THE ABSOLUTE CONVERGENCE OF CERTAIN
LACUNARY FOURIER SERIES

George Benke

Let G be a compact abelian group, and let I" be its dual group. Suppose E C T
and f is a function on G. The function f is called an E-function if f(y) = 0 for all
v ¢ E (f is the Fourier transform of f). By A(G) we denote the space of functions

whose transforms belong to ¢1(T), and "f”A(G) is defined to be "f“ﬂl(r‘) . For
each set S(G) of functions defined on G, we denote by Sg(G) the E-functions in

S(G). A set E C T is a Sidon set if Ar(G) = Cr(G), where C(G) is the space of con-
tinuous functions on G. For 2 <p <, a set EC T is a A(p)-set if LZE(G) = L%(G).
A set ECT isa A-set if it is a A(p)-set for all p and if in addition the inclusions

LIZE(G) — LI;:(G) have norm at most Cpl/2 , where C depends only on the set E.

It is known that every Sidon set is a A-set [9, p. 128], and that there exist sets
that are A(p)-sets for all p but are not Sidon sets [2, p. 803]. Actually, in the light
of results in [1, p. 131], the sets constructed in [2] are not A-sets. It is therefore
natural to ask whether there exist A-sets that are not Sidon sets. In general, this is
an open question, but in certain torsion groups every A-set is also a Sidon set [6].
That Sidon sets are close to A-sets from a structural standpoint was shown in [1].
In this paper, we show that in an analytical sense they are also close. In particular,
we construct a Banach space B(G) of functions on G such that A(G) = B(G) - C(G)
and such that E C T" is a A-set if and only if Ax(G) = Bg(G). The construction of
B(G) is motivated by the work in [3] and [4], and the connection between B(G) and A-
sets is analogous to the connection between A. Figa-Talamanca’s AP(G)-spaces and
A(p)-sets [5].

In Section 1 of this paper, we define two spaces K(G) and R(G) of functions on
G that, (in the language of M. A. Rieffel [7]) are Banach modules. The space B(G)
is then defined, and it turns out to be a realization of the Banach module tensor
product K(G) ®L1(G) R(G). In Section 2, we establish the connection between B(G)

and A-sets.

1. DEFINITIONS AND PROPERTIES OF THE BASIC SPACES

For f € nz <p<Lw LP(G), let

I£] 4 = swp{p-1/2[t], |2 <p < =},

and let K(G) be the set of all functions f on G for which ”f“A is finite. It is easy
to verify that ” “A is a norm on K(G) and that, endowed with this norm, K(G) be-

comes a two-sided Banach LI(G)-module with respect to convolution. Next, we
shall define a space R(G) of functions that is also a two-sided Banach L1(G)-module
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and whose dual is K(G). This is done as follows. Let R(G) be the closure in K(G)*
of the set of continuous functions on G that define in the natural way elements of
K(G)*. We shall see that every continuous function defines an element of K(G)*. In
the following proposition, we collect some relevant facts about K(G) and R(G).

PROPOSITION 1. Let K(G) and R(G) be defined as above, and denote by || || g
the noym dual to | | . The following hold.

(1) L@ o R(G) D> LYUG) forall q (1 <q<2), and
22 |y <) e < @/la- P g
(2) LP(G) o K(G) > L*(G) forall p (2 <p < =), and
p 2, < Iy <272
® ®O*, | [0 = 6@, ] |y.

(4) If £ € K(G) and g € R(G), then £ *g € C(G) and |txgl o <[], lelg -

Proof. (2) follows immediately from the definition of K(G). To see that (1)
holds, take g € LP(G) and f € K(G). Then, for p=q/(q - 1),

| §1e] < Bell 1ol < @2 Tl Bl

This shows that ||g||g < (a/(q - 1))!/2 |g|lq for all g € LI(G). Next, consider the
inclusion map i: C(G) — K(G) and its adjoint i*: K(G)* — M(G). We have the
relations

e = il = sup { £ 5 /ltls | £ € C@},

and by (2) the last member is at most 2-1/2. Taking g € C(G) and noting that
i*(g) = g, we see that ||g]|, <2-1/2 | g|r. Once we have shown that L!(G) > R(G),
this norm inequality will hold for all g € R(G). We now show that L!(G) D R(G).
Suppose {g,} is a Cauchy sequence in | |r of continuous functions. Since || | g
is stronger than ” || 1 » the sequence {gn} converges to some g in LI(G), and
some subsequence {gn } converges pointwise almost everywhere to g. Given

£ > 0, take N so that n, m > N implies | g, - g |r < €. Consider any f € K(G).
Clearly,

IS@-%H

/Mila < § 1m Jgn, - el 111/,

< lim infS leny, - al 1£]/]]lp < liminflg, -elr <ce.

k — o0

Therefore g - g, € R(G) and | g - g.||r < €. It follows that g € R(G) and
LY(G) o R(G).

Next, we show that R(G)* = K(G). Since the inclusion map i: LYG) — R(G) is
dense for all q > 1, the adjoint i*: R(G)* — LP(G) is one-to-one for all p < .

