THE ABSOLUTE CONVERGENCE OF CERTAIN LACUNARY FOURIER SERIES

George Benke

Let G be a compact abelian group, and let Γ be its dual group. Suppose $E \subset \Gamma$ and f is a function on G. The function f is called an E-function if $\hat{f}(\gamma) = 0$ for all $\gamma \not\in E$ (\hat{f} is the Fourier transform of f). By A(G) we denote the space of functions whose transforms belong to $\ell^1(\Gamma)$, and $\|f\|_{A(G)}$ is defined to be $\|\hat{f}\|_{\ell^1(\Gamma)}$. For each set S(G) of functions defined on G, we denote by $S_E(G)$ the E-functions in S(G). A set $E \subset \Gamma$ is a Sidon set if $A_E(G) = C_E(G)$, where C(G) is the space of continuous functions on G. For $2 , a set <math>E \subset \Gamma$ is a $\Lambda(p)$ -set if $L_E^2(G) = L_E^p(G)$. A set $E \subset \Gamma$ is a Λ -set if it is a $\Lambda(p)$ -set for all p and if in addition the inclusions $L_E^2(G) \to L_E^p(G)$ have norm at most $Cp^{1/2}$, where C depends only on the set E.

It is known that every Sidon set is a Λ -set [9, p. 128], and that there exist sets that are $\Lambda(p)$ -sets for all p but are not Sidon sets [2, p. 803]. Actually, in the light of results in [1, p. 131], the sets constructed in [2] are not Λ -sets. It is therefore natural to ask whether there exist Λ -sets that are not Sidon sets. In general, this is an open question, but in certain torsion groups every Λ -set is also a Sidon set [6]. That Sidon sets are close to Λ -sets from a structural standpoint was shown in [1]. In this paper, we show that in an analytical sense they are also close. In particular, we construct a Banach space B(G) of functions on G such that $A(G) \hookrightarrow B(G) \hookrightarrow C(G)$ and $A(G) \hookrightarrow B(G) \hookrightarrow C(G)$ is motivated by the work in $A(G) \hookrightarrow B(G) \hookrightarrow C(G)$ and $A(G) \hookrightarrow C(G) \hookrightarrow C(G)$ is analogous to the connection between $A(G) \hookrightarrow C(G) \hookrightarrow C(G)$ and $A(G) \hookrightarrow C(G) \hookrightarrow C(G)$ and $A(G) \hookrightarrow C(G) \hookrightarrow C(G)$ are also close. In particular, we construct a Banach space $B(G) \hookrightarrow C(G) \hookrightarrow C(G)$ and $A(G) \hookrightarrow C(G) \hookrightarrow C(G)$ and $A(G) \hookrightarrow C(G) \hookrightarrow C(G)$ are also close. In particular, we construct a Banach space $A(G) \hookrightarrow C(G) \hookrightarrow C(G)$ and $A(G) \hookrightarrow C(G) \hookrightarrow C(G)$ and $A(G) \hookrightarrow C(G) \hookrightarrow C(G)$ are also close. In particular, we construct a Banach space $A(G) \hookrightarrow C(G) \hookrightarrow C(G)$ and $A(G) \hookrightarrow C(G) \hookrightarrow C(G)$ are also close. In particular, we construct a Banach space $A(G) \hookrightarrow C(G) \hookrightarrow C(G)$ and $A(G) \hookrightarrow C(G) \hookrightarrow C(G) \hookrightarrow C(G)$ and $A(G) \hookrightarrow C(G) \hookrightarrow C(G)$ are also close. In particular, we construct a Banach space $A(G) \hookrightarrow C(G) \hookrightarrow C(G)$ and $A(G) \hookrightarrow C(G) \hookrightarrow C(G)$ are also close.

In Section 1 of this paper, we define two spaces K(G) and R(G) of functions on G that, (in the language of M. A. Rieffel [7]) are Banach modules. The space B(G) is then defined, and it turns out to be a realization of the Banach module tensor product $K(G) \bigotimes_{L^1(G)} R(G)$. In Section 2, we establish the connection between B(G) and Λ -sets.

