A MODEL FOR QUASINILPOTENT OPERATORS
Ciprian Foiag and Carl Pearcy

Whether every quasinilpotent operator on a separable, infinite-dimensional,
complex Hilbert space has a nontrivial invariant (hyperinvariant) subspace is and
has long been a stubborn and intractable open question. The purpose of this note is
to establish the existence of a model (up to similarity) for such operators (Theorem
1), and to discuss some of the consequences of the existence of this model. It is be-
lieved that these results are pertinent to the invariant-subspace problem mentioned
above.

We begin by recalling some notation and terminology. Let | and 4, be
separable, infinite-dimensional, complex Hilbert spaces. If X: oA} — A, is a
bounded linear transformation such that kernel X = kernel X* = {O}, then X is
called a quasiaffinity. If A; and A, are bounded operators on &) and A 2, re-
spectively, and there exists a quasiaffinity X: &} — 2 such that XA) = A2 X, we
say that A| is a quasiaffine transform of A,, and we write A} < A,. If A; and
A, are quasiaffine transforms of each other, that is, if there exist quasiaffinities
X: #1— A2 and Y: A = A1 suchthat XA; = AzX and A;Y =YA3, then A;
and A, are said to be quasisimilar. It is known that if A} and A, are quasisimilar
operators, and A; has a nontrivial hyperinvariant subspace, then so does A, (see
[2], [4], [7]). In the remainder of the paper, & will always be a separable, infinite-
dimensional, complex Hilbert space, and £ () will denote the algebra of all
bounded linear operators on & . Recall that an operator A is a part of an operator
B if A is the restriction of B to some invariant subspace of B. The following
structure theorem seems interesting and has some noteworthy consequences.

THEOREM 1. Let T be a quasinilpotent opevator in £(H). Then there exists
a compact (quasinilpotent) weighted backward shift K in () such that T is
similar to a part of the opevator KA K® - DK@ .-+ acting on the divect sum of
countably many copies of .

Proof. We treat only the case that T is not nilpotent. The case in which T is
nilpotent follows by an obvious modification of our argument below. Consider the
(well-defined) sequences

(1) o ”Tn” 1/2 (n = 0! 17 2’ "'),

n

(2) Wy = an/an-—l (n=1,2,3, ),

n
and observe that they satisfy the conditions
(3) 0<a ,,<a o,

(4) al/n — o,
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(5) 27 02 < 4o,
n=0

(6) 0 <o, < [Tf/2,

(7) wl.wz.....wnzan

We define o¢,, to be the direct sum of countably many copies of & indexed by the
positive integers, and we define the weighted backward shift W on &, by the equa-
tion

(8) W(hl, hz, *cey hn, “') = (wlhz, Wy h3, e, (x)nhn.”_, ---).

It follows from (6) that W is bounded, and (3), (4), and (7) imply that W is quasinil-
potent. Consider next the operator X: &# — J,, defined by the equation

(9) Xh = (h, Th/e, , T?h/a,, -+, T® Ih/a, |, =-).

Clearly, X is bounded below by 1 and thus X is one-to-one and has closed range.
Furthermore, the inequality

|xnf? = 22 [T0/e, > < [nf* 22 [T
n=0 n=0

together with (5) shows that X is bounded. An elementary calculation now shows
that XT = WX. If the sequence {w,} were convergent, then, because of (4) and (7),
its limit would have to be zero, and W would be (unitarily equivalent to) an operator
of the form KA K®@ -+ @K@ --- where K is a compact weighted backward shift.
But it is easy to construct examples of quasinilpotent operators T such that the se-
quence {wn(T)} does not converge (for example, let T be a weighted backward
shift on (£,) with weight sequence 1, 1/2, 1, 1/4, 1, 1/8, ---). Thus we want to “re-
place” the operator W with a weighted backward shift whose weight sequence tends
to zero, and to this end we make some definitions. If n is a positive integer, then
there exist unique nonnegative integers k, and m, such that

k k
(10) n=2%"+tm;, and 1<m <27,

n
Clearly, the sequence {k,} is increasing and converges to +«. We employ the se-
quence {k,} to define the sequence

k
(11) k= (@222 (n=1,2, ..),
2 n
where {a,} is the sequence defined in (1). From (3) we know that a,, < aZ for all
n and thus that

k+1 k
;léf_]_ S a;{(z (k = 1’ 2’ "')-

(12) o
This, together with the fact that the sequence {kn} is increasing, implies that the
sequence {Kn} is decreasing, and it follows from (4) that k , — 0. The last se-
quence we shall need is defined by induction. We set ¢ ; = 1 and in general
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wn
(13) Ope] =0p,— (n=1,2, ---).
Kn

Clearly, all o, are positive. To show that the sequence {on} is bounded, we note
that by virtue of (7), (13), and the fact that the sequence {«x,} is decreasing,
wl . wz *» sos a

— '(.On<
(14) 0<Un+I—K1.K2....-Kn—

o]

K

=Re)

We show that the sequence {on} is bounded above by 1 by proving that
(15) a, < k7 (n=1,2 ).
Clearly, (15) is equivalent to the inequality
(16) arll/n _<_ Ka (n= 1, 2, ),
k
which we verify as follows. Write n=2 ™+ m_, as in (10). Then, by (3),

1/ 1/n _ 1/ 1/
@y " < (azknamn) "= (a kn) n(amn) n

2
kn
412 ° /n
kn ,kn my/n an
<@ )™ = 5 (o).

