FOLIATIONS AND LOCALLY FREE TRANSFORMATION
GROUPS OF CODIMENSION TWO

Lawrence Conlon

INTRODUCTION

Let M be a manifold with a smooth foliation & of codimension q. Let E be the
bundle of tangents to the leaves, and let Q = T(M)/E be the normal bundle. Imbed Q
as E1 in T(M) once and for all via any Riemannian metric on M.

There is a fairly standard notion (see [1], for example) of a transverse H-struc-
ture for ¥, where H is a Lie subgroup of the group GLy of q X q real nonsingular
matrices. This is an H-reduction of Q that is invariant under the natural parallel-
ism along leaves.

In the case where H is the group Gy of all matrices of the form
I, O
A B

where B € GLg .k, the existence of a transverse Gy-structure means that some
normal k-frame field (Y, :--, Y}) is invariant under the linear holonomy of each
leaf. Equivalently [1, Corollary 1.5], we require [Y;, I'(E)] C I(E) for i =1, ---, k.
Letting V = spangy {Yl , Tty Yk}, we say that the Gy-structure is complete if each
Z € V is a complete vector field on M (a condition that is automatic if M is com-
pact).

Definition. p(%) is the largest integer k for which # admits a complete
transverse Gy -structure.

In particular, the statement p(#) = q means that & is a transversally com-
plete e-foliation in the sense of [1], while the statement p(%) = 0 means that & is
not invariant under any nonsingular transverse flow on M.

In this paper we investigate the invariant p(#) for the case q = 2, special ap-
plications being made to the situation in which the leaves of # are the orbits of a
locally free Lie transformation group. It will be seen that this amounts to a general-
ization of results of E. Lima, H. Rosenberg, R. Sacksteder and S. P. Novikov on the
rank and file of manifolds (see [5], [7], [8], [9], [11]).

Our basic result is Theorem 1. The term “vanishing cycle” which appears in
that theorem, by now standard for foliations of codimension one ([3], [6], [1, Section
6]), is defined for higher codimension in a fairly obvious way in Section 1.

THEOREM 1. Let M be closed and connected, codim (&) = 2, and suppose that
F admits no vanishing cycle. Then the condition p(F) > 1implies that 7 (M) Zs
infinite, and that if it is abelian it has rank at least 2.
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It is obvious from the definition (*) in Section 1 that, if a leaf A € F supports a
vanishing cycle, then the mapping 7;(A) — 7 (M) induced by the leaf inclusion has
nontrivial kernel. The following corollary is an immediate consequence.

COROLLARY 1. Let M be closed and connected, with codim (¥ ) = 2. If the
mapping m1(A) — 7 (M) is one-to-one for each leaf A of F (a condition that is
satisfied, for example, if each leaf is simply connected), and if in addition ﬂl(M) is
finite ov is abelian and has rank at most 1, then p(F) = 0.

Before stating the second theorem, we briefly discuss its background. Recall
that the file of a manifold M is the largest integer r for which there exists a
smooth, locally free action of R* on M, and the rank of M is the largest r such
that there exists a set of everywhere linearly independent, pairwise commuting vec-
tor fields {X;, ---, X.} on M. For compact manifolds, these concepts coincide;
but the rank of an open manifold may be greater than its file.

If R**! hasa smooth, locally free action on M, and if # is the foliation of M
by the orbits of R C Rrtl , then clearly p(#) > 1. Thus, if it can be shown that
p(F) = 0 for every foliation & by orbits of locally free actions of RY, we conclude
in particular that the file of M is at most r (hence, if M is compact, rank (M) < r).
Of course, the condition p(# ) = 0 is stronger because it implies that & is not in-
variant under any nonsingular transverse flow.

It is known that rank(S3) = 1 (Lima [5]), rank(S! x 82) = 1 (Rosenberg [8]),
rank (T-2 x §82) =n - 2 (Novikov [7, Theorem 9.5]), rank (M) < n - 2 if M® is
compact and 7, (M) is finite (Sacksteder [14, Theorem 9], see also Rosenberg [9,
Theorem 1.7]), and the file of a 3-manifold is one if 7,(M) # 0 (Rosenberg [11]).
The following result generalizes all of these facts.