1. DEFINITIONS AND PROPERTIES OF THE BASIC SPACES

For
$$f \in \bigcap_{2 , let$$

$$\|f\|_{\Lambda} = \sup \{p^{-1/2} \|f\|_{p} | 2$$

and let K(G) be the set of all functions f on G for which $\|f\|_{\Lambda}$ is finite. It is easy to verify that $\|\ \|_{\Lambda}$ is a norm on K(G) and that, endowed with this norm, K(G) becomes a two-sided Banach L¹(G)-module with respect to convolution. Next, we shall define a space R(G) of functions that is also a two-sided Banach L¹(G)-module

Received June 6, 1973.

and whose dual is K(G). This is done as follows. Let R(G) be the closure in $K(G)^*$ of the set of continuous functions on G that define in the natural way elements of $K(G)^*$. We shall see that every continuous function defines an element of $K(G)^*$. In the following proposition, we collect some relevant facts about K(G) and R(G).

PROPOSITION 1. Let K(G) and R(G) be defined as above, and denote by $\| \|_R$ the norm dual to $\| \|_{\Lambda}$. The following hold.

(1)
$$L^1(G) \supset R(G) \supset L^q(G)$$
 for all q (1 $< q \le 2$), and

$$2^{1/2} \| \|_1 \le \| \|_R \le (q/(q-1))^{1/2} \| \|_q$$
.

(2)
$$L^{p}(G) \supset K(G) \supset L^{\infty}(G)$$
 for all p (2 < p < ∞), and

$$p^{-1/2} \| \|_{p} \le \| \|_{\Lambda} \le 2^{-1/2} \| \|_{\infty}.$$

(3)
$$(R(G)^*, \| \|_{R^*}) = (K(G), \| \|_{\Lambda}).$$

$$\text{(4) If } f \in K(G) \text{ and } g \in R(G), \text{ then } f * g \in C(G) \text{ and } \left\| f * g \right\|_{\infty} \leq \left\| f \right\|_{\Lambda} \left\| g \right\|_{R}.$$

Proof. (2) follows immediately from the definition of K(G). To see that (1) holds, take $g \in L^p(G)$ and $f \in K(G)$. Then, for p = q/(q-1),

$$\left| \int fg \right| \leq \|g\|_{q} \|f\|_{p} \leq (p^{1/2} \|g\|_{q}) \|f\|_{\Lambda}.$$

This shows that $\|g\|_R \le (q/(q-1))^{1/2} \|g\|_q$ for all $g \in L^q(G)$. Next, consider the inclusion map $i \colon C(G) \to K(G)$ and its adjoint $i^* \colon K(G)^* \to M(G)$. We have the relations

$$\|i^*\| = \|i\| = \sup \{\|f\|_{\Lambda} / \|f\|_{\infty} \mid f \in C(G)\},$$

and by (2) the last member is at most $2^{-1/2}$. Taking $g \in C(G)$ and noting that $i^*(g) = g$, we see that $\|g\|_1 \leq 2^{-1/2} \|g\|_R$. Once we have shown that $L^1(G) \supset R(G)$, this norm inequality will hold for all $g \in R(G)$. We now show that $L^1(G) \supset R(G)$. Suppose $\{g_n\}$ is a Cauchy sequence in $\| \|_R$ of continuous functions. Since $\| \|_R$ is stronger than $\| \|_1$, the sequence $\{g_n\}$ converges to some g in $L^1(G)$, and some subsequence $\{g_n\}$ converges pointwise almost everywhere to g. Given $g \in S(G)$, take $g \in S(G)$ is a converge $g \in S(G)$. Clearly,

$$\begin{split} \Big| \int (g - g_n) f \Big| / \|f\|_{\Lambda} & \leq \int \lim_{k \to \infty} |g_{n_k} - g_n| |f| / \|f\|_{\Lambda} \\ \\ & \leq \liminf_{k \to \infty} \int |g_{n_k} - g_n| |f| / \|f\|_{\Lambda} \leq \liminf \|g_{n_k} - g_n\|_{R} \leq \epsilon \,. \end{split}$$

Therefore $g - g_n \in R(G)$ and $\|g - g_n\|_R \le \varepsilon$. It follows that $g \in R(G)$ and $L^1(G) \supset R(G)$.

