COUNTEREXAMPLES FOR THE SPACE OF MINIMAL SOLUTIONS OF THE EQUATION $\Delta u = Pu$ ON A RIEMANN SURFACE

Y. K. Kwon and J. L. Schiff

1. Let $P \geq 0$ ($P \not\equiv 0$) be a C^1 -density on an open Riemann surface R. The space of nonnegative C^2 -solutions on R of the elliptic equation $\Delta u = Pu$ is denoted by PN(R). A function $u \in PN(R)$ is said to be PN-minimal if for every $v \in PN(R)$ with $0 \leq v \leq u$, there exists a constant c_v such that $v = c_v u$ on R.

It was established in a former work by the second author [6] that if the space PB(R) of bounded C^2 -solutions of $\Delta u = Pu$ is of dimension at least 2, then every PN-minimal function on R has zero infimum. The purpose of this note is to demonstrate that the conclusion is no longer valid in the remaining two cases: dim PB(R) = 0 or 1.

2. First consider the case dim PB(R) = 0. Take R to be the complex plane. It is well-known that dim PB(R) = 0 since R is parabolic (see H. L. Royden [4]). For a constant M > 2 and the density

(1)
$$P(z) = M^{2} |z|^{M-2} (1 + |z|^{M})^{-1}$$

on R, it is not difficult to see that the function $v(z) = |z|^{M} + 1$ belongs to the class PN(R).

We claim that v(z) is PN-minimal on R. A bit more strongly, it is true that PN(R) is generated by v(z). For a function $u \in PN(R)$, set $\phi = u \cdot v^{-1}$. We need to show that ϕ is a constant. In view of the conditions $\Delta u = Pu$ and $\Delta v = Pv$, the function ϕ must satisfy the partial differential equation

$$\Delta \phi + \frac{2M |z|^{M-2}}{|z|^{M} + 1} \left(x \frac{\partial \phi}{\partial x} + y \frac{\partial \phi}{\partial y} \right) = 0$$

- on R. It follows from Liouville's theorem (see for example M. Prother and G. Weinberger [3, p. 120]) that every nonnegative solution of this equation is a constant. Thus the plane R with the density (1) carries a PN-minimal function $v(z) = \left|z\right|^{M} + 1$ (≥ 1), although dim PB(R) = 0.
- 3. Turning now to the case dim PB(R) = 1, we base our argument on the remarkable examples of Y. Tôki [7], [8] (see also L. Sario [5]) of a hyperbolic Riemann surface carrying no nonconstant positive harmonic functions. We take such a surface R ϵ O_{HB} O_{G} and construct a C^{1} -density $Q \geq 0$ (Q $\not\equiv 0$) on R such that $\int_{R} Q(z) \, dx \, dy < \infty.$ Thus HB(R) and QB(R) are isomorphic (Royden [4], also M.

Nakai [1]), which implies that dim QB(R) = 1. Moreover, dim HBD(R) = 1 implies

Received December 11, 1974.

Michigan Math. J. 21 (1974).

dim QBD(R) = 1 (Royden [4], also Nakai [2]). Here H and D stand for harmonicity and Dirichlet-finiteness, respectively.

Choose a function $u \in QBD(R)$ (u > 0), and set $v = e^u$. A simple calculation shows that $v \in PB(R)$, where

$$P = Qu + \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 \ge 0 \quad (P \ne 0)$$

is a C^1 -density on R. Since $0 < u \le M$ for some constant $M < \infty$ and the Dirichlet integral D(u) of u is finite, it follows that

$$\int_{R} P dx dy = \int_{R} \left[Qu + \left(\frac{\partial u}{\partial y} \right)^{2} + \left(\frac{\partial u}{\partial y} \right)^{2} \right] dx dy \leq M \int_{R} Q dx dy + D(u) < \infty.$$

As a consequence, PB(R) is isomorphic to HB(R), and hence dim PB(R) = 1. Therefore $v \in PB(R)$ is PN-minimal on R, and $v \ge 1$, as desired.

We conjecture that as in the case dim PB(R) = 0, there exists a pair (R, P) for which dim PB(R) = 1 and every PN-minimal function on R has a positive infimum. But we are unable to prove this.

4. In summary, we have established the following result.

THEOREM. There exist a Riemann surface R_i and a density P_i such that dim $P_iN(R_i)$ = i (i = 0, 1) and R_i carries a P_iN -minimal function with positive infimum.

REFERENCES

- 1. M. Nakai, The space of bounded solutions of the equation $\Delta u = pu$ on a Riemann surface. Proc. Japan Acad. 36 (1960), 267-272.
- 2. , The equation $\Delta u = Pu$ on the unit disk with almost rotation free $P \ge 0$. J. Differential Eq. 11 (1972), 307-320.
- 3. M. Protter and H. Weinberger, *Maximum principles in differential equations*. Prentice-Hall, 1967. 261 pp.
- 4. H. L. Royden, The equation $\Delta u = Pu$ and the classification of open Riemann surfaces. Ann. Acad. Sci. Fenn. Ser. AI 271 (1959), 1-27.
- 5. L. Sario, *Positive harmonic functions*. Lectures on Functions of a Complex Variable, University of Michigan Press, Ann Arbor, Michigan, 1955; pp. 257-263.
- 6. J. L. Schiff, Nonnegative solutions of $\Delta u = Pu$ on open Riemann surfaces. J. Analyse Math. 27 (1974), 230-241.
- 7. Y. Tôki, On the classification of open Riemann surfaces. Osaka Math. J. 4 (1952), 191-201.
- 8. ——, On examples in the classification of Riemann surfaces, I. Osaka Math. J. 5 (1953), 267-280.

The University of Texas, Austin, Texas 78712 University of Auckland, Auckland, New Zealand