THE DERIVATIVE OF A HOLOMORPHIC FUNCTION
IN THE DISK

Shinji Yamashita

1. INTRODUCTION

J. E. McMillan pointed out that the derived function of a univalent holomorphic
function in the disk D: |z| < 1 is normal in D, in the sense of O. Lehto and K. I.
Virtanen [4, p. 47]; for the proof, see [5] or [6]. In this note, we first improve
McMillan’s result and then investigate relations between local univalency of a holo-
morphic function f in D and boundary properties of f'. For z, w € D, write

_|lz-w _1. 1+ 6(z, w)
6(2’ W) - 1 _ WZ 3 '}/(Z, W) - 210g 1 - G(Z, W) .

If ze D and f'(z) # 0, let 7(z) = 7(z, f) be the greatest value y such that f is uni-
valent in the hyperbolic disk {¢ € D: Y€, z) < v}; if £'(z) =0, we set 7(z, f) = 0.
Our first result is the following; it has McMillan’s theorem as a corollary.

THEOREM 1. Let f be holomorphic in D, and suppose that

where R(r) is the annulus r < ‘z] <1{(0<r<1). Then f'is normal in D.

2. PROOF OF THEOREM 1
Let p(z) = p(z, f) (z € D) be the greatest value 6 (0 < 6 < 1) such that f is uni-
valent in {¢ € D: 6(¢, z) < 6}; if £Y(z) = 0, we set p(z, f) = 0.
LEMMA 1. At each point z € D wheve p(z, f) > 0, we have the inequality

|f"(Z) 2z 4
) _ .
(1) If'(z) 1-|z|? Sp(z, £)(1 - 2|9

Proof. For a fixed 6 (0 < 6 < p(z)), we set £,(&) = £(£), where
(¢ - 2z)/(1 -Zt) =6 for all £ € D. Then the function

is univalent in ]!;] < 1. Applying the Bieberbach inequality [b2| < 2 to the coeffi-
cient of £ in the expansion in powers of £ of the function
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£,08) - 1,000 £,(8) - 1(2)
[dfz(e)] T et@ (- |2]?)’
£=0

dé
we obtain the bound

4

£"(z) 27
< .
= 6(1- |z|?)

@) "1 P

Since & is arbitrary, this implies (1).

Pyoof of Theorem 1. Since p(z) > 0, it follows from (1) and the inequality
t+t"1 >2 for t > 0 that

|£"(z)] { 5 } 1
1+|f‘(z)|ZS 2+ 5D 1-|zf?

(2)

Set
|£"(2)]

= (1 - ) S L —
¢(z) |z]*) 1 r @

for z € D. By the assumption of the theorem, inf . 5 r) p(z, f) > 0; combined with
(2), this means that ¢ is bounded in R(r). On the other hand, the continuous function
¢ is bounded in the disk |z| < (1 +1r)/2, whence ¢ is bounded in D. It follows from
a well-known theorem [4, Theorem 3] that f' is normal in D.

Remark, It is an open question whether there exists a holomorphic function f in
D such that 7(z, f) > 0 in D, inf, e¢p 7(z, f) =0, and f' is normal in D.

3. THE BOUNDARY BEHAVIOR OF T

By an angulay domain at a point { of the circle T IZI =1 we mean a triangu-
lar domain whose vertices are ¢ and two points of D. By an admissible avc at ¢
we mean a continuous curve A: z = z(t) in D (0 <t < 1), with lim; _,; z(t) = ¢, and
tangent at { to a chord of T' at . Let f be holomorphic in D. We say that a point
¢ on I is of the first, second, or third kind if

lim inf 7(z, f) = 0 on each admissible arc at ¢,

z—’c

lim inf 7(z, f) > 0 in each angular domain at ¢,
z —C

lim inf 7(z, f) > 0,
z—{,z€eD

respectively. Let I'j(f), I'>(f), and I'3(f) be the sets of all points of the first,
second, and third kind, respectively. Plainly, I'3(f) € I';{f) and T';(f) N I'>(f) = ®.

THEOREM 2. Let f be holomorphic in D. Then T'(f) U T>(f) has linear
Lebesgue measuve 21 and is a vesidual set on T, and Ty (f) U T3(f) is residual
on T.
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LEMMA 2. The inequality |p(z, f) - p(w, f)| < o(z, w) holds for all z, w € D.

