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INTRODUCTION

Let # be a uniform Banach algebra. Call two points ¢, ¥ of its spectrum
equivalent if with respect to the norm topology of the dual space #' we have
ll¢ - ¢|| < 2. This is indeed an equivalence relation, and the corresponding equiva-
lence classes are called the Gleason parts for #. The importance of Gleason parts
is derived from the fact that the elements of # often behave like analytic functions
when restricted to a Gleason part (cf. Stout [11]).

Therefore, it is of interest to give conditions which assure the existence of non-
trivial Gleason parts. Most of the known results are concerned with the one-dimen-
sional case. In this paper, we present a natural condition to yield Gleason parts “as
big as possible”. For this purpose we view the given Banach algebra as a local
piece of a greater system; i.e., & is to be understood as a member of a projective
limit defining a uniform Fréchet algebra .#. Under the condition that # enjoy a
strengthened nuclearity property (and that its spectrum have a “good topology”—see
(1.1.1)), we shall be able to show that every connected component of the spectrum of
#, except for a nowhere dense set, is contained in a Gleason part.

As an example, consider a domain D C C® and the algebra «# = ¢(D) of all
holomorphic functions on D. For every compact subset K C D, we have a uniform
Banach algebra (Z(D))k which is the closure of ¢(D) in the uniform Banach algebra
¢ (K) of all continuous complex-valued functions on K. If K and L are compact

subsets of D such that K C Lo., then it is a well known fact that the restriction map
(0(D));, — (0(D)) i is a nuclear operator (¢f. Pietsch [8]). It is this property which
constitutes the strengthened nuclearity condition (see Section 4). The examploe given
above illustrates our Gleason parts theorem. Each connected component of K is

contained in a Gleason part for (0(D))i. (Here K denotes the interior of K.)

In Section 2, we extend the notion of Gleason parts to the class of uniform
Fréchet algebras. Let us suppose a uniform Fréchet algebra satisfies the modified
nuclearity condition and its spectrum has a “good topology?; if its spectrum is con-
nected, then we obtain the surprising fact that the whole spectrum is a single Gleason
part! (See Theorem (7.2).)

As a byproduct of the proof we get the result that the spectra of such algebras
are locally connected.

We introduce a concept of «-morphic maps which is modelled on the concept
of holomorphic maps with values in locally convex spaces. Using the strengthened
nuclearity condition and applying the maximum modulus principle obtained by the
Gleason parts theorem, we deduce the existence of «-morphically dependent inte-
gral formulas over the (Shilov) boundary. In complex analysis, formulas of this
type are known as Cauchy-Weil integral formulas. The proof uses some ideas of
L. Bungart [1].
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1. PRELIMINARIES

(1.1) A Fvéchet algebra is a commutative, locally convex, complete algebra
with unit over the complex field C, whose topology is generated by a countable num-
ber of seminorms. Now let . be a Fréchet algebra. By ¢ we denote the spec-
trum of A, the set of all continuous C-algebra homomorphisms ¢: « — C with
¢ # 0; as usual, it is endowed with the Gelfand topology (= weak-* topology
o(s', ). Let €(0 ) denote the algebra of all continuous functions on o
endowed with the compact-open topology. Then the standard Gelfand representation

I''! £/ - &(0cA), ar i,

given by setting 4(¢): = ¢(a) for a € A, ¢ € 0 A, is a continuous C-algebra homo-
morphism.

Call & a uniform Fréchet algebra if the Gelfand representation I' induces a
topological isomorphism of ~# onto a closed subalgebra I'(«#) C €(0 #). From
now on we consider only uniform Fréchet algebras. Then we may identify # and
I'( . ); we also identify the elements a € & of the algebra and their Gelfand trans-
forms 4 € I'(.«/ ). We often require the condition

(1.1.1)  the spectrum is locally compact, and all open subsets are hemicompact.

