THE DERIVATIVE OF A HOLOMORPHIC FUNCTION IN THE DISK

Shinji Yamashita

1. INTRODUCTION

J. E. McMillan pointed out that the derived function of a univalent holomorphic function in the disk D: |z| < 1 is normal in D, in the sense of O. Lehto and K. I. Virtanen [4, p. 47]; for the proof, see [5] or [6]. In this note, we first improve McMillan's result and then investigate relations between local univalency of a holomorphic function f in D and boundary properties of f'. For z, w ϵ D, write

$$\delta(z, w) = \left| \frac{z - w}{1 - \overline{w}z} \right|, \qquad \gamma(z, w) = \frac{1}{2} \log \frac{1 + \delta(z, w)}{1 - \delta(z, w)}.$$

If $z \in D$ and $f'(z) \neq 0$, let $\tau(z) \equiv \tau(z, f)$ be the greatest value γ such that f is univalent in the hyperbolic disk $\{\xi \in D: \gamma(\xi, z) < \gamma\}$; if f'(z) = 0, we set $\tau(z, f) = 0$. Our first result is the following; it has McMillan's theorem as a corollary.

THEOREM 1. Let f be holomorphic in D, and suppose that

$$\inf_{z \in R(r)} \tau(z, f) > 0,$$

where R(r) is the annulus r < |z| < 1 (0 < r < 1). Then f' is normal in D.

2. PROOF OF THEOREM 1

Let $\rho(z) \equiv \rho(z, f)$ ($z \in D$) be the greatest value δ ($0 < \delta < 1$) such that f is univalent in $\{\zeta \in D: \delta(\zeta, z) < \delta\}$; if f'(z) = 0, we set $\rho(z, f) = 0$.

LEMMA 1. At each point $z \in D$ where $\rho(z, f) > 0$, we have the inequality

$$\left|\frac{f''(z)}{f'(z)} - \frac{2\overline{z}}{1-|z|^2}\right| \leq \frac{4}{\rho(z, f)(1-|z|^2)}.$$

Proof. For a fixed δ ($0 < \delta < \rho(z)$), we set $f_z(\xi) \equiv f(\zeta)$, where $(\zeta - z)/(1 - \bar{z}\zeta) = \delta\xi$ for all $\xi \in D$. Then the function

$$f_z(\xi) = f\left(\frac{z + \delta\xi}{1 + \delta\bar{z}\xi}\right)$$

is univalent in $|\xi| < 1$. Applying the Bieberbach inequality $|b_2| \le 2$ to the coefficient of ξ^2 in the expansion in powers of ξ of the function

Received June 16, 1973.

Michigan Math. J. 21 (1974).

$$\frac{f_{z}(\xi) - f_{z}(0)}{\left[\frac{df_{z}(\xi)}{d\xi}\right]_{\xi=0}} = \frac{f_{z}(\xi) - f(z)}{\delta f'(z) (1 - |z|^{2})},$$

we obtain the bound

$$\left| \frac{f''(z)}{f'(z)} - \frac{2\bar{z}}{1 - |z|^2} \right| \le \frac{4}{\delta(1 - |z|^2)}.$$

Since δ is arbitrary, this implies (1).

Proof of Theorem 1. Since $\rho(z) > 0$, it follows from (1) and the inequality $t + t^{-1} \ge 2$ for t > 0 that

(2)
$$\frac{|f''(z)|}{1+|f'(z)|^2} \leq \left\{|z| + \frac{2}{\rho(z, f)}\right\} \frac{1}{1-|z|^2}.$$

Set

$$\phi(z) = (1 - |z|^2) \frac{|f''(z)|}{1 + |f'(z)|^2},$$

for $z \in D$. By the assumption of the theorem, $\inf_{z \in R(r)} \rho(z, f) > 0$; combined with (2), this means that ϕ is bounded in R(r). On the other hand, the continuous function ϕ is bounded in the disk $|z| \le (1+r)/2$, whence ϕ is bounded in D. It follows from a well-known theorem [4, Theorem 3] that f' is normal in D.

Remark. It is an open question whether there exists a holomorphic function f in D such that $\tau(z, f) > 0$ in D, $\inf_{z \in D} \tau(z, f) = 0$, and f' is normal in D.