Next, we show that $R(G)^* = K(G)$. Since the inclusion map i: $L^q(G) \to R(G)$ is dense for all q > 1, the adjoint i*: $R(G)^* \to L^p(G)$ is one-to-one for all $p < \infty$. Therefore $R(G)^* \subset \bigcap_{p < \infty} L^p(G)$. Take any $f \in R(G)^*$ and any $p < \infty$. Then there

exists a g \in L^q(G) such that $\left| \int fg \right| = \|f\|_p \|g\|_q$. Hence, by (1),

$$\|f\|_{R^*} \ge \left| \int fg \right| / \|g\|_{R} \ge \|f\|_{p} \|g\|_{q} / p^{1/2} \|g\|_{q}.$$

Therefore $\|f\|_{R^*} \ge \|f\|_{\Lambda}$, and $R(G)^* \subset K(G)$. On the other hand, for $f \in K(G)$ and $g \in R(G)$, we have the inequality $\left|\int fg\right| \le \|f\|_{\Lambda} \|g\|_{R}$. Therefore $\|f\|_{\Lambda} \ge \|f\|_{R^*}$ and $K(G) \subset R(G)^*$.

Finally, we show that (4) holds. For each g ϵ R(G), the translation map $\tau_g\colon G\to R(G)$ defined by $(\tau_g(x))(y)=g(y-x)$ is continuous. This follows from the facts that $\tau_f\colon G\to C(G)$ is continuous, that C(G) is dense in R(G), and that $\|\cdot\|_\infty$ is a stronger norm than $\|\cdot\|_R$. Now suppose f ϵ K(G) and g ϵ R(G). Then (4) follows immediately from the translation invariance of the $\|\cdot\|_{\Lambda^-}$ and $\|\cdot\|_R$ -norms and the continuity of $\tau_g\colon G\to R(G)$.

We define B(G) to be the set of functions f on g with a representation

$$f(x) = \sum_{n=1}^{\infty} \tilde{f}_n * g_n(x),$$

where $f_n(x) = f_n(-x)$, $f_n \in K(G)$, $g_n \in R(G)$, and $\sum_{n=1}^{\infty} \|f_n\|_{\Lambda} \|g_n\|_{R} < \infty$. In view of (4) of Proposition 1, the series for f converges uniformly. Therefore B(G) is a set of continuous functions. We give B(G) a norm by putting

$$\|\mathbf{f}\|_{\mathbf{B}} = \inf \sum_{n=1}^{\infty} \|\mathbf{f}_n\|_{\Lambda} \|\mathbf{g}_n\|_{\mathbf{R}},$$

where the infimum is taken over all representations of f. The features of B(G) that will concern us follow from some general theorems about tensor products of Banach modules (see [7] and [8]), once we have observed that B(G) is in fact such a tensor product. It is easily seen that K(G) is a (two-sided) Banach L¹(G)-module with respect to convolution. That is, for $\phi \in L^1(G)$ and $f \in K(G)$, the action of ϕ on f is given by $\phi * f$. We see that R(G) is a (two-sided) Banach L¹(G)-module, by letting the action of $\phi \in L^1(G)$ on $g \in R(G)$ be given by $\phi * g$. An almost word-for-word translation of [8, p. 76, Theorem 3.3] in terms of K(G) and R(G) shows that $K(G) \bigotimes_{L^1(G)} R(G)$ is isometrically isomorphic to B(G), the mapping being such that $f \bigotimes g$ corresponds to $\widetilde{f} * g$. Thus B(G) is a Banach space, and

$$\operatorname{Hom}_{\operatorname{L}^{1}(G)}\left(K(G),\,\operatorname{R}(G)^{*}\right)\,\,\widetilde{=}\,\,\left(K(G)\bigotimes_{\operatorname{L}^{1}(G)}\operatorname{R}(G)\right)^{*}.$$

The importance of this result lies in the fact that $\operatorname{Hom}_{L^1(G)}(K(G), R(G)^*)$ is the space of multipliers from K(G) to $R(G)^*$, and that $R(G)^* = K(G)$. Thus, denoting by M(K) the multipliers from K(G) to K(G), we see that

$$M(K) \cong B(G)^*$$
.