The latter property assures that for all open subsets U C o« the derived alge-
bras «/y (see below (1.2)) are uniform Fréchet algebras, too. For example, if 0 &
is locally compact and has a countable basis for its topology, then all open subsets
are hemicompact.

(1.2) Let X be a topological space. Then we call a countable exhaustion
-« C K, CKp4 C --- of X by compact subsets admissible if for every compact
subset K C X there exists an index n € IN such that K C K,,.

Now let X be the spectrum of a uniform Fréchet algebra . Then every ad-
missible exhaustion -« K, C K, ;] C --- of X describes the topology of « by means
of the corresponding seminorms | - H , n € IN. Here for a € + and a compact

set K C X, the seminorm || y HK is defined as usual by ”a”K 1= SuPg ek |a(e}].

Let M C X be an arbitrary subset. By #,; we denote the separated comple-
tion of the restriction algebra {f IM: f € « } under the topology of uniform con-
vergence on compact subsets of M. Obviously we have 0 = f/[, where M is the

«/ ~convex hull of M in 0« ; more precisely, M is the union of all sets
K=1{¢ e X:|te)| <|f|g for all fe .} with K< M compact.

If M is compact, then ) is even a uniform Banach algebra with norm || . ”M

Let &# be a uniform Banach algebra. By y&% we denote its Shilov boundary,
whereas the symbol “9” indicates the topological boundary.

2. GLEASON PARTS FOR UNIFORM FRECHET ALGEBRAS

Let # be a uniform Banach algebra. Consider the spectrum under the canonical
norm topology. Recall that for ¢, Y € 08, the following defines an equivalence
relation:

o~y >l -y <2;
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the corresponding equivalence classes are called the Gleason paris (or parts, for
short) for #. For the theory of Gleason parts, see the books of Stout [11] and
Gamelin [3].

The notion of parts has been introduced for the study of analytic structure in
spectra. The following example illustrates this as well as motivates the subsequent
definition and Theorem (5.1).

Example. Let V be an analytic variety in a domain D ¢ C". Consider the
algebra (V) of all holomorphic functions on V; ¢(V) becomes a uniform Fréchet
algebra when endowed with the topology of uniform convergence on compact sets.

Its spectrum ¢ @ (V) contains V, and equals V if D is holomorphically convex. Let
K be a compact subset of V. It is well known that any connected component of K is
contained in a part for the algebra (& (V))k (c¢f. [11], p. 162). Thus for algebras of
this type there always exist parts “as big as possible”. Further parts consist of the
strong boundary points. Little is known about the remaining boundary points of 9K.
For a special case, cf. Wilken [12]. If we choose a compact set L containing K,
then the “big parts” for (0(V))k increase to “big parts” for (¢(V))1,, because we
have

) sup  |t(¢) - )] >  sup  |g(¢) - g¥)]
]l <1 lellz <1

whenever ¢, ¢ € K and f, g € O(V).

This suggests the

Definition. Let £ be a uniform Fréchet algebra. Then ¢, ¢ € 0. are said
to belong to the same Gleason part for  if there exists a compact set K C 0 «f
with ¢, ¥ € K such that ¢ and ¢ belong to the same Gleason part for .

The transitivity of this relation is shown by applying (+) for «/ instead of 2 (V).

3. «-MORPHIC MAPPINGS

(3.1) The notion of «/-morphic maps is modelled on the notion of holomorphic
functions with values in locally convex spaces. We need this concept for Sections 5
and 8.

Let & be a locally convex vector space over C, and let « be a uniform
Fréchet algebra with spectrum X.

Definition. A mapping x: X — & is called -morphic (strongly -morphic,
respectively) if it satisfies the following conditions:

(i) for all ¥ € &', we have ¥ o X € &

(ii) A is continuous when ¢ is endowed with the weak topology o(&, &') (A is
continuous, respectively).

