ON A PROPERTY OF INDICATORS OF
SMOOTH CONVEX BODIES

C. A. Berenstein and M. A. Dostal

1. INTRODUCTION

It is well known that among all convex bodies in IR™ the sphere enjoys several
exceptional geometric properties (see [6]). Therefore, it may seem surprising that
from the viewpoint of harmonic analysis the sphere also possesses certain unsatis-
factory properties that are not shared by all convex bodies. Thus, for instance, it
was shown recently by Ch. Fefferman [12] that the sphere is not a good multiplier in
the LP-theory of multiple Fourier series. Another problem in harmonic analysis
where the sphere exhibits an unexpected behavior is the question of existence of
solutions to convolution equations (see [3], [4], and Problem (B) below). To formu-
late this problem properly, we need some preliminaries.

We shall use the standard notation of the theory of distributions [17], [18]. In
particular, &' is the convolution algebra of all distributions with compact support in
R™. If & € &', we denote by & the Fourier transform of &; that is,

3(¢) =t <X’§> ), where

xeR", ¢=t+inec”, (x¢)=2 x¢.
j=1

By s"-1 we shall denote the unit sphere in R™, that is, the boundary of the unit ball
B" in R™. If K is a subset of R"™, we denote by ch K the convex hull of K. By an
extveme point of K we shall mean an extreme point of ch K. If A and B are sub-
sets of R™, the sets A + B are definedas {z e R™:z=x+y, x € A, y € B}, with
the convention A + @ = . It is easy to see that for each pair of distributions

&, ¥ € &', the singular support of the convolution & * ¥ satisfies the relation

ch sing supp (& *¥) C ch sing supp ® + ch sing supp ¥;
however, the inclusion cannot, in general, be replaced by equality (see [2], [3], [4],
[18]). It is therefore natural to say that a distribution ® € &' propagates singulayr-
ities provided for every ¥ € &' it satisfies the condition

(1) ch sing supp (® *¥) = ch sing supp & + ch sing supp ¥ .

Every distribution with this property is also inveriible, that is, it satisfies the
weaker condition (see [18])

(2) ch sing supp ¥ C ch sing supp (® *¥) - ch sing supp® (V¥ € &).
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However, the converse is not true, since there exist invertible distributions that do
not propagate singularities. The following example shows that the difference be-
tween these two concepts is very subtle. Indeed, let T be a compact polyhedron in
R", and let xp(x) be its characteristic function (= the indicator of T). Then X
propagates singularities [3]. However, when T = B (n > 2), the indicator X gno

though still invertible, does not propagate singularities [4]. Similar statements are
valid when T is the boundary of a polyhedron and when T = St-1, respectively.
This curious situation led us to conjecture that from the viewpoint of propagation of
singularities, the sphere and the ball may not be exceptional at all; that is, fhe indi-
cator of a smooth convex body (or surface) does not propagate singulavities. The
objective of the present note is to establish a more general statement from which
this conjecture will follow (see the theorem in Section 3). Moreover, it will turn out
that the property of propagating singularities does not depend on convexity (see also
G. Bengel [1]).

It is not without interest to reformulate the problem in terms of classical
analysis. This can be done in two different ways:

(A) A function g will be called smooth at the point p € R™ provided there exist
a neighborhood U of p and a function g* € C*(U) such that g = g* almost every-
where in U. Now the problem can be formulated as follows.

Let T be a convex body in IR™, and let f ¢ LI(IR™) be a function with compact
support. Set

(3) F(z) = 5‘ f(z - y)dy.
T

Let zg be an exireme point of T + supp f. Then, by the Titchmarsh-Lions theorem,
zg € supp F, and zgp has a unique decomposition zg = xg + yg, with xg € supp f and
Yo € T. Is it then true that for all f and z, as above, the smoothness of F at zg
implies that of f at x,?