THEOREM 2. Let M be a connected n-manifold, and let G be a connected Lie
group of dimension n - 2 having a smooth, locally free action on M. Let & be the

foliation of M by the G-orbits, and suppose p(F) > 1. Then the following state-
ments hold.

(1) ’Hz(M) = 0.

(2) If M is compact, then w,(M) is infinite, and if it is abelian, it has vank at
least 2.

(3) If G is contractible, M is compact, and w,(M) is abelian, then
rank (7;(M)) > n - 1.

While it is not a direct corollary of Theorem 1, this result is readily deduced
from the considerations which yield that theorem (see Section 3). Crucial for this is
Proposition 2, which generalizes a result of Novikov [7, Lemma 9.3] and asserts that
a foliation by orbits of a locally free Lie transformation group admits no vanishing
cycles. Indeed, a unified understanding of many of the known results about rank and
file centers on the phenomenon of the vanishing cycle; this is clear in Novikov’s
work [7, pp. 302-304] and implicit in Rosenberg’s paper [11] (compare the deforma-
tions in [11] with [7, pp. 287-288]).

In the following corollaries to Theorem 2, we fix the hypothesis that M is a
compact connected 3-manifold and & is a foliation of M by curves, with p(#) > 1.

COROLLARY 2. The universal cover M is contractible, hence 71(M) is in-
finile and contains no element of finite ovder.

COROLLARY 3. If the commutator [n1(M), m1(M)] is finitely genevated and of
infinite index in w,(M), then M is a fiber bundle over Sl whose fiber is a closed 2-
manifold of genus at least 1.
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COROLLARY 4. If 7;(M) is abelian, then M = T3,

By reason of [13], one might guess that a closed connected 3-manifold admitting
a foliation & by curves with p(#) > 1 must be an orientable TZ2-bundle over S!.
This is false. Indeed, the tangent circle bundle to any closed orientable surface of
genus > 2 has the form SL(2, R)/T, where T is a discrete subgroup, hence sup-
ports a pair of everywhere linearly independent vector fields X, Y with [X, Y] =Y.

It would be interesting to know whether some odd-dimensional sphere supports a
foliation by curves with p(#F) > 1.

Throughout this paper, everything in sight is assumed to be smooth of class Cck
for k > 2.

1. VANISHING CYCLES

The notion discussed here is due, in codimension one, to Novikov [7], although
the terminology “vanishing cycle” is due to other authors (see [3] and [6] for exam-
ple). The following definition generalizes the concept to higher codimensions.

(*) Definition. Suppose that J is a foliation of M of codimension ¢ > 1, that
Ly € &, and that 04: S1 — L is smooth. The loop 0 is called a vanishing cycle
if there exists a smooth mapping F: S! X [0, 1] = M such that

(1) F(6, 0) = 0y(#) for each 6 € S1,
(2) for each 6 € S!, the curve sg(A) = F(0, ) is transverse to ¥,

(3) for each A in [0, 1], the curve 0,(8) = F(0, 1) defines a loop 0, on a leaf
L)‘_ € 9‘-,

(4) 09 is not nullhomotopic on Lg,
(5) o) ~0 on Ly for 0 <A < 1.

LEMMA 1. The propevty of being a vanishing cycle is invarviant undev base-
point-preserving homotopy; hence it is a property of [0g] € 7 (Lg, x().

LEMMA 2. Let oy and F satisfy the conditions in (*). Let F: Sl x [0, 1] > M
be a smooth mapping such that (1) and (2) of (¥) hold, and let F(0, \) lie on the
same local leaf of & as F(6, \), for all 0, x. Let 0,(0) =F(8, ). Then theve
exists an € > 0 such that G, ~ 0 onL, (0 <x <¢g).