By o 4(X, ¢) (o3, (X, ¢), respectively) we denote the vector spaces of all -
morphic mappings (strongly « -morphic mappings, respectively). Notice that for
£ =C we have o (X, C)=x5, (X, C) = A

Recall that the Schwavizian €-product for locally convex spaces is defined by

oA e Ti=9(eh, &) (see e.g., [1]). Here 7 stands for the Mackey topology
7(< ', ¢ ); that is, the topology of uniform convergence on all absolutely convex
compact subsets of ¢ .
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(3.2) By means of the €-product we are able to describe the « -morphic map-
pings.

LEMMA. Let &, «, X be as above. Then there is an isomorphism
H 4(X, &)= A € & of vector spaces.

The lemma is proven by displaying the isomorphism and its inverse mapping.
An «/-morphic mapping A: X — & induces the linear operator T: & ; — ¢,
¥ = Ty:=W¥ o A, T clearly is injective. The image A(K) of a compact set K C X is
weakly compact in &, and hence the continuity of T follows from Krein’s theorem
(cf. [9]), which asserts that the absolutely convex hull of a weakly compact set re-
mains weakly compact.

The inverse mapping « € § — H 4 (X, &) is given by
T A= (pr—il(@oT).

Here i denotes the canonical isomorphism i: & — (&7%)', which exists according to
the theorem of Mackey-Arens. The desired properties of the inverse mapping follow
from the equality ¥(i-1(¢ o T)) = Ty(d).

4. UNIFORM FRECHET-NUCLEAR-* ALGEBRAS

(4.1) In this section, we introduce a notion more restrictive than ordinary
nuclearity. An analogous notion can be obtained for the larger class of Schwartz
spaces if one replaces “nuclear operator” by “compact operator”. We do not per-
form the latter—although we need it for Section 6 —because the following (except
(4.4)) may be carried over for the case of Schwartz spaces word by word. For the
theory of nuclear locally convex spaces, see Pietsch [8], and for the theory of
Schwartz spaces, see Horvith [6, p. 271 /7. ].

Recall that a locally convex space  is nuclear if for all Banach spaces &, all
continuous linear operators « — & are nuclear operators (see below). For uni-
form Fréchet algebras, this condition can be reformulated more conveniently:

LEMMA. Let & be a uniform Fréchet algebra with spectvum X. Then A is
a nuclear space if and only if for evevy compact subset K C X there exists a
(lavger) compact subset L C X such that the restviction map A1, — AK is a
nuclear operator.

We omit the simple proof.

(4.2) The condition in the above lemma often fails to be sufficiently strong, be-
cause one does not know to what extent L is larger than K. For certain local ques-
tions, one wishes to choose K C L C X such that L is only “a little bit larger” than
K. This leads to the

Definition. Let ¢ be a uniform Fréchet algebra whose spectrum X satisfies
(1.1.1). Then  is called a nuclear-* algebra (or (N*)-algebra, for short) if the
[o)
following holds: for all compact subsets K, L € X such that K C L, the restriction
map 1, — g is a nuclear operator.

(4.3) LEMMA. Let «,X be as above. Then the following statements ave
equivalent:

(i)  is a nuclear-* algebra;
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(ii) for all oZ-convex compact subsets K, L C X such that K C f,, the vestric-
lion map <Z1, — Ak is a nucleav opevator;

(iii) {5 is a nuclear-* algebra, for all open subsets U C X;
(iv) Z  is a nuclear algebra, for all open subsets U C X,

Proof, The implications (i) = (ii) and (iii) = (iv) are trivial. The implica-
tion (ii) = (iii) follows from the fact that i = (o y)k for all K c U.

Now we shall prove the implication (iv) = (i). Let K, L. € X be compact sub-
sets such that K C L. We have to show that the restriction map #; — Ak isa
nuclear operator. By hypothesis, 7 P 1s a nuclear algebra. By Lemma (4.1), there

exists a compact set K; with K C Kl - L such that the restriction map
A K, — g is a nuclear operator. Since nuclear. operators enjoy the two-sided

ideal property (cf. [8], p. 47), we conclude that the following composed restriction
mappings constitute a nuclear operator:

Thus £ is a nuclear-* algebra.