Therefore R(G)* c np<°o LP(G). Take any f € R(G)* and any p < «. Then there
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exists a g € LY(G) such that ‘gfg' = Hpr ||g||q Hence, by (1),

Ielge > | § 16|/l > 1ol Nel, /2072 Dl

Therefore ”f”R* > [[£]lp , and R(G)* € K(G). On the other hand, for f ¢ K(G) and

g € R(G), we have the inequality ing' < |If]s lellg - Therefore ||f|, > ”fHR
and K(G) C R(G)*.

Finally, we show that (4) holds. For eack g € R(G), the translation map
Tg: G — R(G) defined by (74(x))(y) = g(y - %) is continuous. This follows from the
facts that 7, G — C(G) is continuous, that C(G) is dense in R(G), and that || || is
a stronger norm than | ||g. Now suppose f € K(G) and g € R(G). Then (4) follows
immediately from the translation invariance of the || || A- and Il r-horms and
the continuity of Tgt G — R(G).

We define B(G) to be the set of functions f on g with a representation

f(x) = 2 T *g.(x),
n=1

w
where T,(x) = f,(-x), £, € K(G), g, € R(G), and 27, ”fn“A lenll g < «. In view of
(4) of Proposition 1, the series for f converges uniformly. Therefore B(G) is a set
of continuous functions. We give B(G) a norm by putting

(2o}

I£l5 = inf 22 fital5 lenl =

n=

where the infimum is taken over all representations of f. The features of B(G) that
will concern us follow from some general theorems about tensor products of Banach
modules (see [7] and [8]), once we have observed that B(G) is 1n fact such a tensor
product. It is easily seen that K(G) is a (two-sided) Banach L!(G)-module with re-
spect to convolution. That is, for ¢ € L1(G) and f € K(G), the action of ¢ on f is
given by ¢*f. We see that R(G) is a (two-sided) Banach L!(G)-module, by letting
the action of ¢ € L1(G) on g € R(G) be given by $*g. An almost word-for-word
translation of [8 p. 76, Theorem 3.3] in terms of K(G) and R(G) shows that

K(G) X LG R(G) is isometrically isomorphic to B(G), the mapping being such that

f X g corresponds to T#g. Thus B(G) is a Banach space, and

Hom , (K(G), R(@" % KGO |, R@Q)*.
LYG) LG}
The importance of this result lies in the fact that Hole Q) (K(G), R(®)™) is the

space of multipliers from K(G) to R(G)*, and that R(G)* = K(G). Thus, denoting by
M(K) the multipliers from K(G) to K(G), we see that

M(K) = B(G)*.
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Moreover, this isomorphism is such that for each v € B(G)* and its corresponding
element T, € M(K),

(& Tyt) = (Txg v),

where < , > on the left denotes the dual pairing between R(G) and R(G)* = K(G),
and < , ) on the right denotes the dual pairing between B(G) and B(G)*. Another

way of expressing this correspondence is to say that, for v € B(G)*, the function on
I' associated with T, € M(K) is 7.

2. THE CONNECTION WITH A-SETS

If E C I, then Kg(G), Re(G), and Bg(G) are all closed subspaces of K(G), R(G),
and B(G), respectively. This is an 1mmed1ate consequence of the fact that the norms
on these spaces are stronger than the L!(G)-norm.

PROPOSITION 2. If EcC T isa A-set, then

K_g(G) ®L1(G) Ry(G) £ Br(G),

and the || | g-norm is equivalent to the | || K_pRR 0T On BE(G), although not

isometvic to it.
Proof, Clearly, K G)@ £(G) € BL(G) and || ”K E®RE— > || "

To prove the other inclusion, consider x E, the characteristic function of E,
which defines a multiplier T frorn L%(G) to L2 &(G) by the relation Tf = fo Noting

that E is a A-set if and only if LE (G) = KE(G), we see, by restricting T to K(G),

that T € M(K) and that the range of T is Kg(G). To estimate the norm of T, take
f € K(G), and suppose that C is the A-constant of E. Then

ITely < clmil, < clel, < c2!2|t],,
and therefore ”T"M(K) <z2l/zc.

Suppose f € Br(G), where f = E::1 an g is a typical representation. Then

f=T() = T(E ?n*gn) =27 T@, xg,) = 20 (1T ) *g, .

n=1 n=1 n=1

Note that T, =h,, where h, ¢ K_g(G). In fact, h, = B fn . Moreover,
Ihalfa <21/2C|tn] 5.

Since S € M(K), it follows that the adjoint S* belongs to M(K*). The restriction
of S* to R(G) yields a multiplier from R(G) to Rg(G). This follows easily from the
facts that R(G) is closed in K(G)* and that the continuous functions are dense in
R(G) and are contained in K(G). Therefore
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o0
f =T = 2 h,*(T*g),
n=1

where [ T*g_ [g < cal/? lg ll g - Hence f e K_g(G) ®L1(G) Ry(G) and
[ @rp <2 €2 11l 5.
We remark that for each E C T,
Ag(G) = L2g(G L&(G d = :
£(G) = LIR(@®1q) LEG)  and | o= | 12 @12

In preparation for the main theorem, we shall prove a probabilistic result, for
which we need the following notation. Let § be the interval [0, 1], and let p denote
Lebesgue measure Consider the Rademacher functions g,: & — {-1, 1} defmed by
£q(w) = (- ™1 e [(m - 1)27", m2™™) and &,(1) = -1, where n =0, 1, 2,
For each f € L2(G), select an enumeration Yo» Yis = of the support of f and defme
£, € L3(G) by f,(yy) =& (w)i(y,).