3. THE BOUNDARY BEHAVIOR OF τ

By an *angular domain* at a point ζ of the circle Γ : |z| = 1 we mean a triangular domain whose vertices are ζ and two points of D. By an *admissible arc* at ζ we mean a continuous curve Λ : z = z(t) in D $(0 \le t < 1)$, with $\lim_{t \to 1} z(t) = \zeta$, and tangent at ζ to a chord of Γ at ζ . Let f be holomorphic in D. We say that a point ζ on Γ is of the *first*, *second*, or *third* kind if

lim inf $\tau(z, f) = 0$ on each admissible arc at ζ , $z \rightarrow \zeta$

 $\label{eq:constraint} \underset{z \, \rightarrow \, \zeta}{\text{lim inf } \tau(z, \, f) > 0 \ \ \text{in each angular domain at} \ \ \zeta \, ,$

$$\lim_{\mathrm{z} o \zeta, \, \mathrm{z} \, \epsilon \, \mathrm{D}} au(\mathrm{z}, \, \mathrm{f}) > 0 \, ,$$

respectively. Let $\Gamma_1(f)$, $\Gamma_2(f)$, and $\Gamma_3(f)$ be the sets of all points of the first, second, and third kind, respectively. Plainly, $\Gamma_3(f) \subset \Gamma_2(f)$ and $\Gamma_1(f) \cap \Gamma_2(f) = \emptyset$.

THEOREM 2. Let f be holomorphic in D. Then $\Gamma_1(f) \cup \Gamma_2(f)$ has linear Lebesgue measure 2π and is a residual set on Γ , and $\Gamma_1(f) \cup \Gamma_3(f)$ is residual on Γ .

LEMMA 2. The inequality $|\rho(z, f) - \rho(w, f)| \leq \delta(z, w)$ holds for all $z, w \in D$.

Proof. If $\rho(z) = \rho(w)$, we have nothing to prove. By the symmetry of z and w in the inequality, we need only consider the case $\rho(z) < \rho(w)$. It is enough to prove that $\delta - \rho(z) \le \delta(z, w)$ for each δ in the interval $\rho(z) < \delta < \rho(w)$. If z is not contained in the disk

$$P(w, \delta) = \{ \xi \in D: \delta(\xi, w) < \delta \},$$

then $\delta \leq \delta(z, w)$, hence $\delta - \rho(z) \leq \delta(z, w)$. If $z \in P(w, \delta)$, then the disk $\{\xi \in D: \delta(\xi, z) < \delta - \delta(z, w)\}$ is contained in $P(w, \delta)$, by the triangle inequality of $\delta(\cdot, \cdot)$ [7, pp. 510-511]. Hence $\delta - \delta(z, w) \leq \rho(z)$, that is, $\delta - \rho(z) \leq \delta(z, w)$. This completes the proof.

We continue the study of $\rho(z, f)$ in terms of cluster sets. Let E be a subset of D whose closure cl E in the plane contains a point $\zeta \in \Gamma$. Then we set

$$C_{E}(\rho, \zeta) = \bigcap_{U} cl \rho(E \cap U),$$

where U ranges over all open disks containing ζ , and where the closure of the image $\rho(E \cap U)$ of $E \cap U$ by ρ is taken in the plane. We set

$$C_{\mathcal{A}}(\rho, \zeta) = \bigcup_{\Delta} C_{\Delta}(\rho, \zeta)$$
 and $\Pi_{T}(\rho, \zeta) = \bigcap_{\Lambda} C_{\Lambda}(\rho, \zeta)$,

where Δ ranges over all angular domains at ζ and Λ ranges over all admissible arcs at ζ . Let $K(\rho)$ be the set of all points $\zeta \in \Gamma$ where $C_{\mathcal{A}}(\rho, \zeta) = C_{\Delta}(\rho, \zeta)$ for each angular domain Δ at ζ , and let $J(\rho)$ be the set of all points $\zeta \in K(\rho)$ where $C_{\mathcal{A}}(\rho, \zeta) = C_{D}(\rho, \zeta)$. Finally, let $L(\rho)$ be the set of all points $\zeta \in \Gamma$ where $C_{\mathcal{A}}(\rho, \zeta) = \prod_{T} (\rho, \zeta)$.

LEMMA 3. $J(\rho) \subset K(\rho) = L(\rho)$.

Proof. The relation $J(\rho) \subset K(\rho)$ is trivial. Since each angular domain at $\zeta \in L(\rho)$ contains a terminal part

$$\Lambda_0$$
: z = z(t) (r₀ < t < 1),

where $0 \le r_0 \le 1$, of an admissible arc

$$\Lambda: z = z(t) \quad (0 < t < 1)$$

at ζ , we see that $L(\rho) \subset K(\rho)$. Since ρ is uniformly continuous as a map from D endowed with the metric $\gamma(\cdot, \cdot)$ into the Euclidean plane, as a consequence of Lemma 2, the proof that $L(\rho) \supset K(\rho)$ is in spirit the same as that of [1, Lemma].