Proof. If p(z) = p(w), we have nothing to prove. By the symmetry of z and w
in the inequality, we need only consider the case p(z) < p(w). It is enough to prove
that 6 - p(z) < 8(z, w) for each & in the interval p(z) < 6 <p(w). If z is not con-
tained in the disk

P(w, 6) = {& e D: 6(§, w) <8},

then 6 < 8(z, w), hence 6 - p(z) < 8(z, w). If z € P(w, 6), then the disk

{t € D: (¢, z) < 6 - 6(z, w)} is contained in P(w, 8), by the triangle inequality of
6( -, -) [7, pp. 510-511]. Hence 6 - &(z, w) < p(z), that is, 6 - p(z) < 8(z, w). This
completes the proof.

We continue the study of p(z, f) in terms of cluster sets. Let E be a subset of
D whose closure cl E in the plane contains a point { € I'. Then we set

celo, &) = [V el pE nwv),
U

where U ranges over all open disks containing ¢, and where the closure of the
image p(E N U) of E N U by p is taken in the plane. We set

Culor )= Ucylo, 0 ana 1y, 0) = [cap, 0,
A A

where A ranges over all angular domains at £ and A ranges over all admissible
arcs at €. Let K(p) be the set of all points £ € I' where C.z(p, £) = Calp, §) for
each angular domain A at ¢, and let J(p) be the set of all points £ € K(p) where
C.z(p, £) = Cplp, £). Finally, let L(p) be the set of all points § € T" where
C.z (p, 8) = T tlp, ©).

LEMMA 3. 3(p) € K(p) = L(p).

Proof. The relation J(p) C K(p) is trivial. Since each angular domain at
¢ € L(p) contains a terminal part

Agz =z(t) (ro<t<1),

where 0 < rgp< 1, of an admissible arc
Atz =1zt) (0<t<1)

at ¢, we see that L(p) € K(p). Since p is uniformly continuous as a map from D
endowed with the metric y( -, - ) into the Euclidean plane, as a consequence of
Lemma 2, the proof that L(p) D K(p) is in spirit the same as that of [1, Lemmal].

Pyoof of Theorem 2. First we remark that lim inf, |, ¢, z€E 7(z, f) is zero or
positive according as lim infz__)C, 2€E p(z, f) is zero or positive, where E is one of
the sets described in the paragraph before Lemma 3. It follows from results of
E. P. DolZenko [2, Theorem 1] and P. Lappan [3] that K(p) is a residual set of
measure 27. By Lemma 3, K(p) = L{p). If £ € K(p) and 0 € C_, (p, ), then
0 € IIt(p, &), hence ¢ € T'j(f). If & € K(p) and 0 ¢ C¢ (p, §), then 0 ¢ Calp, €) for
each A at ¢, hence ¢ € I'x(f). We thus have the relation K(p) C I'j(f) U T"(f), which



132 SHINJI YAMASHITA

proves the first assertion. If £ € J(p) and 0 € Cp(p, ¢), then 0 € I(p, &) for

J{p) € L(p). Therefore € € T"|(f). If £ € J(p) and O ¢ Cplp, &), then € € T'3(f). We
thus obtain the relation J(p) C I';(f) U I'3(f), and this completes the proof of
Theorem 2.

Finally, we investigate local properties of f' near points of I'>(f) and I's(f).
Let x( -, ) denote chordal distance. Let @ be a simply connected subdomain of
D, and let 'y@( -, ) denote the hyperbolic distance in @. Thus

(1 - Izlz)"l |dz| = dy(z) = dyp(z) .

THEOREM 3. Let f be holomovphic in D. If A is an angular domain at
§ € T'x(f), then theve exists a constant k > 0 such that x(£'(z), £'(w)) <kp va(z, W)
for all z, w e A, If £ € T'3(f), then theve exist an open disk U containing ¢ and a
constant ky > 0 such that x(f'(z), £'(w)) < ky vypnulz, w) for all z, w e DN U.

Proof. Let U] be an open disk |z - ¢{]| <& (¢ < 1) such that

inf p(z, f) > 0.
z€ ANU,

Since the function ¢ considered in Section 2 is continuous in cl{A - U,), where

U, = {z: Iz - CI < ¢/2} and since the inequality (2) holds in the present case, ¢ is
bounded in A by a constant kp > 0. On the other hand, by the principle of hyper-
bolic metrics, dy(z) < dya(z) for each point z € A € D. The inequality

|£"(z)| | dz]
S < kpdy(z) < kp dya(z) (z € A)
1+ |f'(2)]2 = A = "ATTA
proves the first assertion. The proof of the second assertion is similar.

As a final remark, we note that the horocyclic versions of Lemma 3 and Theo-
rems 2 and 3 are valid.
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