The second formulation, essentially equivalent, of our problem reads as follows:

(B) Let € be an open convex set in IR™, and let T be as above. Let u be a
function (or distribution) with compact support contained in ' =  + T, and consider
the integral equation

(4) S f(z - y)dy = u(z).
T

Under what conditions on T is this equation solvable for all € and u? [For an
exact and more general formulation of (B) and its relationship to (A), the reader is
referred to [3]. As mentioned below, these problems can be considered for a con-
volution more general than that in (3), (4).]

Finally, it should be mentioned that as an immediate corollary of the asymptotic
formulas (15) and (19) derived in the next section one obtains the following interest-
ing fact about indicators of smooth convex bodies: While RK(C) is an entire function
of asymptotic (or completely regular) growth in the sense of A. Pfluger and B. Ja.
Levin (see [13], [19], [23]), Xk(§) is not a function of asymptotic growth in the sense
of [7]. (Indeed, growth of the latter type is a sufficient condition for propagation of
singularities (see [7]), which, as we know, does not hold for Xy (£).) In a more geo-
metric language, this could also be expressed as follows: the entire function Xy (§)
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grows regularly along (almost all) rays ¢ =r-z (z € C", z fixed, r — +), but does
not grow regularly when € tends to infinity while remaining on a variety of logarith-
mic shape. Since the exact definitions are too technical to be stated here, we refer
the reader to [7], [13]. — An analogous statement holds for indicators of smooth,
compact, convex surfaces.

Remark. The solution of our conjecture on smooth convex bodies was announced
in our note [5]. Recently, Bengel [1] showed by a different method that the character-
istic function of an arbitrary (that is, not necessarily convex) C®-body T does not
propagate singularities. The theorem established in Section 3 below represents a
further generalization of this result.

2. AN ASYMPTOTIC FORMULA

The proof of the theorem in the next section is based on the knowledge of the
asymptotic behavior of the function RS(C)l for complex €, as ]i;’l — 400, While the
corresponding problem for real values { = £ was studied by several authors [11],
[14], [15], [16], [20], [21], [24], for complex ¢ the problem was treated only for
special surfaces S. Thus, for instance, when S is a sphere, the answer is given by
the well-known asymptotic formulas for the Bessel functions J,,/,(z) (z € cl) (see
[4], [25]). In the present section we shall consider the case of a general closed con-
vex C®-surface S with positive Gaussian curvature. Moreover, the same result can

n ;_ 1 :l + 3 (see the remark at

be obtained for surfaces of class C(k), where k =[
the end of this section).

In deriving the asymptotic formula for |Xg(¢)| for ¢ € € (|¢| — +x), we
shall combine a multi-dimensional version of the method of stationary phase (see
M. V. Fedoryuk [11], Theorem 2.2) with the approach employed by W. Littman [21],
[22] in his study of the asymptotic behavior of the Fourier integral

ae) = | a(x) et {E) do(x),
S

where £ is a real vector and do(x) denotes the surface element. However, it should
be mentioned that the same result can also be obtained by other methods (see for
example [14], [15]). Littman’s approach has the advantage of also being applicable
to the study of a convex neighborhood of an extreme point p on a nonconvex surface
S, at which some of the principal curvatures may vanish (see [20, p. 769]). We shall
therefore limit ourselves to closed convex surfaces with positive Gaussian curva-
ture. Furthermore, without loss of generality, we may assume that the origin lies in
the interior of the surface S, in other words, that if

(5) hg(8) = max <x, 6> (6 e RY
X ES

denotes the supporting function of S, then hg(6) > 0 for all 6 # 0. Let T be the
convex body bounded by S.

