A GENERALIZATION OF EPSTEIN ZETA FUNCTIONS
Chungming An

In [1], we associated with certain polynomials a Dirichlet series that generalizes
the Epstein zeta functions. In [2], we used various methods to study the analytic
properties of the Dirichlet series. In this note, we obtain somewhat stronger results
for certain special cases.

Let F(X) = F(X, -+, X,) be an integral form of degree 6 such that the equation
F(x) = 0 has no solutions in IR™ except x = 0. We may assume that F(x) is positive
definite. It is obvious that for each k the equation F(y) = k has only finitely many
solutions y in Z™. Hence it makes sense to consider series of the type

¢(F, a, s) = 27 F(y)‘se(<a, )

vez"-{0}

where s = ¢ +it is a complex number, @ € Z", the symbol < , > indicates the

standard inner product in IR™, and e(a) = exp(2wia) for a € R. If F(x) is a quad-
ratic form and o € Z™, then ¢(F, «, s) is the well-known Epstein zeta function.
The absolute convergence of the series for ¢ > n/d in the general case and the
analytic continuability for o € Q® in certain special cases have been established in
[1] and [2]. For a € @™, we may apply C. L. Siegel’s method [3] to continue the
series analytically into the half-plane o > (n - 1)/6 (see [2]).

In this paper, we shall prove the following result.

THEOREM. (a) If a ¢ Z", the function ¢(F, a, s) can be continued analytically
as an enlive function of s,

(b) If @ € Z", the function ¢(F, a, s) can be continued analytically as a mevo-
morphic function of s with only a simple pole at s = n/5; the residue is

Res ¢(F, o, s) = (211)11/5I‘(n/6)_l S exp(-27F(x))dx.
s=n/0 RD

Proof. Let us put &(F, «, s) = (27)"% I'(s) ¢(F, «, s). By the Mellin transform,
we get the integral representation

¢(F, a, s)

SOOO 22 exp(—ZntF(y))e(<a, y>)ts‘1dt

vez"-{o0}

Sm[ﬁ(F, a,it) - 1]t tdt (s >n/e),
0

where, for 7 € H= {z € C: %z>0},
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OF, a,7) = 5 elrFO)+ {a, v)).
vezn

We call 0(F, «, 7) the generalized theta function associated with F. We follow
the standard method for the Riemann { -function. This gives the formula

E(F, a, s) = I,(s) +1(s),
where

1 (=]
I,(8) = S [0(F, @, it) - 1]t~ 1dt, Is) = S [0(F, a, it) - 1]ts-1dt.
0 1

It is easy to show that I(s) is an entire function (see [2]). If we put
1
Lis) = | 0F, a, 5l at,
0

then I,(s) =1,(s) - 1/s. But g.(x) = exp(-2nt F(x) + 27i <a, x>). Therefore the
Fourier transform g.(y) is given by the equation

gily) = S exp (-2nt F(x) + 2mi{a - y, x y)dx.
]Rn

The Poisson summation formula gives the relation

2 oan= 22 g.

ve zZ? ve z?

Thus we may write

1
I,(s) =S 2 gptslat

0 vez

1

= S 2 exp(—2th(x)+2ni<a-y,x))dx ts-1dt.
0| yez® IR

By the change of variables x — t-1/0x, we obtain the formula

.

0

I>(s) ,: 27 S exp (-27 F(x) + 27i < a -y, t'”éx))dx:l ts-1-n/0 g
Rn

vez"

1

2 (et 0(a - ypee-lon/Oa,
0 yezn
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where qz(y) is the Fourier transform of ¢(x) = exp(-27 F(x)). We see that ¢(x) and
¢(y) are in the Schwartz space S(IR"). It is known that for each Schwartz function
and each positive integer N there exists a constant C such that |y' 2N Iq)(y)l < C

for all y ¢ R"; that is, [&;(y)l < C |y| -2N for all y # 0. We shall choose N large
enough.

Case a, If « ¢ Z™, that is, if & - y # 0 for all y e Z", then
Ig)(t-l/é(a_ym < CtZN/ﬁla_,y'—ZN

for all v € Z" . Thus the integral form of I,(s) is majorized by the series

. > -2N
o -y,
s+ (2N - n)/o vezn

Here |oz - X'?‘ is a polynomial of degree 2 whose highest homogeneous part is a
positive definite quadratic form. By [1] we see that the series converges for
N > n/2.

Caseb, If o € Z", weput n =a -y € Z*. Then

LI 1 R
IZ(S) S Lf)(O)tS—l_n/édtﬂ-‘S‘ E ¢(t"1/6n)t3-1-n/5dt
0

0 p=#o0
1€ ZM

~ 1
_ 90 26-1/6 -1-n/6
=505t go ni $(t-1/0p)ts-1-n/0qt.

nezn

The second term (the integral) is majorized by the series

1 2 |n|-2N

- n| oM,
s+ (2N - n)/5 %0
nez"

which converges whenever N > n/2.

In each case, the majorized series converges. Hence in each case the integral
represents a holomorphic function, for ¢ > k. Since k can be an arbitrary negative
integer, the integrals represent entire functions.

In case @ € Z", the residue of £(F, o, s) at s =n/d is

$(0) = S exp (-27 F(x)) dx .
Rn

The conclusion about ¢(F, @, s) follows trivially. This completes the proof.

Remavrks. 1. One may verify that the point s = 0 is a removable singularity of
the function ¢ and that moreover
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lim ¢(F, a, s) = -1

s —0

regardless of F and «.

2. In [2], we define a generalized zeta function parametrized by p € IR and
o € IR™; that is, we write

¢F, p,a,8) = 2 F@) TelpF@) +(a,v)).
vez"-{o}

Here we can only handle the cases where p € @ and @ € ®" or where p =0 and

a € R", for 0 > (n - 1)/6. The same method can be applied to the case p € Q. We
have also obtained some information about the generalized Gaussian sum defined in
[2]. The results will appear elsewhere.

3. We conjecture that if p is irrational, then ¢(F, p, @, s) is an entire function.
Although we have some evidence to support this, much work remains to be done.

4. For binary quadratic forms, there are first and second Kronecker limit
formulas corresponding to @ € Z™ and o ¢ Z™ (see [3]). We may ask a similar
question about ¢(F, a, s). For quadratic forms in more than two variables, A. A.
Terras [4] has obtained some generalizations of the first Kronecker limit formula.
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