FOLIATIONS AND LOCALLY FREE TRANSFORMATION GROUPS OF CODIMENSION TWO

Lawrence Conlon

INTRODUCTION

Let M be a manifold with a smooth foliation $\widetilde{\mathscr{F}}$ of codimension q. Let E be the bundle of tangents to the leaves, and let Q = T(M)/E be the normal bundle. Imbed Q as E^{\perp} in T(M) once and for all via any Riemannian metric on M.

There is a fairly standard notion (see [1], for example) of a transverse H-structure for $\mathscr F$, where H is a Lie subgroup of the group GL_q of $q\times q$ real nonsingular matrices. This is an H-reduction of Q that is invariant under the natural parallelism along leaves.

In the case where H is the group $G_{\boldsymbol{k}}$ of all matrices of the form

$$\begin{bmatrix} I_k & 0 \\ A & B \end{bmatrix}$$

where B ϵ GL_{q-k}, the existence of a transverse G_k-structure means that some normal k-frame field (Y_1, \cdots, Y_k) is invariant under the linear holonomy of each leaf. Equivalently [1, Corollary 1.5], we require $[Y_i, \Gamma(E)] \subset \Gamma(E)$ for $i = i, \cdots, k$. Letting $V = \operatorname{span}_R \{Y_1, \cdots, Y_k\}$, we say that the G_k-structure is complete if each $Z \in V$ is a complete vector field on M (a condition that is automatic if M is compact).

Definition. $\rho(\mathscr{F})$ is the largest integer k for which \mathscr{F} admits a complete transverse G_k -structure.

In particular, the statement $\rho(\mathscr{F}) = q$ means that \mathscr{F} is a transversally complete e-foliation in the sense of [1], while the statement $\rho(\mathscr{F}) = 0$ means that \mathscr{F} is not invariant under any nonsingular transverse flow on M.

In this paper we investigate the invariant $\rho(\mathscr{F})$ for the case q=2, special applications being made to the situation in which the leaves of \mathscr{F} are the orbits of a locally free Lie transformation group. It will be seen that this amounts to a generalization of results of E. Lima, H. Rosenberg, R. Sacksteder and S. P. Novikov on the rank and file of manifolds (see [5], [7], [8], [9], [11]).

Our basic result is Theorem 1. The term "vanishing cycle" which appears in that theorem, by now standard for foliations of codimension one ([3], [6], [1, Section 6]), is defined for higher codimension in a fairly obvious way in Section 1.

THEOREM 1. Let M be closed and connected, $\operatorname{codim}(\mathscr{F}) = 2$, and suppose that \mathscr{F} admits no vanishing cycle. Then the condition $\rho(\mathscr{F}) \geq 1$ implies that $\pi_1(M)$ is infinite, and that if it is abelian it has rank at least 2.

Received September 10, 1973.

Michigan Math. J. 21 (1974).

It is obvious from the definition (*) in Section 1 that, if a leaf $A \in \mathcal{F}$ supports a vanishing cycle, then the mapping $\pi_1(A) \to \pi_1(M)$ induced by the leaf inclusion has nontrivial kernel. The following corollary is an immediate consequence.

COROLLARY 1. Let M be closed and connected, with $codim(\mathscr{F}) = 2$. If the mapping $\pi_1(A) \to \pi_1(M)$ is one-to-one for each leaf A of \mathscr{F} (a condition that is satisfied, for example, if each leaf is simply connected), and if in addition $\pi_1(M)$ is finite or is abelian and has rank at most 1, then $\rho(\mathscr{F}) = 0$.

Before stating the second theorem, we briefly discuss its background. Recall that the *file* of a manifold M is the largest integer r for which there exists a smooth, locally free action of R^r on M, and the rank of M is the largest r such that there exists a set of everywhere linearly independent, pairwise commuting vector fields $\{X_1, \cdots, X_r\}$ on M. For compact manifolds, these concepts coincide; but the rank of an open manifold may be greater than its file.

If R^{r+1} has a smooth, locally free action on M, and if $\mathscr F$ is the foliation of M by the orbits of $R^r \subset R^{r+1}$, then clearly $\rho(\mathscr F) \geq 1$. Thus, if it can be shown that $\rho(\mathscr F) = 0$ for every foliation $\mathscr F$ by orbits of locally free actions of R^r , we conclude in particular that the file of M is at most r (hence, if M is compact, rank(M) $\leq r$). Of course, the condition $\rho(\mathscr F) = 0$ is stronger because it implies that $\mathscr F$ is not invariant under any nonsingular transverse flow.

It is known that rank $(S^3) = 1$ (Lima [5]), rank $(S^1 \times S^2) = 1$ (Rosenberg [8]), rank $(T^{n-2} \times S^2) = n - 2$ (Novikov [7, Theorem 9.5]), rank $(M^n) \le n - 2$ if M^n is compact and $\pi_1(M)$ is finite (Sacksteder [14, Theorem 9], see also Rosenberg [9, Theorem 1.7]), and the file of a 3-manifold is one if $\pi_2(M) \ne 0$ (Rosenberg [11]). The following result generalizes all of these facts.

THEOREM 2. Let M be a connected n-manifold, and let G be a connected Lie group of dimension n - 2 having a smooth, locally free action on M. Let F be the foliation of M by the G-orbits, and suppose $\rho(\mathcal{F}) \geq 1$. Then the following statements hold,

- (1) $\pi_2(\mathbf{M}) = 0$.
- (2) If M is compact, then $\pi_1(M)$ is infinite, and if it is abelian, it has rank at least 2.
- (3) If G is contractible, M is compact, and $\pi_1(M)$ is abelian, then rank $(\pi_1(M)) \ge n 1$.