Fix w0 € S7-1 and consider ¢ = rw® +1in (r > 0). Let x° be the point defined
by the equation x0 = x(w9), where we set

(6) x(w) = grad hg(w);
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x0 is then the only point where the tangent plane to S with the exterior normal w9
touches the surface S (see [6], Section 26). The surface S can be covered by
finitely many open pieces SJ (0 <j < £), so that for each j there is an integer
k =kj (1 <k < n) such that the surface SJ has the parametric representation
X = g1(XX), where

def

ik = (xl’ .'.’Xk—l’xk‘!'].’ "',Xn)G Xk
and Xj is an open subset in IR"~! . We may assume that x° € 80 and ko =n. Let
to, Ly, **+, Ly bea partition of unity on S, subordinate to the covering {Si},
such that ¢ty = 1 in a neighborhood U of x0, supp Lo C SO. Rotating the axes, if
necessary, we may assume that w0 = (0, ---, 0, 1). Set

S(z) = {x e S:x,<z), S,=08@), oyx0n)= Lj(x)e<x’n> :

Then
£
(7) is(c)=10+21j=10+J (€ =rw® +in),
j=1
where
(8) 10 - | et rme®D o mdoty (01 <0,
S
Furthermore, set
{
(9) A=2 a5, alzn) = g A(x; 1) do (%) .
S(z)

By Fubini’s theorem,

zZ
a(z; n) = 5 dw S AR, w; 1) do (37),
-00 SW

(10)
5© = "

-0

(e"irz S AR, z; n)do()?n))dz,
SZ

which yields the formula

(11) J(¢) = S_oo e-irz a—agzz—”—) dz .
Set .
(12) Ty = ch (S\ U)

and ¢ = hg(-w%), d= hTO(wO) (see (5), (12)). Then {x € S: x> d} c s°. Hence,

for every n, supp, AC [c, d] (suppg (s, t) denotes the support of f in the variable
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s for fixed t); thus we see that supp, (—g—%) C [e, d] for all 5. Moreover, we claim

2
that %3 € C”[c, d] (as a function of z). Indeed, if we set a(z; 1) = Ej:l aj(z; 1),
where
(13) aj(z; n) = S aj(x; n)do(x) (1<j<0),

S(z)

then supp, @j C sk, where k = k;j, as above. Hence, by (9), (10), and (13),

daj B n on
—5-Z—(z, n) = Ss a;(X7, z; 1) do (X7) .

Z

Expressing the last (n - g)-dimensional surface integral in the local parameter
a-
J
oz
parts in (11), we get the formula

Xk = gk(?{k), we find that is a C”-function. Hence, by repeated integration by

o . v+1
(14) J(w9, r, n) = (ir)”V S e'lrz(aa—z) a(z; ) dz.

-0

Taking into account the special form of a(z; n), we can easily obtain from (14) the
estimate

C
(15) |3(w0, r, 7)] < ;5(1 + |0 )V exp hp (n),

where the constant ¢, also depends on w9,

Moreover, it is easy to see that if we take a small neighborhood Ug of x
(Ug C U), the estimate (15) will hold with a larger c, for an entire cone Gy of
points w consisting of all w for which x = x(w) € Up (see (6)). If Uy is sufficiently
small, the estimate (15) will hold with some Ty depending only on Uy and not on
w0. Since S is compact, we finally obtain a finite collection of estimates (15) such
that one of them applies to each point of the surface S.

Next we have to consider the integral Iy (see (7), (8)), which represents the
main contribution to is. Let us write t = %7, t0 = (x?, ey Xg_l), g=g,, and
choose 6 > 0 so that

supp tot, glt)) € A5 = {te R 1: [t-t9) <o}

Then

(16) Io(0) = S exp (-irg(t) 1(t; 1) dt,
Ag

where

£(t; 1) = to(t, gt) exp({t, in) +gt)ny)[1+ |grad gt) |2]'/2.

