the mapping cylinder Z_f so that $x \in X$ is identified with $(x, 0) \in Z_f$, (x, 1) = f(x). Since the handle $D^{k+1} \times D^{n-k-1}$ was constructed in an entirely PL situation, there is a map $p \colon D^{k+1} \times S^{n-k-2} \to D^{k+1}$ such that if we identify the handle with the mapping cylinder Z_p , $K \cap D^{k+1} \times D^{n-k-1}$ is the mapping cylinder of $p \mid P \cap D^{k+1} \times S^{n-k-2}$. We denote the part of N^k which is the mapping cylinder of $\pi^k \mid S^k \times D^{n-k-1}$ by B and denote $B \cap N^k$ by $\eta(B)$. Since $\eta(B)$ is the mapping cylinder of $p \mid \partial \eta(B)$, a point in B can be denoted by (x, s, t), where $x \in \partial \eta(B) = S^k \times S^{n-k-2}$, and $s, t \in [0, 1]$. Let C be a smaller copy of the handle $D^{k+1} \times D^{n-k-1} = Z_p$ corresponding to s-coordinate in [1/2, 1]. We now define $\pi^{k+1} \colon \partial(N^k \cup C) \to K^{k+1}$ by $\pi^{k+1} = \pi^k$ when restricted to $\overline{\partial N^k} - \overline{\eta}B$. Since $\pi^{k+1}(x, 1/2) = p(x)$ for $(x, 1/2) \in \overline{\partial C - B}$, we now need to define π^{k+1} on $\overline{\eta}B - C \cap \partial N^k$, which are the points of B with coordinates (x, s, 0), $s \in [0, 1/2]$. We may consider $[0, 1] \times [0, 1]$ as the mapping cylinder of a map $\chi \colon [0, 1/2] \times 0 \to [0, 1] \times 1 \cup 1 \times [0, 1]$, and we now finish the inductive step by defining $\pi^{k+1}(x, s, 0) = (x, \chi(s, 0))$. It is easy to see that π^{k+1} has all the required properties, since the points in $B \cap K$ are exactly the points (x, s, t) with either s = 1 or t = 1 or $x \in \partial \eta B \cap K$. ## REFERENCES - 1. M. Brown, Locally flat embeddings of topological manifolds. Ann. of Math. 75 (1962), 331-341. - 2. R. D. Edwards, *The equivalence of close PL embeddings*. General Topology and Appl. 5 (1975), 147-180. - 3. ——, The topological invariance of simple homotopy type for polyhedra, UCLA (1973), preprint. - 4. ——, TOP regular neighborhoods, UCLA (1973), preprint. - 5. J. Hollingsworth and R. B. Sher, *Triangulating neighborhoods in topological manifolds*. General Topology and Appl. 1 (1971), 345-348. - 6. F. E. A. Johnson, Lefschetz duality and topological tubular neighborhoods. Trans. Amer. Math. Soc. 172 (1972), 95-110. - 7. R. C. Kirby and L. C. Siebenmann, On the triangulation of manifolds and the Hauptvermutung. Bull. Amer. Math. Soc. 75 (1969), 742-749. - 8. ——, Normal bundles for codimension 2 locally flat embeddings. Lecture Notes in Mathematics. Geometric Topology Conference 1974, Park City, Utah. Springer-Verlag, Berlin-New York, 1974. - 9. R. Lashof and M. Rothenberg, Triangulation of manifolds I. Bull. Amer. Math. Soc. 75 (1969), 750-754. - 10. E. K. Pedersen, *Embeddings of topological manifolds*. Illinois J. Math. 76 (1975), 440-448. - 11. ——, Spines of topological manifolds. Comment. Math. Helv. 50 (1975), 41-44. - 12. C. P. Rourke and B. J. Sanderson, On Topological Neighborhoods. Compositio Math. 22 (1970), 387-424. Department of Mathematics University of Odense 5000 Odense, Denmark