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Denote by A, Z, dA the open unit disc in C, its closure, and its boundary,
respectively. If X is a complex Banach space, we denote by A(A, X) the class of

all continuous functions from A to X, analytic on A, and we write A for A(A, C).

We denote the closure and the interior of a set S € X by S and Int S, respectively.
We write I={t: 0 <t< 1} and denote the set of all positive integers by NN.

The main purpose of this note is to present a simple topological description of

the sets f(A), f € A. Note that the topological description of the sets f(3A), f € A
is known [2].

We obtain our description by combining some ideas of Petczyfski [9] with some
ideas from [6].

Definition. Let P be a subset of a metric space and let € > 0. We call a finite
set Sg C P an g-path-net for P if given any x € P there exist y € Sg and a path in
P joining x and y whose diameter is less than €. We say that P is fotally path-
connected if

(i) P is path-connected;
(ii) for every & > 0 there exists an g-path-net for P.

Remark. If P is an open subset of a Banach space, then (ii) above is equivalent
to the assumption that P has “property S” [7, 12]. Note that there are bounded do-
mains in € which are not totally path-connected.

THEOREM 1. Lef a subset K of C consist of move than one point. Then
K = f(A) for some f € A if and only if

(i) K = Int K;
(ii) Int K is fotally path-connected.

LEMMA 1. Let F C 9A be a closed set of Lebesgue measuve 0, and let
X € 9A - F. Assume that p: 1 — C is a path satisfying p(0) = 0. Let € > 0, and let

UCA bea neighbovhood of \. Theve exists f € A salisfying
(i) £(F) = {o};
@ii) £(0) = p(1);
(iii) [{x)]| <&,z € A - U;
(iv) () C p(@) +eA.
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Lemma 1 is a special case of Lemma 3 in [6]. For the sake of completeness,
we sketch its proof.

Pyoof of Lemma 1 [5, 6]. Clearly, we may assume that F C A - U. Using the
Mergelyan theorem, it is easy to see that there is a polynomial P satisfying
|p(z) - P(Z)J <&/2, z €1, and P(0) =0. Let S C € be an open neighborhood of I
such that P(S) C p(I) + (¢/2)A, and let V € S be an open neighborhood of I - {1}
containing the point 1 in its boundary and bounded by a Jordan curve contained in S.

By the Riemann mapping theorem [10], there is ¢ € A mapping A onto V and satis-
fying ¢(0) = 0, ¢(1) = 1. Let T C A be a neighborhood of 0 such that ¢(T) C W,
where W C V is a neighborhood of 0 such that |P(z)| <&/2, z € W. Take a suffi-
ciently high power 7 of a function ¥ € A satisfying () =1, |Y(z)| <1,

z € A - {1} [8] such that n(A - U) C T, define g = P o ¢ o 7, and put h(s) = -g(s),
s € F, h(A) =p(1) - g). Let h e A be an extension of h given by the Rudin-
Carleson theorem [8] satisfying |h(z)| <&/2, z € A, and put f = g +h.

Remark. Since the Mergelyan theorem and the Rudin-Carleson theorem have
been generalized to the case where the range is a complex Banach space [1; 11, 4],
Lemma 1 can be generalized so that p is a path in a complex Banach space X and
f e A(A, X) [6].

LEMMA 2. Let P be a nonempty open subset of C which is totally path-con-
nected. Lel F C oA be a nonempty pevfect compact set. Theve exists a function
f € A such that 1(F) = P and such that {(A - F) C P.

Pelczyfiski [9] proved a similar assertion for P = A and for A replaced by any
function algebra on a compact metric space whose set S of peak points contains a
proper compact perfect subset. Below we modify carefully his idea about refining
the usual net, using the fact that S contains a perfect compact set, and we use our
Lemma 1 to prove Lemma 2.

Proof of Lemma 2. Pavt 1. With no loss of generality, assume that 0 € P,

o0
Write F = Dnﬂ 0., where {0,} is a decreasing sequence of (relatively) open
subsets of A. Assume that there exist a decreasing sequence {zn} of positive
numbers and a sequence {fn} C A with the following properties

(i) £,(A) te, ACP, ne€N;
(i) [fh41(2) - fa(2)| <en/2", zeA-0_., neN;
(iii) lan(z) - £ (z)| < 1/27, z €A neN;

(iv) for each n € N there exists a finite set Z, C F such that {f (Z, ) is a
1/27t1_path-net for P.

Observe that (i) and (iv) force €, —0.

Define f = lim f_. By (iii) the convergence is uniform on A, so f € A. Since
f(F)CP, ne N, f(F) C P. Since f(F) is compact, we prove that f(F) = P by prov-
ing that f(F) is dense in P. Let € > 0 and x € P. Choose n sufficiently large to
satisfy |f,(z) - f(z)| <€/2, z € A and 1/27"! <&/2. By (iv) there is some z € Z_
such that |x - f(z)| < 1/2°"! which implies that |x - f(z)| < €. Consequently,
f(F) is dense in P.