Indeed, if ¢ is positive and sufficiently small, then for 0 <X < ¢ the path o
approximates o, uniformly, in the topology of L) . Hence we see that o, ~ o) ~ 0
on L, . Lemma 1 is conveniently deduced from Lemma 2. Here, take 0y and F as
in (*), let U C Ly be an open, relatively compact neighborhood of 0,(S!), let N be
a normal neighborhood of U in M with fibers whose radius is bounded away from
zero, and use the normal fibers vy through o((6) to define the point F(8, 1) on
v in the same local leaf as F(0, 1), for sufficiently small values of A. Then the
curve Sg(A) = F(6, A) lies along the normal fibers vg, for each 6 € S!. Bya
suitable change of the parameter A, we see from Lemma 2 that ¢, ~ 0 on L, when
0 <A L 1. But now a whole base-point-preserving homotopy of 65 on L can be
lifted along the normal fibers out to each L, , where U C L is rechosen, if neces-
sary, to contain the entire homotopy.

The following is completely obvious.
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LEMMA 3. If 04:S! — Ly € & is a vanishing cycle, then [o ol € m(Lg, xp) is
a nontrivial element of the kernel of the homomovphism 7n1(Lg, xo) — 71(M, xp).

In codimension one, useful criteria for the existence of vanishing cycles are
given by a theorem of Novikov.

THEOREM 3 (see [7, Theorem 6.1]). Under each of the following conditions, a
codimension-one foliation F of a connected manifold M admits a vanishing cycle.

(a) M is compact and w,{(M) is finite.

(b) 7,(A) — 7,(M) has nontrivial kernel for some A € F.
(c) 1,(M) # 0 and w,(A) =0 for each A € #.

(d) There exists a closed nullhomotopic transversal to F .

The proof of (c¢) in [7] seems particularly obscure, but the basic deformations
needed there are described quite well in [11] (although for a slightly different pur-
pose). It is not difficult to tidy up the proofs of the other parts.

Suppose that p(#) > 1, and let Z € I(Q) be nowhere zero and invariant under
the linear holonomy of each leaf. Suppose further that Z is a complete vector field
on M (this is always the case if M is compact). Then, as in [1, Proposition 2.1],
there exists a foliation # y of codimension q - 1 that has tangent bundle generated
by E and Z. Each leaf L ¢ ¥ is foliated in codimension one by leaves of ¥, this
foliation being denoted by # | L. Therefore & | L is a transversally complete e-
foliation in the sense of [1] (thus p(#| L) = codim (& | L) = 1), the e-structure being
given by Z | L. By [1, Theorem 5.5], we can make the following assertions. Here

the notation X denotes the universal cover of X.

LEMMA 4. If Le 7 and A€ ¥ I L, then L=Ax R, the foliation of L by
the leaves A X {t} bemg the lift of the foliation F | L. Furthevrmore, all leaves of
F | L are mutually diffeomovphic, and eithev all or none ave closed in the manifold
topology of L.

LEMMA 5. If Le 5, A€ g| L, then the inclusion map induces a mono-
morphism 7 (A) — m(L).

Suppose that L € 7 and x € L, and let A denote the leaf of ¥ | L containing
x. Identify 7 ;(A, x) with its monomorphic image in 7 (L, x), and let 7(L, x) de-
note the subset of elements [¢] € 71(L, x) that can be represented by a closed trans-
versal ¢ to # | L. Here we do not count the trivial loop as a closed transversal.

LEMMA 6. (A, x) N 7p(L, x) = @ and 7(L, x) = 7,(A, x) U 7p(L, x).

~

Proof. Let & be alift of ¢ to 1. = A x R, Either & begins and ends on the
same leaf A X {t} or it does not, and this depends only on the class [o¢] € 7,(L, x).
In the first case, [0 ] € 7;(A, x), and in the second case, [oc] € 7¢(L, x). =

PROPOSITION 1. If ¥ 7 admits a vanishing cycle, so does &.