Moreover, this isomorphism is such that for each $\nu \in B(G)^*$ and its corresponding element $T_{\nu} \in M(K)$,

$$\langle g, T_{\nu} f \rangle = \langle \tilde{f} * g, \nu \rangle,$$

where $\langle \ , \ \rangle$ on the left denotes the dual pairing between R(G) and R(G)* = K(G), and $\langle \ , \ \rangle$ on the right denotes the dual pairing between B(G) and B(G)*. Another way of expressing this correspondence is to say that, for $\nu \in B(G)$ *, the function on Γ associated with $T_{\nu} \in M(K)$ is $\hat{\nu}$.

2. THE CONNECTION WITH Λ -SETS

If $E \subset \Gamma$, then $K_E(G)$, $R_E(G)$, and $B_E(G)$ are all closed subspaces of K(G), R(G), and B(G), respectively. This is an immediate consequence of the fact that the norms on these spaces are stronger than the $L^1(G)$ -norm.

PROPOSITION 2. If $E \subset \Gamma$ is a Λ -set, then

$$K_{-E}(G) \bigotimes_{L^1(G)} R_E(G) \cong B_E(G)$$
,

and the $\|\ \|_B$ -norm is equivalent to the $\|\ \|_{K_-E \bigotimes R_E}$ -norm on $B_E(G),$ although not isometric to it.

$$\textit{Proof.} \quad \text{Clearly, } K_{-E}(G) \bigotimes_{\text{L}^1(G)} R_E(G) \subset B_E(G) \ \text{ and } \| \ \|_{K_{-E} \bigotimes R_E} \geq \| \ \|_B \ .$$

To prove the other inclusion, consider χ_E , the characteristic function of E, which defines a multiplier T from $L^2(G)$ to $L^2_E(G)$ by the relation $\widehat{Tf} = \chi_E \, \widehat{f}$. Noting that E is a Λ -set if and only if $L^2_E(G) = K_E(G)$, we see, by restricting T to K(G), that T ϵ M(K) and that the range of T is $K_E(G)$. To estimate the norm of T, take f ϵ K(G), and suppose that C is the Λ -constant of E. Then

$$\|Tf\|_{\Lambda} \le C \|Tf\|_{2} \le C \|f\|_{2} \le C 2^{1/2} \|f\|_{\Lambda}$$

and therefore $\|T\|_{M(K)} \leq 2^{1/2} C$.

Suppose $f \in B_E(G)$, where $f = \sum_{n=1}^{\infty} \tilde{f}_n * g_n$ is a typical representation. Then

$$f = T(f) = T\left(\sum_{n=1}^{\infty} \widetilde{f}_n * g_n\right) = \sum_{n=1}^{\infty} T(\widetilde{f}_n * g_n) = \sum_{n=1}^{\infty} (T\widetilde{f}_n) * g_n.$$

Note that $T\widetilde{f}_n = \widetilde{h}_n$, where $h_n \in K_{-E}(G)$. In fact, $\widehat{h}_n = \chi_{-E} \widehat{f}_n$. Moreover, $\|h_n\|_{\Lambda} \leq 2^{1/2} C \|f_n\|_{\Lambda}$.

Since $S \in M(K)$, it follows that the adjoint S^* belongs to $M(K^*)$. The restriction of S^* to R(G) yields a multiplier from R(G) to $R_{\mathbb{E}}(G)$. This follows easily from the facts that R(G) is closed in $K(G)^*$ and that the continuous functions are dense in R(G) and are contained in K(G). Therefore

$$f = T^*(f) = \sum_{n=1}^{\infty} \tilde{h}_n * (T^*g_n),$$

where $\|\mathbf{T}^*\mathbf{g}_n\|_R \leq C 2^{1/2} \|\mathbf{g}_n\|_R$. Hence $\mathbf{f} \in K_{-E}(G) \bigotimes_{L^1(G)} R_E(G)$ and $\|\mathbf{f}\|_{K_{-E} \bigotimes_{R_E}} \leq 2 C^2 \|\mathbf{f}\|_B$.