While it is not a direct corollary of Theorem 1, this result is readily deduced from the considerations which yield that theorem (see Section 3). Crucial for this is Proposition 2, which generalizes a result of Novikov [7, Lemma 9.3] and asserts that a foliation by orbits of a locally free Lie transformation group admits no vanishing cycles. Indeed, a unified understanding of many of the known results about rank and file centers on the phenomenon of the vanishing cycle; this is clear in Novikov's work [7, pp. 302-304] and implicit in Rosenberg's paper [11] (compare the deformations in [11] with [7, pp. 287-288]).

In the following corollaries to Theorem 2, we fix the hypothesis that M is a compact connected 3-manifold and \mathscr{F} is a foliation of M by curves, with $\rho(\mathscr{F}) \geq 1$.

COROLLARY 2. The universal cover $\hat{\mathbf{M}}$ is contractible, hence $\pi_1(\mathbf{M})$ is infinite and contains no element of finite order.

COROLLARY 3. If the commutator $[\pi_1(M), \pi_1(M)]$ is finitely generated and of infinite index in $\pi_1(M)$, then M is a fiber bundle over S^1 whose fiber is a closed 2-manifold of genus at least 1.

COROLLARY 4. If $\pi_1(M)$ is abelian, then $M \cong T^3$.

By reason of [13], one might guess that a closed connected 3-manifold admitting a foliation $\mathscr F$ by curves with $\rho(\mathscr F) \geq 1$ must be an orientable T^2 -bundle over S^1 . This is false. Indeed, the tangent circle bundle to any closed orientable surface of genus ≥ 2 has the form $SL(2, R)/\Gamma$, where Γ is a discrete subgroup, hence supports a pair of everywhere linearly independent vector fields X, Y with [X, Y] = Y.

It would be interesting to know whether some odd-dimensional sphere supports a foliation by curves with $\rho(\mathcal{F}) > 1$.

Throughout this paper, everything in sight is assumed to be smooth of class C^k for $k \geq 2$.

1. VANISHING CYCLES

The notion discussed here is due, in codimension one, to Novikov [7], although the terminology "vanishing cycle" is due to other authors (see [3] and [6] for example). The following definition generalizes the concept to higher codimensions.

- (*) *Definition*. Suppose that \mathscr{T} is a foliation of M of codimension $q \geq 1$, that $L_0 \in \mathscr{F}$, and that $\sigma_0 \colon S^1 \to L_0$ is smooth. The loop σ_0 is called a *vanishing cycle* if there exists a smooth mapping $F \colon S^1 \times [0, 1] \to M$ such that
 - (1) $F(\theta, 0) = \sigma_0(\theta)$ for each $\theta \in S^1$,
 - (2) for each $\theta \in S^1$, the curve $s_{\theta}(\lambda) = F(\theta, \lambda)$ is transverse to \mathcal{F} ,
- (3) for each λ in [0, 1], the curve $\sigma_{\lambda}(\theta) = F(\theta, \lambda)$ defines a loop σ_{λ} on a leaf $L_{\lambda} \in \mathcal{F}$,
 - (4) σ_0 is not nullhomotopic on L_0 ,
 - (5) $\sigma_{\lambda} \sim 0$ on L_{λ} for $0 < \lambda \le 1$.

LEMMA 1. The property of being a vanishing cycle is invariant under base-point-preserving homotopy; hence it is a property of $[\sigma_0] \in \pi_1(L_0, x_0)$.

LEMMA 2. Let σ_0 and F satisfy the conditions in (*). Let $\overline{F} \colon S^1 \times [0, 1] \to M$ be a smooth mapping such that (1) and (2) of (*) hold, and let $\overline{F}(\theta, \lambda)$ lie on the same local leaf of $\mathscr F$ as $F(\theta, \lambda)$, for all θ, λ . Let $\overline{\sigma}_{\lambda}(\theta) = \overline{F}(\theta, \lambda)$. Then there exists an $\epsilon > 0$ such that $\overline{\sigma}_{\lambda} \sim 0$ on L_{λ} $(0 < \lambda \leq \epsilon)$.

Indeed, if ϵ is positive and sufficiently small, then for $0 < \lambda \le \epsilon$ the path $\overline{\sigma}_{\lambda}$ approximates σ_{λ} uniformly, in the topology of L_{λ} . Hence we see that $\overline{\sigma}_{\lambda} \sim \sigma_{\lambda} \sim 0$ on L_{λ} . Lemma 1 is conveniently deduced from Lemma 2. Here, take σ_{0} and F as in (*), let $U \subset L_{0}$ be an open, relatively compact neighborhood of $\sigma_{0}(S^{1})$, let N be a normal neighborhood of U in M with fibers whose radius is bounded away from zero, and use the normal fibers ν_{θ} through $\sigma_{0}(\theta)$ to define the point $\overline{F}(\theta,\lambda)$ on ν_{θ} in the same local leaf as $F(\theta,\lambda)$, for sufficiently small values of λ . Then the curve $\overline{s}_{\theta}(\lambda) = \overline{F}(\theta,\lambda)$ lies along the normal fibers ν_{θ} , for each $\theta \in S^{1}$. By a suitable change of the parameter λ , we see from Lemma 2 that $\overline{\sigma}_{\lambda} \sim 0$ on L_{λ} when $0 < \lambda \le 1$. But now a whole base-point-preserving homotopy of σ_{0} on L_{0} can be lifted along the normal fibers out to each L_{λ} , where $U \subset L_{0}$ is rechosen, if necessary, to contain the entire homotopy.