Since the number inside the brackets is dominated by 1 by virtue of (3) or (12), a
k
larger number may be obtained by replacement of the exponent 2 ™/n by a smaller
k
exponent. By (10), 1/2 < 2 ™/n, and thus

k
1/2' ™0 1/2
a
1/n an
%S e @)=

which establishes (16) and completes the proof that the sequence {o,} is bounded.
We now define the operators Y and J in Z(s#_) as follows:

Y(hl, hz: T hns ”') = (Ulhls O'th, Ty Onhna )’
(17)
J(hy, hp, =, hy, o) = (k1hz, k2h3, o, Kphpey, 7).

Clearly, Y is a positive quasiaffinity and J is a weighted backward shift of infinite
multiplicity. Moreover, by virtue of (13), YW = JY, and thus

(18) YXT = YWX = JYX.

Note also that the product YX: &# — o, is bounded below by 1 (since o, = 1), and
hence has closed range. Choose now an orthonormal basis {en}:f:l for &, and let
K denote the operator in Z(s¢) satisfying the equations Ke; = 0 and Kepnt+] = Kn€n
for n > 1. Since the weight sequence 1 k,5 converges to 0, K is a compact
weighted backward shift, and thus is necessarily quasinilpotent. Furthermore, it is
obvious that the operator J is unitarily equivalent to the ampliation
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acting on ¢ ., , and thus there exists a unitary operator U in Z(#.) satisfying the
equation UJ = KU. Hence it follows from (18) that

(19) UYXT = UJYX = KUYX.

Moreover it is clear that the operator UYX: &# — & is bounded below by 1 and
thus has closed range # C #,,. Let S: # — # be the invertible operator_defined
by the equation Sh = UYXh (h € &), and note that it follows from (19) that K& C %.

Thus (19) can be rewritten as ST = (K ]%)S, or, equivalently, as
(20) STS™! = K| .

Thus T is similar to a part of the operator Ih{', and the proof is complete.
A first consequence of Theorem 1 is the following.

THEOREM 2. Let T be a quasinilpotent opervator in # (), and let K be the

operator constructed in Theovem 1 and satisfying (20). Then K is quasisimilar to a
compact opervator L in Z(H); that is, theve exist quasiaffinities X and Y in
(o) satisfying the equations

(21) KX = XL, YK = LY.

Proof. By construction, K=K@® - ®K® ---, where K is a quasinilpotent
compact operator in Z(s¢). It follows from a theorem of G.-C. Rota [3, p. 77] that
for every positive integer n, there exists an invertible operator Q, on ‘¢ such

that the compact operator L, = QnK Q{ll satisfies the inequality ”Ln” <'1/n. We
define the operators L, X, and Y on & by the equations

L=LIDLD DLn@®-,
X =y,Q1'®7,Q:'® - ®r,Q, D -,
Y = 51Q1@52Q2@'”@6nQn®“"

where {yn} and {Gn} are sequences of positive numbers chosen so that

sup,, | v,Q;!|| and sup,[6,Q,| are bounded. It is clear that L is compact and
that X and Y are quasiaffinities. Moreover, since 8,Q,K =6,L,Qn and
ynQalL,=v,KQ;! for all n, an elementary computation shows that (21) is valid,
and the proof is complete.

The following consequence of Theorem 2 seems remarkable.

THEOREM 3. Let T be a nonzero quasinilpotent opevator in ¥ (). Then
theve exist nonzevo compact opevators K, and K, such that T is a quasiaffine
transform of Ko and such that X is a quasiaffine tvansform of T, that is,

K, <T <K,.

Proof. Tt suffices to show that T is the quasiaffine transform of a compact
operator K,, since the same argument applied to T* shows that T* is the quasi-
affine transform of a compact operator K*, and thus that K, is the quasiaffine
transform of T. Let K and & be as in Theorem 1, so that & is an invariant
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subspace of K and T is similar to K | #. 1t follows easily that it suffices to show

that K | & is the quasiaffine transform of a compact operator. The argument for
that goes as follows.