We remark that for each $E \subset \Gamma$,

$$A_{E}(G) \cong L_{-E}^{2}(G) \bigotimes_{L^{1}(G)} L_{E}^{2}(G)$$
 and $\| \|_{A} = \| \|_{L_{-E}^{2} \bigotimes L_{E}^{2}}$.

In preparation for the main theorem, we shall prove a probabilistic result, for which we need the following notation. Let Ω be the interval [0,1], and let p denote Lebesgue measure. Consider the Rademacher functions ε_n : $\Omega \to \{-1,1\}$ defined by $\varepsilon_n(\omega) = (-1)^{m-1}$ if $\omega \in [(m-1)2^{-n}, m2^{-n})$ and $\varepsilon_n(1) = -1$, where $n = 0, 1, 2, \cdots$. For each $f \in L^2(G)$, select an enumeration γ_0 , γ_1 , \cdots of the support of \hat{f} , and define $f_\omega \in L^2(G)$ by $\hat{f}_\omega(\gamma_n) = \varepsilon_n(\omega) \hat{f}(\gamma_n)$.

PROPOSITION 3. If $f \in L^2(G)$, then the following statements hold.

- (a) $p\{\omega \in \Omega \mid f_{\omega} \in K(G)\} = 1$.
- (b) For each $\epsilon > 0$, there exists an N (depending on f and ϵ) such that $\|f_{\omega}\|_{\Lambda} \leq N \|f\|_{2}$ for all ω except possibly a set of measure less than ϵ .
 - (c) For each $f \in L^2(G)$, there exists an $\omega \in \Omega$ such that $\|f_{\omega}\|_{\Lambda} \leq 16 \|f\|_2$.

Proof. We shall use the following well-known theorem [10, p. 214]. Let $\{u_n\}$ be a sequence of complex numbers such that $\sum_{n=0}^{\infty} |u_n|^2 = r^2 < \infty$, and let $g(\omega) = \sum_{n=0}^{\infty} u_n \epsilon_n(\omega)$. Then $\exp(\lambda |g(\cdot)|^2) \in L^1(\Omega)$ for every $\lambda > 0$, and

$$\int_{\Omega} \, \exp\left(\lambda \, \big| \, g(\omega) \big|^2 \right) d\omega \, = \, \sum_{k=0}^{\infty} \, \frac{\lambda^k}{k\,!} \, \int_{\Omega} \, \big| \, g(\omega) \big|^{2k} \, d\omega \, \leq \, \sum_{k=0}^{\infty} \, \frac{k^k}{k\,!} \, (4\lambda \, \mathbf{r}^2)^k \, \leq \, \sum_{k=0}^{\infty} \, (4e\lambda \, \mathbf{r}^2)^k \, \, .$$

Consider the series

(1)
$$\sum_{n=0}^{\infty} \hat{f}(\gamma_n) \langle x, \gamma_n \rangle \varepsilon_n(\omega) .$$

Since $f \in L^2(G)$, we can apply the theorem to the series (1) with $e\lambda = (8r^2)^{-1}$, and we obtain the inequality

$$\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \int_{\Omega} |f_{\omega}(x)|^{2k} d\omega \leq 2.$$

Integrating both sides over G and switching sums and integrals, we see that

(2)
$$\int_{\Omega} \left(\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} \left\| f_{\omega} \right\|_{2k}^{2k} \right) d\omega \leq 2.$$

Put $E_n=\{\omega \mid \text{ integrand in (2) is at most } 2n\}$; then clearly $p(\Omega \setminus E_n) \leq 1/n$ and $p(E_n) \geq 1-1/n$. If $\omega \in E_n$, then

$$\frac{\lambda^k}{k!} \left\| f_{\omega} \right\|_{2k}^{2k} \leq 2n \quad \text{for } k = 1, 2, \cdots.$$