(4.4) For the reader’s convenience we insert the definition of nuclear operators
between locally convex spaces, as needed for Section 5. This definition is more gen-
eral than the one in Pietsch’s book (cf. [8], p. 44), but it is of course consistent with
the theory of nuclearity.

Definition, Let &, # be locally convex spaces and T: & — ¥ a continuous
linear operator. Then T is called a nuclear operator if there exist a bounded se-
quence (f)), e C &, an equicontinuous family (¢,), ey € €', and a sequence

A\ ),en C C satisfying EnelN I?\nl < =, such that T(e) = En€]N A, ¢,(e)f , for
all e € &.

(4.5) The following theorem provides examples of uniform Fréchet-nuclear-*
algebras. For the terminology, see the book of Gunning and Rossi [5].

THEOREM. Let (X, O0x) be a holomorphically convex (reduced) complex space,
having a countable basis fov its topology. Then the algebra € (X) of all holomovrphic
Sfunctions on X is a uniform Fréchet-nucleav-* algebra.

Proof. In the special case of X being an analytic variety in an open polycylinder
P c €", it is well known that ¢(P) is a uniform Fréchet-nuclear algebra and
O0(X) = ¢(P)/J is a semisimple Fréchet-nuclear algebra under the canonical quotient
topology (cf. [1], p. 322).

In the general case, X can be covered by a countable number of analytic varie-
ties X, of the above type. Hence, we can construct ¢(X) as a countable projective
limit bu11t by the Stein algebras ¢(X,), algebraically and topologically. Therefore,
0 (X) is a semisimple Fréchet-nuclear algebra. From a theorem of Grauert-
Remmert [4], it follows that ¢ (X) is complete under uniform convergence on com-
pact subsets of X. Now Forster’s theorem on the uniqueness of the topology of a
finite dimensional Stein algebra [2] and a sheaf-theoretic consideration yield the fact
that the above semisimple Fréchet-nuclear topology for ¢ (X) is equivalent to the
uniform topology.

In order to show that ¢(X) is a nuclear-* algebra, we wish to apply Lemma
(2.3) (iv). Let U C 0@ (X) be an open set. It has been assumed that (X, 0y) is
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holomorphically convex. Thus the canonical map g: X — 0@ (X) is surjective and,
since g is continuous, the set V:=g~1(U) is open in X. The closure of ¢(X) with
respect to the topology of uniform convergence on compact subsets of V equals the
algebra (0(X))y. By the above considerations, we know that & (V) also is a uniform
Fréchet-nuclear algebra. Now, (€(X))y is a closed subalgebra of ¢(V) and hence
uniform Fréchet-nuclear, too. This establishes our theorem.

The author conjectures that the above theorem remains true when the holomor-
phic convexity condition is dropped. Of course, the present proof does not work to
obtain that result.

5. CONTINUITY OF THE MAP 6

Let « be a uniform Fréchet algebra with spectrum X, U C X an open and
relatively compact set, and V C X also open such that U C V. Consider the canoni-
cal inclusion map 63: U — /. If &y isendowed with the strong topology, then

in general this map fails by far to be continuous, since U carries the weak-* topol-
ogy. It is the crucial step for our Gleason parts theorem (7.1) that this map be-
comes continuous under the assumption (N*).

LEMMA. Let A&, U CV CX be as above and assume that A is a nucleay-*
algebra. Then the canonical map 63: U— A ;/. is strongly «-movphic. If only

nuclearity is assumed, then at least Gg: U — A" vemains strongly 4 -movphic.