Now, let z € A - F. There is some n € N suchthat z ¢ ¢, ,,. Write

o0
£(z) = £ (2) + 24 gy, [f141(2) - fi(2)]. Since the sequences {0 ,} and {e,} are
decreasing, it follows by (ii) that
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2 (@ - 5 @1 < 2 g /ok < 2 e ok <e,
k=n k=n k=n

and by (i) it follows that f(z) € P.

It remains to prove the existence of {¢_ } and {fn} satisfying (i) through (iv)
above.

Part 2, First we construct {; . By the assumption, there exists a 1/4-path-net
{wl y Wo, o0, WN} for P. By the connectedness of P, there exists for each
k=1,2, -, N apath p: I — P satisfying p,(0) =0, p(1) = wy. Since py(),
1 <k <N, are compact sets, there is an € > 0 such that p,(I) +eA C P, 1 <k <N.

Choose a set of distinct points Z; = {)\1, Ao, =oe, AN} C F and a set of disjoint

neighborhoods U; C A of the points A;, respectively. By Lemma 1 there exist func-
tions g, € A, k=1, 2, --, N, such that

gk()‘_]) = 0: ] # k;
grMi) = wis
|gk(z)| < g/2N, z €N - Uy

g (&) C p (D + (e/2)A.

I
Define f; = Ek:1 g - Clearly, f; € A. By the properties of g, , 1 <k <N, we
have f; (A ) = w,, 1 <k <N, and consequently f;(Z,) is a 1/4-path-net for P. I

z €A - Uizl Uk, then |f;(z)] < 2J |g(z)| < N-&/2N = £/2, and consequently
f1(z) € P. I z € Uy for some k, then z ¢ U; for j # k. It follows that

f,(z) = g (z) + 27 g;(z) € p(D) + (£/2)A + (£/2)2 < P.
j#k
Since f,(A) is a compact subset of P, there is an £; > 0 such that f, (A) +&; A C P,

Part 3. Assume that for some n € IN we have constructed f, and &, satisfying
(i) and such that there exists a finite set {X;, A5, «*+, Ay} C F for which

{fn(xj), j=1,2, -, M} is a 1/2™"1_path-net for P.

The proof of Lemma 2 will be completed by induction once we have shown that
there exist g € A and €,4,, 0<¢,;; <€&,, such that

(a) (f,+g) (L) +&y4 ACP;
(b) |elz)| <e, /2, zeA-o0
(¢) |eg(z)] <1/2®, ze A

(d) there exists a finite set Zoat1 = {“1 sy M2, o, P‘N} C F such that
(f, +g)(Z,,7) is a 1/27"2-path-net for P.

By the assumption, there exists a 1/20*2-path-net {w;, w,, *--, wyt for P.
Since {fn(hj), 1 <j<M} isa 1/2°"l-path-net for P, we can join each w, with
some f,(X;) by a path py in P whose diameter is less than 1/2n+1

ntl?
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Renumbering wjy - s and KJ - s and omitting those )\ - s whose f(PkJ) - s are
not joined with any wy (i.e., lowering M if necessary) we obtam the integers
0=Ng <N; <+ < NM N such that for each j =1, 2, -, M and for each Kk,
N;_; <k <N;, there exists a path p: I — P whose diameter is less than 1/2“Jrl

and such that p,(0) = f()\j), pi(1) = w, . Now, the set
G = £,(8) Upy(I) Up,(D) U+ U pyD

is compact and contained in P. Consequently, there is an € > 0 such that

(1) G+ (N + 3)eA C P;
@) Ne < min {e_ /2", 1/2"};
(3) 122t L (3 +N)e < 1/27 .

By the continuity of f , one can choose disjoint convex neighborhoods U; C A
of the points ?\j, 1 <j <M, respectively, which are contained in ¢_;; and satisfy

(4) [£.(2)) - £,(z,)| <€ 2,2 € Uy, 1<j<M.

Further, since F is a perfect set, there are distinct points u;, g, **-, pn in F
such that p € UJ-, Nj_l <k < Ny, j=1,2, .-, M. Now, define the paths

fn((l—Zt)uk-Ith?\J) Osts 1/2, NJ-1<kSNJJ ]:1, 2, "',M;

Ek(t) =
p(2t-1) 1/2<t<1.
Since (1 - 28wy +20 € Uy, 0<t<1/2; Ny <k< NJ, i=1,2, -, M, it follows
by (4) that P (t) € £(x;) + €A, 1 <k _<_ Nj, i=1,2, -, M, 0<t _<_ 1/2, and conse-

quently py(I) C pp(I) +eA, k = 1, 2, -, N.

Choose disjoint neighborhoods V,; C A of hi, k=1, 2, -+, N, respectively,
such that Vi © Uj, Nj_; <k <Nj, j=1,2, -, M. Now Lemma 1 applies to show
that there exist functions g € A, k=1, 2, ---, N such that

gk(uj) =0, k+ij, k,j=1,2, -, N;
gl = w - f.(uy), k=1,2, -, N;
g, (&) < B (D) - £ (n) +ed, k=1,2, -, N;

]gk(z)l <eg, zeZ—Vk,k=1,2, -+, N.