PROPOSITION 3. If f € L2(G), then the following statements hold.

(a) p{weq]| f, € K@)} =

(b) For each & > 0, theve exists an N (depending on f and &) such that
”fw”A <N ||, for ali w except possibly a set of measure less than .

(c) For each t € L2G), theve exists an w € Q such that |f,] A < 16 |£], .
Proof. We shall use the following well-known theorem [10, p. 214]. Let {un}
be a sequence of complex numbers such that E::o |un| 2=r2¢ o, and let
g(w) = 2:;0 unen(w). Then exp( |g(+)|?) € LI(Q) for every A > 0, and

S exp( |g(w)|?)dw = 2 % lg(w) | aw < 2 %(mz)k < 2 (dexrdk .
Y k=0 - YQ k=0 < k=0
Consider the series
o0
(1) 27 ) (=, vy pefw) .

n=0

Since f € L2(G), we can apply the theorem to the series (1) with ex = (8r%)!, and
we obtain the inequality

kl

o]
2 l£,(0) ] dw < 2.
Q

Integrating both sides over G and switching sums and integrals, we see that

® .k
(2) jﬂ (kZ; a ||fw||§1;)dw5 3.
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Put E, = {w]| integrand in (2) is at most 2n}; then clearly p(2 \ E,) < 1/n and
p(E,) >1-1/n. If we E,, then

k
X il < for k=12, -

Using ex = (8r2)-1 and k! < (k + 1)k*1 /ek | we see that
(3 (2012 1yl e < (s +2)/0L/2 (ke + /2R (2n) /2R op
Hence there exists a constant K,, such that

@k)V2 |, < K lf], forall k=1,2, -

Therefore [|f,]l, <2'/2K, ||f]|, for all e E,; this proves (a) and (b). As for (c),
set n =2 in (3).

PROPOSITION 4. A(G)  B(G) c ¢(G) and 292 | o> s> llw-

0
Proof. Take f € B(G), where f = En:l f, *g, . Then
[>e)

Il < 2 [Exenlle < El [l lenllw -
_ s

n=1
Since this holds for all representations, ||f||. < |f|s. That B(G) c C(G) was ob-
served earlier.

_ Now take h ¢ A(G). Choose f and g € L%(G) so that & = h and

|'f| = | | = |h| /2 By Proposition 3, there exists a . sign change w € 2 such that
f, € K(G) and 1T, A <16 ,. Note that %, g, = Ig and hence T, *g, = h. Thus
fw* g, is a representation of h as an element of B(G), and

Inlls < Nwla lewln < 161512212 el = 2°/2 M12); el = 2°/2 |Ia], .

Finally we prove the main result of this paper.
THEOREM. E C T is a A-sel if and only if Ag(G) = Be(G).

Proof. We observe f1rst that (LE(G))* = LE(G Now suppose E is a A-set.
Then, as we noted earlier, LE(G) =Kg(G). Take g € Rg(G). Then

Keedl o, Kos)l

”g”R > Sup

rexgG) IMla — feKE(G) cllfl,
i (£ e)] 1 1

=c sw e = g lel =< lel -
Crerz Ml C Pl 2yr €772

Hence Rp(G) = LE(G), K_g(G) = L2E(G), and therefore

K_g(G) ®) 1 (g RE(G) = LIE(@ @)y 1) LEQ) .
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Using Proposition 2 and the fact that L%L(G) ®L1 - L2(G) is isometrically equal to
A (G), we see that AR(G) = Bg(G).

Now suppose ApR(G) = Bg(G). Then Br(G)* = Ar(G)*. Since Ax(G)* can be
identified with ¢”(E), the relation Br(G)* = Ar(G)* implies the existence of a con-
stant C with the property that for each ¢ € £*°(E) and each £ > 0, there exists a
v € B(G)* such that #(y) = ¢(y) for all y € E and such that [ v|| pt < C o]l +e.
Since B(G)* can be identified with M(K), there exists a T € M(K) such that Tt = o
and || T, k) <C el +e.

Now suppose { € L%;(G). By Proposition 3, there exists a +1-valued function ¢
on E such that ¢f is the Fourier transform of a function in Kg(G). Since f(y) =0
for all y ¢ E, we see that

f=o@d = 25D = $(TY) = (T(TD),

and therefore f = T(Tf). But Tf € K(G), by the choice of ¢; moreover, T € M(K);
therefore f € Kp(G) and ||f[|, < (C+¢)16|f]|,. This shows that LE(G) = K(G),
and this is equivalent to the assertion that E is a A-set.
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