Pyroof. Note first that the condition (FN*) implies the reflexivities
Ay S vy, Ay > Ay. From the former isomorphism, one derives easily that

69 is an -morphic map.
Since U is a compact subset of V, the restriction map vy — £y is a nuclear
operator. Therefore, the canonical map
Aye dy —> Ayge Ay

factorizes through a subspace consisting of nuclear operators:

2y, oty) —> 2 Ay, o)

N\ /

JV((.}J%);-, Ay)

Hence, the operator Lg corresponding by Lemma (3.2) to 63 is nuclear, and by
(4.4), Lg can be written as a series

o
Lg(‘l’) = El A, ¢, (F) - a,, forall ¥e ofy.
n=

~

Here (a_) ey C 4y is a bounded sequence, (¢,) ¢y © /v = «y an equicontin-

uous family, and A, € C a sequence such that E::I lxnl < =, By the equicontinu-
ity of (¢,), there exist a compact set K C V and a constant C' > 0 such that’
lp (@] <C'[la]k, forall n e N and a € &+ .
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Again by Lemma (3.2), 63 e x4 (U, .}1'\,) can be represented as a series
U

5y(¢) = (a 222, ¢ (a) an(¢))

n=1

which is convergent for all ¢ € U, a € .

We first show that the members of this series belong to € (U, ) and then
that the series itself is strongly -morphic. Now recall that the strong topology

for .,div- is the topology of uniform convergence on o ( A, .,d'v)-bounded sets of
«Z+. In each topology of a dual pair, the same sets are bounded (c¢f. [9], p. 77).
The finest topology of the dual pair is 7(# v {,), and this topology coincides
with the original topology on <+, since v is a Fréchet space (¢f. [9], p. 77).
Thus the strong topology for 5, coincides with the topology of uniform conver-
gence on the sets A C «y of the form A= {a € & “a”Kn < C.}; here

-« CK, €K, ;] C--- denotes a fixed admissible exhaustion of V by compact sets
and (Cn)n€ NN an arbitrary sequence of nonnegative numbers.

The mappings U — «+/; and ¢ = (a + ¢,(a) - a,(¢)) are continuous for all
n € N. For, let (y;);¢y be a sequence in U converging to ¢ € U; then one obtains
the estimation

sup |¢q(a) (a,(¥;) - a, ()| < sup C'- |lafk - |a,(¥;) - a, ()]
a€A a €A

<cC'- Cno ) |an(”bi) - an("b)l ’

when n, € IN is chosen large enough such that K C Kno' The last term of the esti-
mation tends to zero as i — o,

Now endow % (U, «/y) with the compact-open topology. Then this is a complete
space, since .ﬂ'v is complete. Thus we are finished if we show that the above
series converges in the space & (U, «&v).

Let L C U be a compact set and A C &, a 7-bounded set. Then we have the
estimate

sup sup | 27 A én(2) a,(@)| < sup C'laflg 2 A, [lan]L
GELaEA n2>m a €A n>>m

<eCyCn 2

n_>_m

nl

with a constant C"> 0, which exists by the boundedness of the sequence (a,). Again
this tends to zero as m — <,

The second half of the lemma is proven by setting V = X in the above proof.
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6. LOCAL CONNECTIVITY OF THE SPECTRUM

The theorem of this section is needed for the Gleason parts theorem (7.1). In
addition, Theorem 6 provides a new and comparatively short proof for the well
known fact in complex analysis that complex analytic spaces are locally connected.
(For a standard proof, see [5], p. 103.)

One can easily give examples of uniform Fréchet algebras whose spectra are
not locally connected. Therefore, it seems a little surprising that the Schwartz-*
assumption—and not even nuclearity-* —implies the desired property.

THEOREM. If the spectrum X of a uniform Fréchet-Schwaviz-* algebra A is
locally compact, then X is locally connected.