Let Hg(t) be the Hessian matrix of g at t; that is, let
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2
Hy(t) = ( o a(tt~)) "

104 /4 ;
Since grad g(t®) = 0 and |det Hg(t?)| = Ks(x?) > 0, we see that t0 is a nondegenerate
critical point of g. Hence to the integral (16) we can apply the following multi-
dimensional version of the stationary-phase method as it appears in the paper of
Fedoryuk [11, Theorem 2.2] {this theorem is obtained from the one-dimensional
method of stationary phase [10] combined with a lemma of M. Morse [22]; see [11]}.

THEOREM. Let Q be a bounded domain in R™ , and let f € Co (). Further-
move, let g be a real-valued C™-function in Q whose only critical point t0 in Q is
nondegenevate. Then theve exists a positive integer N such that the integral

I(r) = S £(t) exp (irg(t)) dt
Q

can be wryitten in the form
m/Z - 2 s
(17) I(r) = (31;71) |det Hg(to)] L/ f(tO)exp(irtO +% og(to)) + R(r),

where o4(t) denotes the signature of He(t) and the vemainder R(r) satisfies the
estimale

(18) |R(r)]| < clg) I£] r-m/2 -1 (c(g) = const).
cMN)gq)

In our case, we set m =n - 1, replace g by -g (hence O’g(to) =1 - n), and take
into account the role of n. After a simple calculation we obtain from (17) and (18)
the equation

ﬁ)(n—l)/z
T

X [1+%1—(1+|n[)N:|,

where C; is bounded. This relation, together with estimate (15), describes the
asymptotic behavior of |is(§)| for £ € C" (ICI large).

Remark. Let ¢ € C™(S) be such that ¢(x°) # 0. Then the proof above (that is,
the proof for ¢ = 1) carries over to this more general case. Moreover, it is not
necessary to limit ourselves to measures with C*-densities carried by C*-sur-
faces. A careful analysis (see [15], [20], for example) would show that it suffices to
take S of class C(¥), where v =[(n+ 1)/2]+ 3, and ¢ € C{¥-1)XS). However, whether
similar results hold for smaller values of v (for example, v = 1, 2) seems to be an
open question. Finally, the assumption about the Gaussian curvature is not essential
either. If at least one of the principal curvatures at x° does not vanish, an estimate
analogous to (15) and (19) still holds. (For real values ¢ = £, this is shown in [20].)
Since the proofs of these statements are similar to the proof of (15) and (19), but
technically more complicated, they will be omitted.

Io¢) = ( (Ks(xo))'”?‘exp(-if (1-n)-i{, §>)

(19)
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3. THE THEOREM

Now we are able to state and prove the theorem mentioned in Section 1:

THEOREM. Let S be a closed surface in R®, of class CV) where
v =[(n+1)/2]+ 3. Let ¢ be a distribution on S for which theve exists an extreme
point x0 on S such that Kq(x0) # 0, ¢(x0) # 0, and ¢ is of class c(v-1) in some
neighborvhood U of x0. Then ¢ does not propagate singularities. A similar state-
ment holds for distvibutions supported by the compact set T with boundary 9T = S.

The proof of this theorem is based on Hormander’s description (see [18]) of the
set ch sing supp & (® € &'), which we shall recall briefly.

Given ® € &' and £ € R™, consider the plurisubharmonic function vg(z; £)
(z € C) defined by the formula

] _ 10g|&>(§+z10g|£|)|
(20) V<I>(Z’ £) = Jog l'g'l .

Every sequence {éj} (|£j| — +) contains a subsequence {gjk} such that

limy _, o V(25 éjk) = v(z) is a plurisubharmonic function (see [18, p. 293]). It turns
out that the function
sup{v(z): Sz =ty}

t

(21) h(y) = lim

t >+

1s the supporting function of some compact convex set R, [18, p. 288]. Let #(®)
denote the family of all functions h,, resulting from the distribution & in this man-
ner. The family & (®) completely describes the set ch sing supp &, for it can be
shown (see [18, p. 293]) that the supporting function H(y) of the set ch sing supp &
is given by H(y) = sup {h(y): h € ##(®)}. Using a construction of L. Ehrenpreis [9],
Hormander proves the following remarkable fact (see [18, Theorem 5.3]):

(H) Let ® € &' and hy € #(®). Then therve exists ¥ € &' with
sing supp f = {0} such that the supporting function of the set ch sing supp (® *¥) is
the function h,,.