By virtue of Theorem 2, we know that there exist a compact operator L and a
quasiaffinity Y in £(s¢,) suchthat YK = LY. Let £; denote the closure of the
linear manifold Y&, and note that L¥; € &;. Let L; denote the compact operator
L|%;,andlet Y|: # — £, denote the quasiaffinity defined by Y;r = Yr for every
r in #. Then Y,(K|#) = LY, and the theorem is proved.

Theorems 2 and 3 give rise to many interesting questions. For example: is
every quasinilpotent operator quasisimilar to a compact operator? The next theo-
rem indicates that the answer might be affirmative.

THEOREM 4. Every nilpotent opevator in ¥(H) is quasisimilar to a compact
operator.

Proof. An operator J in Z(z¢) is called a Jordan opervator [1] if there exists
a decomposition of &# as an orthogonal direct sum * = E::I ® #'y,,» Where for
each n, the space Jfkn is a finite-dimensional reducing subspace of J of dimension
k,and J,=J ] e%’kn has a matrix relative to an orthonormal basis for &y that is

a single Jordan block. (We assume that the operator 0 on a one-dimensional space
is a single Jordan block.) According to [1, Theorem 1], every nilpotent operator T
in Z () is quasisimilar to a Jordan operator J in (). And, as we indicated

above, J = E:zl @Jn, where each J, acts on a finite-dimensional space and is
either the operator 0 on a one-dimensional space or has a matrix consisting of a
single Jordan block. In either case, it is trivial to show that J, is similar to the
operator (1/n)J,, and it follows easily (as in the proof of Theorem 2) that J, and

[2e]
thus T, is quasisimilar to the compact operator EnZI ® (1/n)J,. Hence the proof
is complete.

The following proposition shows, however, that the answer to the question posed
before Theorem 4 is negative.

THEOREM 5. If T is an opevator that is quasisimilar to a nonzevo compact
operator, then T commutes with a nonzevo compact opevatov. Furthermore, there
exists a quasinilpotent opevatoy in X(#) that does not commute with any nonzero
compact operator, and hence is not quasisimilay to any compact operator.

Proof. Suppose that TX = XK and YT = KY, where X and Y are quasiaffinities
and K is a nonzero compact operator. Then TXKY = XK2Y = XKYT; thus T com-
mutes with the nonzero compact operator XKY. To prove the second statement of
the propos1t10n let {e }n | be an orthonormal basis for ¢, and let T be the
weighted backward shift on o# defined by Te; =0 and Tep+] = Tnen (n=1, 2, .-.),
where the weight sequence {7,}n=] is defmed as follows. If n = 1 (mod 2), set

=1/2. If n= 2 (mod 4), set 7, = 1/2%. In general, if n = 2K (mod 2K*1), set

Tpn=1/ 24 . An easy computation shows that T is quasinilpotent, and one knows
from [6] that if T' is a nonzero operator commuting with T, then T' is a formal
power series in T. Since, by inspection, the matrix M = (,UL1 :) of T' relative to the
orthonormal basis {e,} has the property that every d1agonaf {ui itk } containing
at least one nonzero entry contains infinitely many equal nonzero entries, T' cannot
be compact. Thus the proof is complete.
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Nevertheless, if T is a quasinilpotent operator and if the compact operators K,
and K associated with T appearing in Theorem 3 are sufficiently well-behaved, it
is possible to conclude that T has a nontrivial hyperinvariant subspace.

THEOREM 6. Lelt T be a nonzevo quasinilpotent opevator in ¥ (K, and sup-
pose that K| and K, ave (nonzero) compact operators such that K} < T <K,.
Furthermove, suppose that {Z, }o-| is a bounded sequence of nonzevo opevalors
satisfying the equation K| Z, =711 K, for all n. Then T has a nontrivial hyper-
invarviant subspace. '

Pyroof. We are given quasiaffinities X and Y such that TX = XK; and
YT =K, Y. If K; has a nontrivial kernel, then so does T, and the kernel of T is a
nontrivial hyperinvariant subspace for T. Thus we may suppose that K; has trivial
kernel. It follows that the sequence {S,} = {XK,Z,Y} is a bounded sequence of
nonzero compact operators satisfying the relation TS, =S,+1 T. The result now
follows from [5, Theorem 4].

We close by remarking that the separability of the Hilbert space & plays no
role in Theorem 1, and the Hilbert space structure itself plays only a minor role.
Thus it is possible to prove an analogue of Theorem 1 for quasinilpotent operators
on more general spaces. We shall return to this subject in a later note, where we
shall also show that Theorem 3 is valid for a larger class of operators than the
class of quasinilpotent operators.

Added in proof. The special case of Theorem 3 in which T and T* have cyclic
vectors was obtained by E. Gerlach in his paper Generalized invarviant subspaces
for linear operators, Studia Math. 42 (1972), 87-90. Peter Rosenthal, in his paper

Commutants of rveductive opevator algebras, Duke Math. J. 41 (1974), 829-834,
proved a modest generalization of the first statement in Theorem 5.
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