Using $e\lambda$ = $(8r^2)^{-1}$ and $k\,! \le (k+1)^{k+1}\,/\,e^k$, we see that

(3)
$$(2k)^{-1/2} \|f_{\omega}\|_{2k} \le ((k+1)/k)^{1/2} (k+1)^{1/2k} (2n)^{1/2k} 2r.$$

Hence there exists a constant K_n such that

$$(2k)^{-1/2} \|f_{\omega}\|_{2k} \le K_n \|f\|_2$$
 for all $k = 1, 2, \dots$

Therefore $\|f_{\omega}\|_{\Lambda} \leq 2^{1/2} K_n \|f\|_2$ for all $\omega \in E_n$; this proves (a) and (b). As for (c), set n=2 in (3).

PROPOSITION 4. A(G) \subset B(G) \subset C(G) and $2^{9/2} \parallel \parallel_A \geq \parallel \parallel_B \geq \parallel \parallel_{\infty}$.

Proof. Take $f \in B(G)$, where $f = \sum_{n=1}^{\infty} \tilde{f}_n * g_n$. Then

$$\|f\|_{\infty} \leq \sum_{n=1}^{\infty} \|\widetilde{f}_n * g_n\|_{\infty} \leq \sum_{n=1}^{\infty} \|f_n\|_{\Lambda} \|g_n\|_{R}.$$

Since this holds for all representations, $\|f\|_{\infty} \le \|f\|_{B}$. That $B(G) \subset C(G)$ was observed earlier.

Now take $h \in A(G)$. Choose f and $g \in L^2(G)$ so that $\hat{f}\hat{g} = \hat{h}$ and $|\hat{f}| = |\hat{g}| = |\hat{h}|^{1/2}$. By Proposition 3, there exists a sign change $\omega \in \Omega$ such that $\hat{f}_{\omega} \in K(G)$ and $||\tilde{f}_{\omega}||_{\Lambda} \leq 16 ||\tilde{f}||_{2}$. Note that $\hat{f}_{\omega}\hat{g}_{\omega} = \hat{f}\hat{g}$ and hence $\hat{f}_{\omega} * g_{\omega} = h$. Thus $\hat{f}_{\omega} * g_{\omega}$ is a representation of h as an element of B(G), and

$$\|h\|_{B} \leq \|\tilde{f}_{\omega}\|_{\Lambda} \|g_{\omega}\|_{R} \leq 16 \|\tilde{f}\|_{2} 2^{1/2} \|g_{\omega}\|_{2} = 2^{9/2} \|\hat{\tilde{f}}\|_{2} \|\hat{g}\|_{2} = 2^{9/2} \|\hat{h}\|_{1}.$$

Finally we prove the main result of this paper.

THEOREM. $E \subset \Gamma$ is a Λ -set if and only if $A_E(G) = B_E(G)$.

Proof. We observe first that $(L_E^2(G))^* = L_E^2(G)$. Now suppose E is a Λ -set. Then, as we noted earlier, $L_E^2(G) = K_E(G)$. Take $g \in R_E(G)$. Then

$$\begin{split} \left\| \mathbf{g} \right\|_{R} &\geq \sup_{\mathbf{f} \in K_{\mathbf{E}}(G)} \frac{\left| \left\langle \mathbf{f}, \mathbf{g} \right\rangle \right|}{\left\| \mathbf{f} \right\|_{\Lambda}} \geq \sup_{\mathbf{f} \in K_{\mathbf{E}}(G)} \frac{\left| \left\langle \mathbf{f}, \mathbf{g} \right\rangle \right|}{\left\| \mathbf{f} \right\|_{2}} \\ &= \frac{1}{C} \sup_{\mathbf{f} \in L_{\mathbf{E}}^{2}(G)} \frac{\left| \left\langle \mathbf{f}, \mathbf{g} \right\rangle \right|}{\left\| \mathbf{f} \right\|_{2}} = \frac{1}{C} \left\| \mathbf{g} \right\|_{(L_{\mathbf{E}}^{2}(G))^{*}} = \frac{1}{C} \left\| \mathbf{g} \right\|_{2}. \end{split}$$