The following is completely obvious.

LEMMA 3. If $\sigma_0 \colon S^1 \to L_0 \in \mathscr{F}$ is a vanishing cycle, then $[\sigma_0] \in \pi_1(L_0, x_0)$ is a nontrivial element of the kernel of the homomorphism $\pi_1(L_0, x_0) \to \pi_1(M, x_0)$.

In codimension one, useful criteria for the existence of vanishing cycles are given by a theorem of Novikov.

THEOREM 3 (see [7, Theorem 6.1]). Under each of the following conditions, a codimension-one foliation \mathcal{F} of a connected manifold M admits a vanishing cycle.

- (a) M is compact and $\pi_1(M)$ is finite.
- (b) $\pi_1(A) \to \pi_1(M)$ has nontrivial kernel for some $A \in \mathcal{F}$.
- (c) $\pi_2(M) \neq 0$ and $\pi_2(A) = 0$ for each $A \in \mathcal{F}$.
- (d) There exists a closed nullhomotopic transversal to F.

The proof of (c) in [7] seems particularly obscure, but the basic deformations needed there are described quite well in [11] (although for a slightly different purpose). It is not difficult to tidy up the proofs of the other parts.

Suppose that $\rho(\mathscr{F}) \geq 1$, and let $Z \in \Gamma(Q)$ be nowhere zero and invariant under the linear holonomy of each leaf. Suppose further that Z is a complete vector field on M (this is always the case if M is compact). Then, as in [1, Proposition 2.1], there exists a foliation \mathscr{F}_Z of codimension q-1 that has tangent bundle generated by E and Z. Each leaf $L \in \mathscr{F}_Z$ is foliated in codimension one by leaves of \mathscr{F} , this foliation being denoted by $\mathscr{F} \mid L$. Therefore $\mathscr{F} \mid L$ is a transversally complete efoliation in the sense of [1] (thus $\rho(\mathscr{F} \mid L) = \operatorname{codim}(\mathscr{F} \mid L) = 1$), the e-structure being given by $Z \mid L$. By [1, Theorem 5.5], we can make the following assertions. Here the notation \hat{X} denotes the universal cover of X.

LEMMA 4. If $L \in \mathcal{F}_Z$ and $A \in \mathcal{F} \mid L$, then $\hat{L} \cong \hat{A} \times R$, the foliation of \hat{L} by the leaves $\hat{A} \times \{t\}$ being the lift of the foliation $\mathcal{F} \mid L$. Furthermore, all leaves of $\mathcal{F} \mid L$ are mutually diffeomorphic, and either all or none are closed in the manifold topology of L.

LEMMA 5. If $L \in \mathcal{F}_Z$, $A \in \mathcal{F} \mid L$, then the inclusion map induces a monomorphism $\pi_1(A) \to \pi_1(L)$.

Suppose that $L \in \mathcal{F}_Z$ and $x \in L$, and let A denote the leaf of $\mathcal{F} \mid L$ containing x. Identify $\pi_1(A, x)$ with its monomorphic image in $\pi_1(L, x)$, and let $\pi_T(L, x)$ denote the subset of elements $[\sigma] \in \pi_1(L, x)$ that can be represented by a closed transversal σ to $\mathcal{F} \mid L$. Here we do not count the trivial loop as a closed transversal.

LEMMA 6.
$$\pi_1(A, x) \cap \pi_T(L, x) = \emptyset$$
 and $\pi_1(L, x) = \pi_1(A, x) \cup \pi_T(L, x)$.

Proof. Let $\hat{\sigma}$ be a lift of σ to $\hat{\mathbf{L}} = \hat{\mathbf{A}} \times \mathbf{R}$. Either $\hat{\sigma}$ begins and ends on the same leaf $\hat{\mathbf{A}} \times \{\mathbf{t}\}$ or it does not, and this depends only on the class $[\sigma] \in \pi_1(\mathbf{L}, \mathbf{x})$. In the first case, $[\sigma] \in \pi_1(\mathbf{A}, \mathbf{x})$, and in the second case, $[\sigma] \in \pi_T(\mathbf{L}, \mathbf{x})$.

PROPOSITION 1. If \mathcal{F}_Z admits a vanishing cycle, so does \mathcal{F} .