Proof of Theorem 2. First we remark that $\liminf_{z\to\zeta,\ z\in E} \tau(z,f)$ is zero or positive according as $\liminf_{z\to\zeta,\ z\in E} \rho(z,f)$ is zero or positive, where E is one of the sets described in the paragraph before Lemma 3. It follows from results of E. P. Dolženko [2, Theorem 1] and P. Lappan [3] that $K(\rho)$ is a residual set of measure 2π . By Lemma 3, $K(\rho) = L(\rho)$. If $\zeta \in K(\rho)$ and $0 \in C_{\mathscr{A}}(\rho,\zeta)$, then $0 \in \Pi_{T}(\rho,\zeta)$, hence $\zeta \in \Gamma_{1}(f)$. If $\zeta \in K(\rho)$ and $0 \notin C_{\mathscr{A}}(\rho,\zeta)$, then $0 \notin C_{\Delta}(\rho,\zeta)$ for each Δ at ζ , hence $\zeta \in \Gamma_{2}(f)$. We thus have the relation $K(\rho) \subset \Gamma_{1}(f) \cup \Gamma_{2}(f)$, which

proves the first assertion. If $\zeta \in J(\rho)$ and $0 \in C_D(\rho, \zeta)$, then $0 \in \Pi_T(\rho, \zeta)$ for $J(\rho) \subset L(\rho)$. Therefore $\zeta \in \Gamma_1(f)$. If $\zeta \in J(\rho)$ and $0 \notin C_D(\rho, \zeta)$, then $\zeta \in \Gamma_3(f)$. We thus obtain the relation $J(\rho) \subset \Gamma_1(f) \cup \Gamma_3(f)$, and this completes the proof of Theorem 2.

Finally, we investigate local properties of f' near points of $\Gamma_2(f)$ and $\Gamma_3(f)$. Let $\chi(\cdot,\cdot)$ denote chordal distance. Let $\mathscr D$ be a simply connected subdomain of D, and let $\gamma_{\mathscr D}(\cdot,\cdot)$ denote the hyperbolic distance in $\mathscr D$. Thus

$$(1 - |z|^2)^{-1} |dz| = d\gamma(z) \equiv d\gamma_D(z).$$

THEOREM 3. Let f be holomorphic in D. If Δ is an angular domain at $\zeta \in \Gamma_2(f)$, then there exists a constant $k_{\Delta} > 0$ such that $\chi(f'(z), f'(w)) \leq k_{\Delta} \gamma_{\Delta}(z, w)$ for all $z, w \in \Delta$. If $\zeta \in \Gamma_3(f)$, then there exist an open disk U containing ζ and a constant $k_U > 0$ such that $\chi(f'(z), f'(w)) \leq k_U \gamma_{D \cap U}(z, w)$ for all $z, w \in D \cap U$.

Proof. Let U_1 be an open disk $|z - \zeta| < \epsilon$ ($\epsilon < 1$) such that

$$\inf_{z\, \epsilon\, \Delta\cap\, U_{\,l}} \, \rho(z,\, f) \, > \, 0 \ . \label{eq:continuous_problem}$$

Since the function ϕ considered in Section 2 is continuous in $cl(\Delta$ - $U_2),$ where $U_2=\left\{z\colon \left|z-\zeta\right|<\epsilon/2\right\}$ and since the inequality (2) holds in the present case, ϕ is bounded in Δ by a constant $k_{\Delta}>0.$ On the other hand, by the principle of hyperbolic metrics, $d\gamma(z)\leq d\gamma_{\Delta}(z)$ for each point $z\in\Delta\subset D.$ The inequality

$$\frac{\left|f''(z)\right|\left|dz\right|}{1+\left|f'(z)\right|^{2}} \leq k_{\Delta} d\gamma(z) \leq k_{\Delta} d\gamma_{\Delta}(z) \qquad (z \in \Delta)$$

proves the first assertion. The proof of the second assertion is similar.

As a final remark, we note that the horocyclic versions of Lemma 3 and Theorems 2 and 3 are valid.

REFERENCES

- 1. F. Bagemihl, Some approximation theorems for normal functions. Ann. Acad. Sci. Fenn. Ser. AI 335 (1963), 5 pp.
- 2. E. P. Dolženko, Boundary properties of arbitrary functions. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 3-14.
- 3. P. Lappan, A property of angular cluster sets. Proc. Amer. Math. Soc. 19 (1968), 1060-1062.
- 4. O. Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions. Acta Math. 97 (1957), 47-65.
- 5. A. J. Lohwater, Boundary behavior of the derivative of a univalent function. (Russian) Dokl. Akad. Nauk SSSR 195 (1970), 1033-1035.
- 6. ——, The boundary behaviour of derivatives of univalent functions. Math. Z. 119 (1971), 115-120.
- 7. M. Tsuji, Potential theory in modern function theory. Maruzen Co., Tokyo, 1959.

Tokyo Metropolitan University Fukazawa, Setagaya-ku Tokyo, Japan