Proof. Let ¢y: S — L be a vanishing cycle for . # 7. If [o 0] € m1(Lg, Xq),
then nearby displacements o: st - 1, have the property that [oy] € 77T(L Xh)
hence ¢, cannot be nullhomotopic on LA for small x > 0. Thus 00 € WIA(AO, Xo ,
where Ay € #| L. By Lemma 1, we lose no generality in assuming ¢: S! — Ag.
Let the mapping F: S1 X [0, 1] = M satisfy the condition in (*) relative to the folia-
tion & 7. Observe that local-product coordinate neighborhoods for the foliation ¥
can also be chosen so that they are simultaneously local-product neighborhoods for
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F. Let Ug, Uy, ---, U, =Ug be a sequence of such neighborhoods chosen so that
UO[ti: ti+l] CUj (OS i<r- 1)7 where

[1: tl] = [tO’tl], [tlytZ]! Ty [tr-lytr] = [tr-l’ 1]
partitions S! into consecutive closed subarcs. One can assume that

by reparametrizing along the second coordinate if necessary. Using the local-
product structure in each U; consecutively, one replaces F | ([1, ty_1]1% [0, 1]) by a
mapping F: [1, t._;]X [0, 1] = M such that

(1) F(6, 0) = 0 o(#) for each 6 € [1, ty_1],

(2) for each 6 € [1, t,_1], the formula §5() = F(6, 1) (0 <A < 1) defines a
path Sy transverse to &, and §) = s,

(3) Tx(6) =F(6, 1) € A, € F|Ly for each x € [0, 1].

Since the & z-holonomy of o0 leaves fixed the points of R49-! corresponding to the
points §,(A) = s;(A), when A is sufficiently small, we see that, for some ¢ > 0, the
point &) (t._;) lies on the same local leaf of # in U,.=TUp as G,(1) (0 < <¥¢).
Again we can suppose € = 1. If, in fact, &y (t,_)) lies on the same local leaf of ¥ in
U, =Ug as (1), for each A € [0, 1], then F can be completed to a mapping

F: Sl x [0, 1] = M such that properties (1) to (4) of (*) hold relative to the foliation
#. Inthis case Lemma 2 implies that G) ~ 0 on L) € ¥, for all sufficiently
small A > 0. Therefore Lemma 5 implies that o, ~ 0 on A, € 9 for all suffi-
ciently small x > 0. Thus oy will be a vanishing cycle for #. The problem, then,
is to show that G, (t,._;) and &,(1) lie on the same local leaf of Z in U, =Uy for
all sufficiently small A > 0. If not, F can still be completed to F: S! x [0, 1] - M
so that conditions (1) to (4) of (*) hold relative to the foliation # <, and, by Lemma
2, one can also assume condition (5). For some X > 0, we can assert that E;L ~ 0
on Ly, that &y [1,t._)] Ay € #| Ly, and that Gy (t,.;) and G,(1) are on differ-
ent local leaves of #; indeed, we can assume that &, |[t._;, 1] is transverse to

F | Ly . Arguing exactly as in [3, Lemme 1}, we deform G, to a closed transversal

to ¥ | L) . This transversal, being nullhomotopic on L), cannot exist (see Lemma
6). W

2. PROOF OF THEOREM 1

We suppose that M is compact and connected, codim (#) =2, and p(F) > 1. We
also suppose that the vector field Z € I'(Q) and the foliation ¥, satisfy the condi-
tions preceding Lemma 4.

If # does not admit a vanishing cycle, then, by Proposition 1, neither does % .
By Theorem 3, which applies since codim(#7) = 1, the group m;(M) is infinite.
Note that Theorem 3 also implies, for each L € ¥, that the homomorphism
7,(L) — 71(M) is one-to-one.

Continuing to suppose that ¥ admits no vanishing cycle, we further assume that
m1(M) is abelian. No generality will be lost in assuming transverse orientability of
Z, since this can be brought about by passing to a 2-fold covering. We must show
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that the abelian group ﬂl(M) has rank at least 2. To this end we consider two cases,
according as &5 does or does not admit a compact leaf.

First we suppose that no leaf of # 7 is compact. Then, by a theorem of Moussu
and Roussarie [6, Théoreme 2], the facts that 7, (M) is abelian and that % 7 admits
no vanishing cycle imply that # 7 admits no limit cycle. Then a theorem of Novikov
[7, Theorem 5.1] (see also [1, Theorem 5.5], [9]) implies that each leaf L ¢ ¥ has
the property that 7;(M)/7 (L) = ZK, where k > 1, with k = 1 if and only if L is
closed in M. Thus, in our case, k > 2 and therefore rank (7 ;(M)) > 2.