Proof. Let $\sigma_0 \colon S^1 \to L_0$ be a vanishing cycle for \mathscr{F}_Z . If $[\sigma_0] \in \pi_T(L_0, x_0)$, then nearby displacements $\sigma_\lambda \colon S^1 \to L_\lambda$ have the property that $[\sigma_\lambda] \in \pi_T(L_\lambda, x_\lambda)$, hence σ_λ cannot be nullhomotopic on L_λ for small $\lambda > 0$. Thus $[\sigma_0] \in \pi_1(A_0, x_0)$, where $A_0 \in \mathscr{F} \mid L_0$. By Lemma 1, we lose no generality in assuming $\sigma_0 \colon S^1 \to A_0$. Let the mapping $F \colon S^1 \times [0, 1] \to M$ satisfy the condition in (*) relative to the foliation \mathscr{F}_Z . Observe that local-product coordinate neighborhoods for the foliation \mathscr{F}_Z can also be chosen so that they are simultaneously local-product neighborhoods for

 \mathscr{F} . Let U_0 , U_1 , \cdots , $U_r = U_0$ be a sequence of such neighborhoods chosen so that $\sigma_0[t_i, t_{i+1}] \subset U_i$ ($0 \le i \le r - 1$), where

$$[1, t_1] = [t_0, t_1], [t_1, t_2], \dots, [t_{r-1}, t_r] = [t_{r-1}, 1]$$

partitions S1 into consecutive closed subarcs. One can assume that

$$F([t_i, t_{i+1}] \times [0, 1]) \subset U_i \quad (0 \le i \le r - 1),$$

by reparametrizing along the second coordinate if necessary. Using the local-product structure in each U_i consecutively, one replaces $F \mid ([1, t_{r-1}] \times [0, 1])$ by a mapping $\widetilde{F} \colon [1, t_{r-1}] \times [0, 1] \to M$ such that

- (1) $\tilde{\mathbf{F}}(\theta, 0) = \sigma_0(\theta)$ for each $\theta \in [1, t_{r-1}]$,
- (2) for each $\theta \in [1, t_{r-1}]$, the formula $\tilde{s}_{\theta}(\lambda) = \tilde{F}(\theta, \lambda)$ ($0 \le \lambda \le 1$) defines a path \tilde{s}_{θ} transverse to \mathcal{F} , and $\tilde{s}_{1} = s_{1}$,
 - (3) $\widetilde{\sigma}_{\lambda}(\theta) = \widetilde{F}(\theta, \lambda) \in A_{\lambda} \in \mathscr{F} \mid L_{\lambda} \text{ for each } \lambda \in [0, 1].$

Since the \mathscr{F}_Z -holonomy of σ_0 leaves fixed the points of R^{q-1} corresponding to the points $\widetilde{s}_1(\lambda) = s_1(\lambda)$, when λ is sufficiently small, we see that, for some $\epsilon > 0$, the point $\widetilde{\sigma}_{\lambda}(t_{r-1})$ lies on the same local leaf of \mathscr{F}_Z in $U_r = U_0$ as $\widetilde{\sigma}_{\lambda}(1)$ ($0 \le \lambda \le \epsilon$). Again we can suppose $\epsilon = 1$. If, in fact, $\widetilde{\sigma}_{\lambda}(t_{r-1})$ lies on the same local leaf of \mathscr{F} in $U_r = U_0$ as $\widetilde{\sigma}_{\lambda}(1)$, for each $\lambda \in [0, 1]$, then \widetilde{F} can be completed to a mapping $\overline{F}\colon S^1\times [0, 1]\to M$ such that properties (1) to (4) of (*) hold relative to the foliation \mathscr{F} . In this case Lemma 2 implies that $\overline{\sigma}_{\lambda}\sim 0$ on $L_{\lambda}\in \mathscr{F}_Z$, for all sufficiently small $\lambda>0$. Therefore Lemma 5 implies that $\widetilde{\sigma}_{\lambda}\sim 0$ on $A_{\lambda}\in \mathscr{F}$ for all sufficiently small $\lambda>0$. Thus σ_0 will be a vanishing cycle for \mathscr{F} . The problem, then, is to show that $\widetilde{\sigma}_{\lambda}(t_{r-1})$ and $\widetilde{\sigma}_{\lambda}(1)$ lie on the same local leaf of \mathscr{F} in $U_r = U_0$ for all sufficiently small $\lambda>0$. If not, \widetilde{F} can still be completed to $\widetilde{F}\colon S^1\times [0,1]\to M$ so that conditions (1) to (4) of (*) hold relative to the foliation \mathscr{F}_Z , and, by Lemma 2, one can also assume condition (5). For some $\lambda>0$, we can assert that $\widetilde{\sigma}_{\lambda}\sim 0$ on L_{λ} , that $\widecheck{\sigma}_{\lambda}[1,t_{r-1}]\subset A_{\lambda}\in \mathscr{F}[L_{\lambda}$, and that $\widecheck{\sigma}_{\lambda}(t_{r-1})$ and $\widecheck{\sigma}_{\lambda}(1)$ are on different local leaves of \mathscr{F} ; indeed, we can assume that $\widecheck{\sigma}_{\lambda}[t_{r-1},1]$ is transverse to $\mathscr{F}[L_{\lambda}]$. Arguing exactly as in [3, Lemme 1], we deform $\widecheck{\sigma}_{\lambda}$ to a closed transversal to $\mathscr{F}[L_{\lambda}]$. This transversal, being nullhomotopic on L_{λ} , cannot exist (see Lemma 6).

2. PROOF OF THEOREM 1

We suppose that M is compact and connected, $\operatorname{codim}(\mathscr{F}) = 2$, and $\rho(\mathscr{F}) \geq 1$. We also suppose that the vector field $Z \in \Gamma(Q)$ and the foliation \mathscr{F}_Z satisfy the conditions preceding Lemma 4.

If \mathscr{F} does not admit a vanishing cycle, then, by Proposition 1, neither does \mathscr{F}_Z . By Theorem 3, which applies since $\operatorname{codim}(\mathscr{F}_Z)=1$, the group $\pi_1(M)$ is infinite. Note that Theorem 3 also implies, for each $\mathbf{L} \in \mathscr{F}_Z$, that the homomorphism $\pi_1(\mathbf{L}) \to \pi_1(M)$ is one-to-one.