Hence $R_E(G) = L_E^2(G)$, $K_{-E}(G) = L_{-E}^2(G)$, and therefore

$$K_{-E}(G)\bigotimes_{L^1(G)}R_E(G) = L^2_{-E}(G)\bigotimes_{L^1(G)}L^2_E(G).$$

Using Proposition 2 and the fact that $L_{-E}^2(G) \bigotimes_{L^1(G)} L_E^2(G)$ is isometrically equal to $A_E(G)$, we see that $A_E(G) = B_E(G)$.

Now suppose $A_E(G) = B_E(G)$. Then $B_E(G)^* = A_E(G)^*$. Since $A_E(G)^*$ can be identified with $\ell^\infty(E)$, the relation $B_E(G)^* = A_E(G)^*$ implies the existence of a constant C with the property that for each $\phi \in \ell^\infty(E)$ and each $\epsilon > 0$, there exists a $\nu \in B(G)^*$ such that $\widehat{\nu}(\gamma) = \phi(\gamma)$ for all $\gamma \in E$ and such that $\|\nu\|_{B^*} \leq C \|\phi\|_\infty + \epsilon$. Since $B(G)^*$ can be identified with M(K), there exists a $T \in M(K)$ such that $\widehat{Tf} = \widehat{\nu}\widehat{f}$ and $\|T_{\nu}\|_{M(K)} \leq C \|\phi\|_\infty + \epsilon$.

Now suppose $f \in L_E^2(G)$. By Proposition 3, there exists a ± 1 -valued function ϕ on E such that $\phi \hat{f}$ is the Fourier transform of a function in $K_E(G)$. Since $\hat{f}(\gamma) = 0$ for all $\gamma \not\in E$, we see that

$$\hat{\mathbf{f}} = \phi(\phi \hat{\mathbf{f}}) = \hat{\nu}(\hat{\nu} \hat{\mathbf{f}}) = \hat{\nu}(\widehat{\mathbf{T}}\hat{\mathbf{f}}) = (\mathbf{T}(\mathbf{T}\mathbf{f}))^{\hat{}}$$

and therefore f = T(Tf). But Tf ϵ K(G), by the choice of ϕ ; moreover, T ϵ M(K); therefore f ϵ K_E(G) and $\|f\|_{\Lambda} \leq$ (C + ϵ) 16 $\|f\|_{2}$. This shows that L²_E(G) = K_E(G), and this is equivalent to the assertion that E is a Λ -set.

REFERENCES

- 1. G. Benke, Arithmetic structure and lacunary Fourier series. Proc. Amer. Math. Soc. 34 (1972), 128-132.
- 2. R. E. Edwards, E. Hewitt, and K. A. Ross, Lacunarity for compact groups. I. Indiana Univ. Math. J. 21 (1971/72), 787-806.
- 3. A. Figà-Talamanca, Multipliers of p-integrable functions. Bull. Amer. Math. Soc. 70 (1964), 666-669.
- 4. ——, Translation invariant operators in L^p. Duke Math. J. 32 (1965), 495-501.
- 5. A. Figà-Talamanca and D. Rider, A theorem of Littlewood and lacunary series for compact groups. Pacific J. Math. 16 (1966), 505-514.
- 6. M.-P. Malliavin-Brameret and P. Malliavin, Caractérization arithmétique d'une classe d'ensembles de Helson. C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A192-A193.
- 7. M. A. Rieffel, *Induced Banach representations of Banach algebras and locally compact groups*. J. Functional Analysis 1 (1967), 443-491.
- 8. ——, Multipliers and tensor products of L^p-spaces of locally compact groups. Studia Math. 33 (1969), 71-82.
- 9. W. Rudin, Fourier analysis on groups. Interscience Publ., New York, 1962.
- 10. A. Zygmund, *Trigonometric series*. Vol. I. Second edition. Cambridge Univ. Press, London-New York, 1968.

Georgetown University Washington, D.C. 20007