Suppose that %7 admits a compact leaf. If all leaves are compact, then the
holonomy of each leaf is finite. But transverse orientability for # implies the
same for # 7, hence the holonomy of each L € &y is trivial. Thus ¥ 7 is the
foliation of M by the fibers of a bundle M — S!. Each L € # z is compact with

L. = A X R, hence the abelian group 7 (L) has rank at least 1. The exact sequence
0 - 7y(L) — 7;(M) — 7,(81) - 0

then shows that rank (7 ;(M)) > 2. We may assume, therefore, that & z admits both
compact and noncompact leaves.

Suppose that for some L € %, the leaves of # | L are not closed in L (if one
fails to be closed, then by Lemma 4 they all do). If L is compact, then [1, Theorem
5.5] again applies and shows that rank (7,(L)) > 2. Since the homomorphism
7;(L) = (M) is one-to-one, we see that rank (7;(M)) > 2. If, on the other hand, L
is noncompact, let 7: S! — L be a closed transversal to # | L (constructed as in [3,
Lemme 1]), and note that 7 fails to be nullhomotopic because of Lemma 4, and that
similarly % admits a closed transversal o: Sl — M. By Theorem 3 and the fact
that # 7 admits no vanishing cycles, ¢ also fails to be nullhomotopic in M. Like-
wise, all iterates o T and 7% (r # 0) fail to be nullhomotopic, and, in addition, ¢ *
not base-point homotopic to a loop on L. In order to verify the last assertion, we
suppose it is false and lift o to a transversal s on M, s necessarily beginning and

ending on the same covering leaf 1. of L. We then construct a closed nullhomotopic

transversal on M, hence on M, and this again contradicts the absence of vanishing
cycles for # 7. It follows that [0] and [7] generate a free abelian subgroup of
rank 2 in 7;(M).

is

We are now reduced to assuming that ¥ ; admits both compact and noncompact
leaves and that the leaves of # | L areclosedin L, forall Le Fz. If L € ¥y is
a compact leaf, then gl L is an e-foliation by closed leaves, hence L is a bundle
L — 8!, and rank(7;(L)) > 1. Since w;(L)— 7,(M) is one-to-one, rank(7;(M)) > 1.

We shall suppose that rank (7;(M)) = 1 and produce a contradiction. Since M is
compact, we see that 7,(M) = Z (D T, where T is a finite group.

If L e 5 is compact and A € | L, then 7;(A) is finite. Indeed, by the theo-
rem of Novikov already cited [7, Theorem 5.1], 71(L)/7;(A) = Z while
rank (7,(L)) < 1; therefore the exact sequence

0 — 7m1(A) — 7 (L) — 7 (L)/m(A) — O

shows that rank (7,(L)) = 1 and 7,(A) is finite. By Reeb stability [2, Paragraph 2.6]
there exists a neighborhood U of A in M that is a union of compact leaves of ¥
with finite fundamental group.

Suppose A'€ ¥ and A' C L' e Fy. Since ¥z does not admit a vanishing cycle
and 7;(M) is abelian, [6, Théoréme 1] implies that # 7 has no exceptional minimal
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set in M, so that the closure of each leaf of % ; is either all of M or contains a
compact leaf. Thus, in any case, L' contains a compact leaf of ¥ 7, say L of the
previous paragraph. For some A € a‘l L and U as above, L' N U # @, hence a leaf
Aj € ?}7[ L' meets U, hence Ay is compact with finite fundamental group. Since

F | L' is a transversally complete e-foliation, every leaf of & | L' is compact with
finite fundamental group. Thus our arbitrary A' (hence every leaf of #) is compact
with finite fundamental group.