Continuing to suppose that $\mathscr F$ admits no vanishing cycle, we further assume that $\pi_1(M)$ is abelian. No generality will be lost in assuming transverse orientability of $\mathscr F$, since this can be brought about by passing to a 2-fold covering. We must show

that the abelian group $\pi_1(M)$ has rank at least 2. To this end we consider two cases, according as \mathscr{F}_Z does or does not admit a compact leaf.

First we suppose that no leaf of \mathscr{F}_Z is compact. Then, by a theorem of Moussu and Roussarie [6, Théorème 2], the facts that $\pi_1(M)$ is abelian and that \mathscr{F}_Z admits no vanishing cycle imply that \mathscr{F}_Z admits no limit cycle. Then a theorem of Novikov [7, Theorem 5.1] (see also [1, Theorem 5.5], [9]) implies that each leaf L $\in \mathscr{F}_Z$ has the property that $\pi_1(M)/\pi_1(L) = \mathbb{Z}^k$, where $k \geq 1$, with k = 1 if and only if L is closed in M. Thus, in our case, $k \geq 2$ and therefore rank $(\pi_1(M)) \geq 2$.

Suppose that \mathscr{F}_Z admits a compact leaf. If all leaves are compact, then the holonomy of each leaf is finite. But transverse orientability for \mathscr{F} implies the same for \mathscr{F}_Z , hence the holonomy of each L ϵ \mathscr{F}_Z is trivial. Thus \mathscr{F}_Z is the foliation of M by the fibers of a bundle M \to S\(^1\). Each L ϵ \mathscr{F}_Z is compact with $\hat{L} = \hat{A} \times R$, hence the abelian group $\pi_1(L)$ has rank at least 1. The exact sequence

$$0 \rightarrow \pi_1(L) \rightarrow \pi_1(M) \rightarrow \pi_1(S^1) \rightarrow 0$$

then shows that rank $(\pi_1(M)) \ge 2$. We may assume, therefore, that \mathscr{F}_Z admits both compact and noncompact leaves.

Suppose that for some L ϵ \mathscr{F}_Z , the leaves of \mathscr{F} | L are not closed in L (if one fails to be closed, then by Lemma 4 they all do). If L is compact, then [1, Theorem 5.5] again applies and shows that $\mathrm{rank}\,(\pi_1(\mathrm{L}))\geq 2$. Since the homomorphism $\pi_1(\mathrm{L})\to\pi_1(\mathrm{M})$ is one-to-one, we see that $\mathrm{rank}\,(\pi_1(\mathrm{M}))\geq 2$. If, on the other hand, L is noncompact, let $\tau\colon S^1\to \mathrm{L}$ be a closed transversal to \mathscr{F} | L (constructed as in [3, Lemme 1]), and note that τ fails to be nullhomotopic because of Lemma 4, and that similarly \mathscr{F}_Z admits a closed transversal $\sigma\colon S^1\to \mathrm{M}$. By Theorem 3 and the fact that \mathscr{F}_Z admits no vanishing cycles, σ also fails to be nullhomotopic in M. Likewise, all iterates σ^r and τ^r ($r\neq 0$) fail to be nullhomotopic, and, in addition, σ^r is not base-point homotopic to a loop on L. In order to verify the last assertion, we suppose it is false and lift σ^r to a transversal s on m0, s necessarily beginning and ending on the same covering leaf m1 of L. We then construct a closed nullhomotopic transversal on m2. It follows that m3 and m4 generate a free abelian subgroup of rank 2 in m4 follows that m5 generate a free abelian subgroup of rank 2 in m5.

We are now reduced to assuming that \mathscr{F}_Z admits both compact and noncompact leaves and that the leaves of $\mathscr{F} \mid L$ are closed in L, for all L $\in \mathscr{F}_Z$. If L $\in \mathscr{F}_Z$ is a compact leaf, then $\mathscr{F} \mid L$ is an e-foliation by closed leaves, hence L is a bundle L $\to S^1$, and rank $(\pi_1(L)) \geq 1$. Since $\pi_1(L) \to \pi_1(M)$ is one-to-one, rank $(\pi_1(M)) \geq 1$.

We shall suppose that rank $(\pi_1(M)) = 1$ and produce a contradiction. Since M is compact, we see that $\pi_1(M) = \mathbb{Z} \oplus T$, where T is a finite group.

If L ϵ \mathscr{F}_Z is compact and A ϵ \mathscr{F} L, then $\pi_1(A)$ is finite. Indeed, by the theorem of Novikov already cited [7, Theorem 5.1], $\pi_1(L)/\pi_1(A) \cong \mathbb{Z}$ while rank $(\pi_1(L)) \leq 1$; therefore the exact sequence

$$0 \rightarrow \pi_1(A) \rightarrow \pi_1(L) \rightarrow \pi_1(L)/\pi_1(A) \rightarrow 0$$

shows that rank $(\pi_1(L)) = 1$ and $\pi_1(A)$ is finite. By Reeb stability [2, Paragraph 2.6] there exists a neighborhood U of A in M that is a union of compact leaves of $\mathscr F$ with finite fundamental group.