Proof. Let ¢ge€ X be given. We argue indirectly: suppose there does not exist
a neighborhood basis of ¢, consisting of connected sets. Then there must exist a
neighborhood U of ¢y such that no neighborhood of ¢g contained in U can be con-
nected. Now choose a compact neighborhood L C U. Consider the family (L;);¢1 of
all L-clopen sets L; C L such that L N Ly =@ for i # j, and ¢o ¢ L; for all i € L

The index set I cannot be finite, since otherwise L - Uie 1 Lj would be a connected
neighborhood of ¢,.

Since X is required to be locally compact, there exists a compact neighborhood
[¢)
K of ¢5 with K C L.

The set J:= {j e : KN L; # @} is an infinite set, too. This can be shown as
follows. First we observe that ¢, is an element of the closure of Uie[ L;. For if
not, then its complement L= L - Uie 1 L; is a neighborhood of ¢, and therefore
nonconnected. L, is open with respect to L and hence there exist L-open disjoint
sets L('), L(')' such that Lg = Lb U LS . By calculating complements, one also finds

that Lg, Lj, and thus L, are closed. Thus we have obtained a contradiction to the
maximality of the family (L;);¢1, to which L or Ly must belong. Hence

$g € Uiel L;. Since each L, i € I, is compact and ¢ d L., we have the fact that
each neighborhood of ¢, meets infinitely many L;.

Now consider the characteristic functions, for j € J,

1, 1f¢€LJ
Xj(¢)::
0, if¢¢L;.

These functions belong to 7, by Shilov’s idempotent theorem (cf. [11]). Clearly
the family (X.).¢ y is bounded in 7 . Since K C L, the condition Schwartz-* im-
plies that the restriction map | — . is a compact operator. Therefore, there
exists a sequence (j,),en € J such that the corresponding sequence of restricted
characteristic functions (xjn |K)n€ N is convergent in /. This establishes a

contradiction to the fact that ||xjk - Xj, llc =1 for j #3,.
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7. BIG GLEASON PARTS FOR UNIFORM FRECHET-NUCLEAR-* ALGEBRAS

(7.1) THEOREM. Let & be a uniform Fréchet-nuclear-* algebra whose spec-
trum X satisfies (1.1.1), and let V C X be an open relatively compact subsel.
Then each connected component of V lies in a Gleason part for the Banach algebra
A 5F

Proof. By Lemma (5.1), we know that the mappings 63: U — «/; are continu-

ous for all open U C X satisfying UcCV. Therefore, the weak-* topology on U and

the strong topology induced by V on U coincide. Hence, for each ¢ € U, there
exists an open set U¢ C U which belongs to a part for .ﬂv.

Now consider finite chains U¢1 y 0, U¢n of such sets satisfying
n .
Up, M Ug,,, # @

n
Then Ui:l U¢i belongs to a single part for ﬂv, because the notion of Gleason

parts causes a partition of V into equivalence classes. On the other hand, it is
easily proven that the set of all points in V which can be reached by such chains
starting from a fixed point, is a (weak-*) closed set with respect to V. Thus for
each open connected component there exists a part for 3 containing it. But from
Theorem 6, we conclude that all connected components of V are open. This finishes
the proof.

(7.2) Using Definition 2, we reformulate Theorem (7.1). The proof is immediate
if one takes into consideration the local compactness of X.

THEOREM. Let & be a uniform Fréchet-nucleav-* algebra whose spectvum X
satisfies (1.1.1). Then the Gleason parts for < ave exactly the connected com-
ponents of X (which ave all open).

(7.3) COROLLARY (Maximum modulus pvinciple). Again let A be a uniform
Fréchet-nuclear-* algebva whose spectvum satisfies (1.1.1), and let U C X be an
open relatively compact and connected subset. Then for all functions f € o which
are nonconstant on U we have |f(¢)| < ]]f”U forall ¢ € U.

Proof. By Theorem (7.1), U is contained in a Gleason part for «/77. Now ap-
ply [11, 16.8].