Let M — M be the universal cover. Dividing out the infinite cyclic component
of (M) =2 @T we obtain a coverlng space M — M with T as group of covermg
transformations, and therefore M is compact. Let Z be the lift of F to M. We

claim that each A € & is simply connected. Indeed, A is covered by AcCM and A
is simply connected, since the homomorphism 7;(A) — 7;(M) is one-to-one. If ¢ is

a loop on K, its lift 0 to A must be closed, since otherwise 0 determines an ele-
ment of infinite order in ’ITI(M) hence in ﬂl(A) hence in ﬁl(A), and thls is a contra-
diction. Thus m,(A) = 0, as desired. It follows that the leaves A € # have trivial
holonomy; hence, these leaves being compact, F is a foliation by leaves of a fiber
bundle M — N, where N is a compact 2-manifold. Since the fiber is simply con-

nected, we obtain the relation 71(N) = #;(M) = Z, which is impossible for any com-
pact 2-manifold. This contradiction completes the proof of Theorem 1.

By reason of Lemma 3, Corollary 1 is an immediate consequence of Theorem 1.

3. PROOF OF THEOREM 2 AND ITS COROLLARIES

The following adapts an argument of Novikov [7, Lemma 9.3], and it is the main
step in the proof of Theorem 2. We emphasize that there is no assumption of com-
pactness on M.

PROPOSITION 2. Let & be the foliation of M by orbits of a locally free
smooth action of a connected Lie group G. Then F does not admit a vanishing
cycle,

Proof. We suppose there is a vanishing cycle, and we obtain a contradiction.

Without loss of generality, assume that G is simply connected. Suppose that
Xp € M and Lo =G-Xg, and let 0 ¢ and F be as in (*) with o ¢ based at xg. For
0<x <1, let x =F(1, A), and let py: G — Ly = G-x, be the covering map defined
by pp(g) =g-x), . Since G is the universal cover of Lg, we see that o = p0080,
where the path & o: [0, 1] — G satisfies the condition G ((0) = e, where e denotes the
identity of G, and G (1) # e. The mapping G X [0, 1] — M defined by the formula
(g, A) = g-x, extends to a smooth mapping G X R — M with Jacobian of maximal
rank at (0 o(1), 0); hence this is an imbedding near that point, and it follows that
there exists a smooth curve (7(A), t(\)) in G X R, defined for all X in some interval
[0, £], and satisfying the conditions 7(0) =G (1), t(0) = 0, and 7(A) -x¢(n) = x for all
A. We show that t(x) = x. Indeed, G¢(t) -x, is in the same local leaf as F(t, A) for
small x and all t; hence G¢(1)-x, is in the same local leaf as F(1, A) = x, . Thus

the mapping G X R — M takes (g, A) to the local leaf of X) , for all g near & o(1)
and all small X > 0. In particular, t(A) = X, and it follows that p, (7(})) = x, and
TA) # e if O <A L g. Without loss of generahty we assume that £ =1. Let Gh be

the piecewise smooth curve obtained by following ¢ by 7 | [0,A] and suitably re-
parametrizing over [0, 1]. A modification of &y will smooth the corner at & (1)
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without changing the homotopy class of ¢¢; therefore Lemma 1 allows us to assume
that the mapping

F:stx[o, 1] - M,
F(6,2) = Py (65(8)) = 0,(0)

is smooth (it is well-defined, since py(G(1)) = x5 = p) (55 (0)), for each A). This
satisfies conditions (1) and (2) of (*), and for small X the fact that

F(1, A) = x = F(1, A\) will imply that all F(6, 1) lie on the same local leaf of & as
F(6, »). By Lemma 2, each G, ~ 0 on L, , if X is small, and this contradicts the
relation ox(1) # e =0,(0). =

We prove Theorem 2. Here # is a codimension-two foliation of a connected
manifold M by the orbits of a locally free action of G. If p(F) > 1, let 7 be as
usual. It is well known that 7,(G) = 0; therefore if L € #y, then nz(L) =0 by
Lemma 4. By Proposition 2 and Proposition 1, # 7 admits no vanishing cycle;
therefore, Theorem 3 implies that 72(M) = 0. Furthermore, Theorem 1 and Propo-
sition 2 imply that if M is compact, then 7;(M) is infinite, and that if it is abelian,
it has rank at least 2.