Suppose A' ϵ \mathscr{F} and A' \subset L' ϵ \mathscr{F}_Z . Since \mathscr{F}_Z does not admit a vanishing cycle and $\pi_1(M)$ is abelian, [6, Théorème 1] implies that \mathscr{F}_Z has no exceptional minimal

set in M, so that the closure of each leaf of \mathscr{F}_Z is either all of M or contains a compact leaf. Thus, in any case, \overline{L}' contains a compact leaf of \mathscr{F}_Z , say L of the previous paragraph. For some A $\in \mathscr{F} \mid L$ and U as above, $L' \cap U \neq \emptyset$, hence a leaf $A_0 \in \mathscr{F} \mid L'$ meets U, hence A_0 is compact with finite fundamental group. Since $\mathscr{F} \mid L'$ is a transversally complete e-foliation, every leaf of $\mathscr{F} \mid L'$ is compact with finite fundamental group. Thus our arbitrary A' (hence every leaf of \mathscr{F}) is compact with finite fundamental group.

Let $\hat{\mathbf{M}} \to \mathbf{M}$ be the universal cover. Dividing out the infinite cyclic component of $\pi_1(\mathbf{M}) = \mathbf{Z} \oplus \mathbf{T}$, we obtain a covering space $\tilde{\mathbf{M}} \to \mathbf{M}$ with \mathbf{T} as group of covering transformations, and therefore $\tilde{\mathbf{M}}$ is compact. Let $\tilde{\mathscr{F}}$ be the lift of \mathscr{F} to $\tilde{\mathbf{M}}$. We claim that each $\tilde{\mathbf{A}} \in \tilde{\mathscr{F}}$ is simply connected. Indeed, $\tilde{\mathbf{A}}$ is covered by $\hat{\mathbf{A}} \subset \hat{\mathbf{M}}$ and $\hat{\mathbf{A}}$ is simply connected, since the homomorphism $\pi_1(\mathbf{A}) \to \pi_1(\mathbf{M})$ is one-to-one. If σ is a loop on $\tilde{\mathbf{A}}$, its lift $\hat{\sigma}$ to $\hat{\mathbf{A}}$ must be closed, since otherwise σ determines an element of infinite order in $\pi_1(\tilde{\mathbf{M}})$, hence in $\pi_1(\tilde{\mathbf{A}})$, hence in $\pi_1(\mathbf{A})$, and this is a contradiction. Thus $\pi_1(\tilde{\mathbf{A}}) = 0$, as desired. It follows that the leaves $\tilde{\mathbf{A}} \in \tilde{\mathscr{F}}$ have trivial holonomy; hence, these leaves being compact, $\tilde{\mathscr{F}}$ is a foliation by leaves of a fiber bundle $\tilde{\mathbf{M}} \to \mathbf{N}$, where \mathbf{N} is a compact 2-manifold. Since the fiber is simply connected, we obtain the relation $\pi_1(\mathbf{N}) = \pi_1(\tilde{\mathbf{M}}) = \mathbf{Z}$, which is impossible for any compact 2-manifold. This contradiction completes the proof of Theorem 1.

By reason of Lemma 3, Corollary 1 is an immediate consequence of Theorem 1.

3. PROOF OF THEOREM 2 AND ITS COROLLARIES

The following adapts an argument of Novikov [7, Lemma 9.3], and it is the main step in the proof of Theorem 2. We emphasize that there is no assumption of compactness on M.

PROPOSITION 2. Let \mathcal{F} be the foliation of M by orbits of a locally free smooth action of a connected Lie group G. Then \mathcal{F} does not admit a vanishing cycle.

Proof. We suppose there is a vanishing cycle, and we obtain a contradiction.

Without loss of generality, assume that G is simply connected. Suppose that $x_0 \in M$ and $L_0 = G \cdot x_0$, and let σ_0 and F be as in (*) with σ_0 based at x_0 . For $0 \le \lambda \le 1$, let $x_{\lambda} = F(1, \lambda)$, and let $p_{\lambda} : G \to L_{\lambda} = G \cdot x_{\lambda}$ be the covering map defined by $p_{\lambda}(g) = g \cdot x_{\lambda}$. Since G is the universal cover of L_0 , we see that $\sigma_0 = p_0 \circ \hat{\sigma}_0$, where the path $\hat{\sigma}_0$: $[0, 1] \to G$ satisfies the condition $\hat{\sigma}_0(0) = e$, where e denotes the identity of G, and $\hat{\sigma}_0(1) \neq e$. The mapping $G \times [0, 1] \to M$ defined by the formula $(g, \lambda) \mapsto g \cdot x_{\lambda}$ extends to a smooth mapping $G \times R \to M$ with Jacobian of maximal rank at $(\hat{\sigma}_0(1), 0)$; hence this is an imbedding near that point, and it follows that there exists a smooth curve $(\tau(\lambda), t(\lambda))$ in $G \times R$, defined for all λ in some interval [0, ϵ], and satisfying the conditions $\tau(0) = \hat{\sigma}_0(1)$, t(0) = 0, and $\tau(\lambda) \cdot x_{t(\lambda)} = x_{\lambda}$ for all λ . We show that $t(\lambda) \equiv \lambda$. Indeed, $\hat{\sigma}_0(t) \cdot x_{\lambda}$ is in the same local leaf as $F(t, \lambda)$ for small λ and all t; hence $\hat{\sigma}_0(1) \cdot x_{\lambda}$ is in the same local leaf as $F(1, \lambda) = x_{\lambda}$. Thus the mapping $G \times R \to M$ takes (g, λ) to the local leaf of x_{λ} , for all g near $\hat{\sigma}_0(1)$ and all small $\lambda \geq 0$. In particular, $t(\lambda) \equiv \lambda$, and it follows that $p_{\lambda}(\tau(\lambda)) = x_{\lambda}$ and $\tau(\lambda) \neq e$ if $0 \leq \overline{\lambda} \leq \varepsilon$. Without loss of generality we assume that $\varepsilon = 1$. Let $\hat{\sigma}_{\lambda}$ be the piecewise smooth curve obtained by following $\hat{\sigma}_0$ by $\tau \mid [0, \lambda]$ and suitably reparametrizing over [0, 1]. A modification of $\hat{\sigma}_0$ will smooth the corner at $\hat{\sigma}_0(1)$