Proof of the theorvem. First we shall establish the theorem in the special case
when S is a convex C*-surface, x0 € S, K¢x% > 0, and w? is the exterior normal
vector to the surface S at x0. Then, as was shown in Section 2, there exist sets
Ty and Gg, with o € Gy < S2-!, such that if  is a nonzero vector in IR™ and

w € G, then hTO(n) < <x(w), n> and inequality (15) holds.
Set v =[(n+1)/2], z=w+ity (t> 0,y € Gg), and

0
(22) wlw, 1) = roY+wlogr

(weR™, r>0).
|rw? +w log r[

If r is sufficiently large, then w(w, r) € Gy. Hence, combining estimate (15) with
the asymptotic formula (19), we obtain the estimate

(23) log | Xg(rw® +w log r + ity log r)|

— = t{x(), y) +15 2 +o(1),
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where w = w(w, r) is given by (22). However, as r — +», x(w) — x(w?) = x%. Thus
the limit of the quotient in (23) is £t {x0, y ) +[(1 - n)/2]. Hence, by (20) and (21),
each function h, obtained from Xg by means of some sequence £, =r,w® (r, / +=)
is such that

(24) ho(y) = {x0,y) (y€ Gp).

By (H), there isa ¥ € &' such that ch sing supp(® *¥) = h,. Hence, if (1) were
satisfied for this ¥ and & = x g, then by (24) it would also imply

hs(y) = {(x0,y) (v € Go);

in other words, the smooth surface S would have a “corner” at the point x0, which
is impossible.

To prove the theorem in full generality, it suffices to show how to reduce the
case of a nonconvex surface to the convex case, and then apply the Remark at the end
of Section 2.

Let S be a closed nonconvex surface of class C(2), and let x¥ be an extreme
point with Kg(x%) # 0. Then x0 € S and Kg(x) > 0 in some neighborhood V of x0
on S. It is not difficult to show (for details, see [8]) that some neighborhood W of
x0 in S (W C V) actually lies on the convex surface S* = 9(ch S). Hence the
asymptotic formula (19) holds for S*. Because of its local character and in view of
the inclusion x0 € W C S N S*, formula (19) also holds for S. On the other hand,
estimate (15) cannot be immediately generalized to S*, because even when S is a
C”-surface, its convex hull may not be of class C(2) (see [8]). However, since we
never used the convexity of the set S \ U in the derivation of inequality (15), we still
may apply (15). In view of the Remark of Section 2, this concludes the proof of the
first part of the theorem. The corresponding statement for convex bodies can be ob-
tained either directly by the same method as above, or by reduction to the previous
case by means of the divergence theorem (see [15], [16]).

Remarks. (i) As we noted above, it is not clear whether the theorem holds for
surfaces S that are not smooth enough, for example, for surfaces of class C(V)
(v £n/2). It seems that while the result may still hold for v > 2, it could be false
for some C(l)-surface S that is not of class C(2), Indeed, the geometric structure
of C(l)-surfaces is more complicated; thus, for instance, it is not difficult to con-
struct a closed convex C(l)-surface S that is nowhere strictly convex, in other
words, such that each open subset of S contains a straight-line segment (see [8]).

(ii) Consider again the indicator X g of a closed convex C*-surface S with
positive Gaussian curvature. We know that the function x g does not propagate
singularities. However, it is not difficult to verify that x g is invertible, that is,
satisfies (2). The proof proceeds along the same lines as the proof of the same
statement for the sphere (see [4]). One has only to use the asymptotic formulas for

|Xxs(&)| (£ € R®, |&] — =), as given in [14], [16], [18].
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