It remains to establish part (3) of Theorem 2. Suppose, then, that G is con-
tractible, M is compact, and 7;(M) is abelian. The foliation #7 has no vanishing
cycles; therefore Theorem 3 implies that the homomorphism 7 (L) — 71(M) is one-
to-one, for each L € ¥z . We consider two cases.

For the first case, suppose all leaves of F7 are noncompact. Ag usual, the re-
sult [6, Théoreme 2] implies that 7 admits no limit cycles hence M = L X R. But

g | L is a transversally complete e-foliation, so that M=z1x R= Gx R? is con-
tractible. If the abelian group 7 1(M) has an element of finite order, there exists a
prime p with Z, C 71(M), hence M = M/Zp isa K(Zp, 1), awell known impossi-
bility for every f1n1te dimensional manifold M. Thus ﬁl(M) = , for some k, and
M = K(zk , 1) has the homotopy type of the torus TX. Since M is a compact n-
manifold, k = n and rank (7 ;(M)) = n.

For the second case, suppose some L € ¥y is compact. Then I.=GxRis
contractible, and arguing as above, we conclude that rank (m (L)) =n - 1. Since the
homomorphism m;(L) — 7;(M) is one-to-one, this shows that rank (73 (M)) > n - 1,
and the proof of Theorem 2 is complete.

We remark that Proposition 2 also enables us to prove the following.

THEOREM 4. Let M be a connecled n-manifold, G a Lie group of dimension
n - 1 having contractible univevsal cover (for example, a solvable Lie group) and
having locally free action on M. Then w,(M) = 0. If in addition M is compact and
71 (M) is abelian, then rank(m;(M)) >n - 1.

Indeed, the action defines a codimension-one foliation ¥ without vanishing
cycles, and each L € ¥ has the property (L) = 7,(G) = 0, hence by Theorem 3,
part (c), 7,(M) = 0. To obtain the second conclusion, we apply the arguments about
F 7 in the proof of part (3) of Theorem 2 to our present foliation &, considering
again the two cases in which & does or does not admit a compact leaf.

For the Corollaries 2 through 4, let # be a foliation by curves of a compact,
connected 3-manifold M. Passing to a finite cover, if necessary, we may assume
both that M is orientable and % is transversally orientable; hence we construct a
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tangent field to & that is nowhere zero. Thus ¥ is the foliation by orbits of a lo-
cally free action of R, and, by Theorem 2, p(F) > 1 1mp11es that xr (M) =0 and M
is noncompact. Thus 7 (M) =0= nz(M) so that Hl(M) =0= HZ(M) (by the Hurewicz
theorem [4]). Also, H3(M) = 0 since M is noncompact. It follows that H; (M) =0

for all i > 0, hence that wl(M) = 0 for all i > 0 (again by Hurewicz), hence that M
is contractible.

If 7;(M) contains an element of finite order, there exists a prime p such that
Zp is a subgroup of 71(M). Let M be the 3-manifold obtained from M by dividing
out Z,,. Then M = K(Z , 1) and H; (M Z. ) Z,, for each i > 0. This contradicts
the fact that M is a f1n1te dimensional mamfold

The lift of & foliates M by planes RZ?, hence, by [12, Section 4], M is ir-
reducible (that is, every tamely imbedded 2-sphere bounds a 3-ball). As in [10,
Lemma 1] it follows that M is irreducible.

If [71(M), 71(M)] is finitely generated and of infinite index in 7;(M), it follows
that the Hurewicz surjection 7;(M) — H;(M) has finitely generated kernel and that
H,;(M) is finitely generated and has rank at least 1. Consequently, there exists a
group surjection 7,(M) — Z, the kernel K is finitely generated, and K # Z,, since
WI(M) contains no elements of finite order.

By a theorem of Stallings [15], we conclude from the previous two paragraphs
that M is fibered over S! and that the fiber is a closed 2-manifold T. Evidently, T.
cannot have S2 as universal cover, hence genus(T) > 1.

If 71(M) is abelian, we conclude exactly as in [10, pp. 131-132] that the bundle
above is trivial and has fiber T2. That is, M = T3.
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