without changing the homotopy class of σ_0 ; therefore Lemma 1 allows us to assume that the mapping

$$\overline{\mathbf{F}} \colon \mathbf{S}^{1} \times [0, 1] \to \mathbf{M},$$

$$\overline{\mathbf{F}}(\theta, \lambda) = \mathbf{p}_{\lambda}(\widehat{\sigma}_{\lambda}(\theta)) = \overline{\sigma}_{\lambda}(\theta)$$

is smooth (it is well-defined, since $p_{\lambda}(\hat{\sigma}_{\lambda}(1)) = x_{\lambda} = p_{\lambda}(\hat{\sigma}_{\lambda}(0))$, for each λ). This satisfies conditions (1) and (2) of (*), and for small λ the fact that $\overline{F}(1,\lambda) = x_{\lambda} = F(1,\lambda)$ will imply that all $\overline{F}(\theta,\lambda)$ lie on the same local leaf of $\mathscr F$ as $F(\theta,\lambda)$. By Lemma 2, each $\overline{\sigma}_{\lambda} \sim 0$ on L_{λ} , if λ is small, and this contradicts the relation $\hat{\sigma}_{\lambda}(1) \neq e = \hat{\sigma}_{\lambda}(0)$.

We prove Theorem 2. Here \mathscr{F} is a codimension-two foliation of a connected manifold M by the orbits of a locally free action of G. If $\rho(\mathscr{F}) \geq 1$, let \mathscr{F}_Z be as usual. It is well known that $\pi_2(G) = 0$; therefore, if L $\in \mathscr{F}_Z$, then $\pi_2(L) = 0$ by Lemma 4. By Proposition 2 and Proposition 1, \mathscr{F}_Z admits no vanishing cycle; therefore, Theorem 3 implies that $\pi_2(M) = 0$. Furthermore, Theorem 1 and Proposition 2 imply that if M is compact, then $\pi_1(M)$ is infinite, and that if it is abelian, it has rank at least 2.

It remains to establish part (3) of Theorem 2. Suppose, then, that G is contractible, M is compact, and $\pi_1(M)$ is abelian. The foliation \mathscr{F}_Z has no vanishing cycles; therefore Theorem 3 implies that the homomorphism $\pi_1(L) \to \pi_1(M)$ is one-to-one, for each $L \in \mathscr{F}_Z$. We consider two cases.

For the first case, suppose all leaves of \mathscr{F}_Z are noncompact. As usual, the result [6, Théorème 2] implies that \mathscr{F}_Z admits no limit cycles, hence $\hat{\mathbf{M}} = \hat{\mathbf{L}} \times \mathbf{R}$. But $\mathscr{F} \mid \mathbf{L}$ is a transversally complete e-foliation, so that $\hat{\mathbf{M}} \cong \hat{\mathbf{L}} \times \mathbf{R} \cong \mathbf{G} \times \mathbf{R}^2$ is contractible. If the abelian group $\pi_1(\mathbf{M})$ has an element of finite order, there exists a prime p with $\mathbf{Z}_p \subset \pi_1(\mathbf{M})$, hence $\hat{\mathbf{M}} = \hat{\mathbf{M}}/\mathbf{Z}_p$ is a $\mathbf{K}(\mathbf{Z}_p, 1)$, a well-known impossibility for every finite-dimensional manifold $\hat{\mathbf{M}}$. Thus $\pi_1(\mathbf{M}) = \mathbf{Z}^k$, for some k, and $\mathbf{M} = \mathbf{K}(\mathbf{Z}^k, 1)$ has the homotopy type of the torus \mathbf{T}^k . Since \mathbf{M} is a compact n-manifold, $\mathbf{k} = \mathbf{n}$ and $\mathrm{rank}\,(\pi_1(\mathbf{M})) = \mathbf{n}$.

For the second case, suppose some $L \in \mathcal{F}_Z$ is compact. Then $\hat{L} \cong G \times R$ is contractible, and arguing as above, we conclude that $\operatorname{rank}(\pi_1(L)) = n - 1$. Since the homomorphism $\pi_1(L) \to \pi_1(M)$ is one-to-one, this shows that $\operatorname{rank}(\pi_1(M)) \geq n - 1$, and the proof of Theorem 2 is complete.

We remark that Proposition 2 also enables us to prove the following.

THEOREM 4. Let M be a connected n-manifold, G a Lie group of dimension n-1 having contractible universal cover (for example, a solvable Lie group) and having locally free action on M. Then $\pi_2(M)=0$. If in addition M is compact and $\pi_1(M)$ is abelian, then $\operatorname{rank}(\pi_1(M)) \geq n-1$.