N
Define g = Ek:l gy -

Part 4. We show that g has all the required properties. First, if

zZ € N~ Ulljzl V. then
(5) lez)| < 22 lg (2)| < Ne.

Since Uy © Opnt1, 1 <k <M, it follows by (1) that (b) is satisfied. Further, by (1)
and (5), f (z) +g(z) € £, (A) +NeACP. If z € Vi for some Kk, then z ¢ V; for
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k #i. If N;_; <k <Nj, we have by (4) and by (1)

f(z) + g (z) + 20 gi(z) € £,(2) + (B;(D - £,(4;) +£A) +Nea
ik

f.(z) + g(z)

C (£,(z) - £,(p3)) + (p5(1) +€A) + (N + 1)eA
C 8A+pj(I)+(N+2)8A C P.

Consequently, (f, + g) (A) C P and by the compactness of {fy +g) (A), there is an
€415 0 <€,4; <&, such that (a) is satisfied.

Further, by the construction of the functions g; , we have
glpy) = wi - Iy, 1<k <N,
so that (f, +g) (1)) = wix, 1 <k <N. This means that
{¢, +e) (), k=1,2, -, N}
is a 1/2"2-path-net for P, which proves (d).

Finally, if z € V; for some j, then z ¢ Vi for k # j, so IEk%j gk(z)l < Ng .
Further, we have g;(z) € Ej(I) - £,(i;) + €4, and since 5j(0) = £,(p5), it follows that

|gj(z)| < diam ﬁj(I) + € < (diam pj(I) +28) +& < 1/971 43¢,

Consequently, |g(z)| < (N + 3)e +1/22*1 which, together with (5), by (2) and by (3)
implies (c).

Remavk. Observe that one can prove Lemma 2 with € replaced by any finite-
dimensional complex normed space.

Proof of Theovem 1. The “if” part follows immediately from Lemma 2. To
prove the “only if” part, assume that K = f(A) for some f € A. Ii is easy to see that
the total path-connectedness is invariant under uniformly continuous maps, and since
A is totally path-connected, the same is true for f(A). By the assumption, K con-
sists of more than one point, which means that f is not a constant. Being analytic, f
is an open map and satisfies f(A) C Int K. Clearly, f(A) is dense in K, which means

that Int K = K. Theorem 1 will be proved once we prove the following.

LEMMA 3. Let P be an open subsetl of a finite-dimensional novymed space, and
let S be a subsetl of P which is totally path-connected and dense in P. Then P is
totally path-connected.

Proof. It is easy to see that any e-path-net for S is a 2e-path-net for P.

If K C C satisfies (i) and (ii) of Theorem 1 then K consists of more than one
point. By Theorem 1, K = f(Z) for some f € A, Clearly, f is not a constant, and
consequently f(A) C Int K. Conversely, if f: A — C is a continuous map satisfying
f(A) C Int £(A), then the proof of Theorem 1 shows that K = f(A) satisfies (i) and (ii)

of Theorem 1. Consequently, we have:

COROLLARY. The class of vanges of all nonconstant functions from A co-
incides with the class of vanges of all continuous maps f: N — C satisfying
£(A) C Int £(B).
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The function f given by Lemma 2 has the property that f(3A) = f(A) = P. Lem-
ma 2 does not give any information about f(A), and we ask the following.

Question. Is every open, totally path-connected subset of C necessarily of the
form f(A) for some f € A?

Above we have obtained a topological description of the class of ranges of func-
tions from A. It is interesting to observe that this class is minimal in the sense
that it is contained in the class of ranges of functions from any function algebra
(= separating, sup-norm-closed subalgebra of C(K), containing constants) B on any
uncountable compact metric space K. Indeed, Pelczyfiski has shown that the set of
peak points for such B contains a proper compact perfect set [9, p. 657], and conse-
quently by [9, Prop. 1] there exists f € B such that f(K) = A. Now if ¢ € A, then
¢ o f € B, since the polynomials are dense in A. Clearly, the ranges of ¢ o f and ¢
coincide.

In [5] it was proved that for any nonempty open connected set P in a separable
complex Banach space X, there exists a continuous function f: A - {1} — X, analytic
on A and such that f(A) is densely contained in P. If X is infinite-dimensional,

then one can never extend such an f continuously to all A, since Int f(A) is empty

by the compactness of f(A). However, if X is finite-dimensional, the question of
which open subsets of X can one fill with £(A), f € A(A, X) densely, makes sense.
Here is the answer:

THEOREM 2. Lelt P be a nonemptly open subset of a finite-dimensional com-
plex normed space. Then theve exists an f € A(A, X) such that £f(A) is densely con-
tained in P, if and only if P is tolally path-connected.

Proof. The “if” part follows from Lemma 2 for vector-valued functions. The
“only if” part follows from Lemma 3 by the fact that f£(A), f € A(A, X), is totally
path-connected.
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