(7.4) Remark. The question arises whether these big Gleason parts carry ana-
lytic structure. In a future paper [7], we shall show that this is the case under rather
weak conditions. This will be managed by an appropriate dimension theory for uni-
form Fréchet algebras and a theorem of Basener and Sibony [10].

8. GENERAL CAUCHY-WEIL INTEGRAL FORMULAS

(8.1) In complex analysis, there are various boundary-value integral formulas.
For example, one has Cauchy-Weil integral formulas for relatively compact subsets
U of any reduced complex space (X, ¢) (¢f. [1], Theorem 19.1). These formulas
consist of a family holomorphically varying on U, of complex representing measures

supported on the Shilov boundary y of @(U) (= closure of ¢ (U) under the seminorm
Il
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If one replaces 0 (U) by (0 (X))i7, then one can transfer the holomorphic theo-

rem to the «-morphic and nuclear-* setting. By the way, for Stein spaces these
two algebras coincide.

The question arises with what topology the space .#(y) of complex Radon
measure should be endowed in order to obtain an #-morphic map U — 4 (y) for
the theorem below. Then we find that both natural cases are possible: the map be-
low will be «-morphic with respect to the weak topology o(.#(y), (-#(y))') if and
only if it is < -morphic with respect to the strong topology B(-#(y), #(y)). This
follows from the fact that (.« (y), (#(y))') constitutes a dual pair and that all ad-
missible topologies for a dual pair produce the same dual space.

(8.2) THEOREM. Let 4 be a uniform Fréchet-nuclear-* algebra whose
spectrum X satisfies (1.1.1), and let U C X be an open, velatively compact subset.
Then the Shilov boundary v:=vy Ay is contained in 9U and theve exists an Ay~
movphic mapping p: U — (y) such that

fl¢) = 5 fW) dpg()  forall fe A5 and ¢ € U.
Y

Proof. By Corollary (7.3), we have for all f € « — and then even for all
f € «/F— the equation ”f“— = ”fHaU Therefore, the Shilov boundary y for 4

is contamed in 2U.

The canonical map «/F— @(y) is injective and has closed range. By the theo-
rem of Hahn and Banach, we conclude that the adjoint map €(y)' = A (y) — « 'ﬁ is

surjective. In the sequel, let these dual spaces be endowed with their strong topol-
ogies. &y is a nuclear space since . is assumed to be nuclear-*. Therefore,
we can apply Bungart’s theorem ([1], Theorem 5.3) and obtain the surjectivity of the
map

Ay e€R) - Aye .ﬂ%}-,
Hence by Lemma (3.2) the map
¥ H g (U, M) = Ky (U, A7)

is surjective.

Now consider the canonical inclusion map 6: = Gg U— A lﬁ We must prove
the continuity of & with respect to the topology o( A= T oA ) of o+ G- The canoni-
cal map dU — .ﬂU is continuous under the strong topologles By a well known
theorem ([9], p. 48), it is weakly continuous; i.e., continuous under the topologies
o(Ay, Ay and o(d'ﬁ, .ﬂ%). Since Fréchet-nuclear spaces are reflexive [8],
we have o( Ay, A =0( Ly, Ay). Hence 6§ factorizes through the continuous
maps

U = (oY, o(wly, o) = (A7, oAy, A7)

and thus is continuous, too.

In order to show that 0 is an -morphic map, we consider the following
diagram:
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U 0 > AL
\d' Ml\ll
u ~

\ic

For every V¥ € d%, we have ¥ =¥ o7 € d{}; since 5 is reflexive we obtain
@c)ﬁeeﬂu.

Thus 6 liesin o _, (U, d'-ﬁ). By the surjectivity of &, we can lift 6 to an
U

«Z ;;-morphic map p € JfﬂU(U, Al(y)). Clearly pg:= 1 (¢) is a complex repre-

senting measure for ¢ € U with respect to 77, and thus we gain the desired inte-

gral formula.
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