Indeed, the action defines a codimension-one foliation \mathscr{F} without vanishing cycles, and each $L \in \mathscr{F}$ has the property $\pi_2(L) = \pi_2(G) = 0$, hence by Theorem 3, part (c), $\pi_2(M) = 0$. To obtain the second conclusion, we apply the arguments about \mathscr{F}_Z in the proof of part (3) of Theorem 2 to our present foliation \mathscr{F} , considering again the two cases in which \mathscr{F} does or does not admit a compact leaf.

For the Corollaries 2 through 4, let \mathscr{F} be a foliation by curves of a compact, connected 3-manifold M. Passing to a finite cover, if necessary, we may assume both that M is orientable and \mathscr{F} is transversally orientable; hence we construct a

tangent field to \mathscr{F} that is nowhere zero. Thus \mathscr{F} is the foliation by orbits of a locally free action of R, and, by Theorem 2, $\rho(\mathscr{F}) \geq 1$ implies that $\pi_2(M) = 0$ and \hat{M} is noncompact. Thus $\pi_1(\hat{M}) = 0 = \pi_2(\hat{M})$, so that $H_1(\hat{M}) = 0 = H_2(\hat{M})$ (by the Hurewicz theorem [4]). Also, $H_3(\hat{M}) = 0$, since \hat{M} is noncompact. It follows that $H_i(\hat{M}) = 0$ for all i > 0, hence that $\pi_i(\hat{M}) = 0$ for all i > 0 (again by Hurewicz), hence that \hat{M} is contractible.

If $\pi_1(M)$ contains an element of finite order, there exists a prime p such that \mathbb{Z}_p is a subgroup of $\pi_1(M)$. Let \widetilde{M} be the 3-manifold obtained from \widehat{M} by dividing out \mathbb{Z}_p . Then $\widetilde{M} = K(\mathbb{Z}_p, 1)$ and $H_i(\widetilde{M}; \mathbb{Z}_p) = \mathbb{Z}_p$ for each $i \geq 0$. This contradicts the fact that \widetilde{M} is a finite-dimensional manifold.

The lift of \mathscr{F}_Z foliates $\hat{\mathbf{M}}$ by planes R^2 , hence, by [12, Section 4], $\hat{\mathbf{M}}$ is irreducible (that is, every tamely imbedded 2-sphere bounds a 3-ball). As in [10, Lemma 1] it follows that \mathbf{M} is irreducible.

If $[\pi_1(M), \pi_1(M)]$ is finitely generated and of infinite index in $\pi_1(M)$, it follows that the Hurewicz surjection $\pi_1(M) \to H_1(M)$ has finitely generated kernel and that $H_1(M)$ is finitely generated and has rank at least 1. Consequently, there exists a group surjection $\pi_1(M) \to \mathbb{Z}$, the kernel K is finitely generated, and $K \neq \mathbb{Z}_2$, since $\pi_1(M)$ contains no elements of finite order.

By a theorem of Stallings [15], we conclude from the previous two paragraphs that M is fibered over S^1 and that the fiber is a closed 2-manifold T. Evidently, T. cannot have S^2 as universal cover, hence genus $(T) \geq 1$.

If $\pi_1(M)$ is abelian, we conclude exactly as in [10, pp. 131-132] that the bundle above is trivial and has fiber T^2 . That is, $M = T^3$.

REFERENCES

- 1. L. Conlon, *Transversally parallelizable foliations of codimension two*. Trans. Amer. Math. Soc. (to appear).
- 2. A. Haefliger, Variétés feuilletées. Ann. Scuola Norm. Sup. Pisa (3) 16 (1962), 367-397.
- 3. ——, Travaux de Novikov sur les feuilletages. Séminaire Bourbaki, 20e année, 1967-68, No. 339, 12 pp.
- 4. S.-T. Hu, Homotopy theory. Academic Press, New York, 1959.
- 5. E. L. Lima, Commuting vector fields on S³. Ann. of Math. (2) 81 (1965), 70-81.
- 6. R. Moussu and R. Roussarie, Une condition suffisante pour qu'un feuilletage soit sans holonomie. C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A240-A243.
- 7. S. P. Novikov, *Topology of foliations*. (Russian) Trudy Moskov. Mat. Obšč. 14 (1965), 248-278 = Trans. Moscow Math. Soc. 1965, 268-304.
- 8. H. Rosenberg, The rank of $S^2 \times S^1$. Amer. J. Math. 87 (1965), 11-24.
- 9. ——, Actions of Rⁿ on manifolds. Comment. Math. Helv. 41 (1966/67), 170-178.
- 10. ——, Foliations by planes. Topology 6 (1967), 131-138.
- 11. ——, Singularities of R² actions. Topology 7 (1968), 143-145.

- 12. H. Rosenberg and R. Roussarie, *Topological equivalence of Reeb foliations*. Topology 9 (1970), 231-242.
- 13. H. Rosenberg, R. Roussarie, and D. Weil, A classification of closed orientable 3-manifolds of rank two. Ann. of Math. (2) 91 (1970), 449-464.
- 14. R. Sacksteder, Foliations and pseudogroups. Amer. J. Math. 87 (1965), 79-102.
- 15. J. Stallings, *On fibering certain 3-manifolds*. Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961), pp. 95-100. Prentice-Hall, Englewood Cliffs, N.J., 1962.

Washington University St. Louis, Missouri 63130