LOCAL COMPLEMENTS TO THE
HAUSDORFF-YOUNG THEOREM

John J. F. Fournier

1. INTRODUCTION

Let G be an infinite, locally compact, Abelian group with dual group I'. For
1 < p < =, denote by LP(G) the usual Lebesgue space relative to the Haar measure
on G; define LP(I) similarly. The Hausdorff-Young theorem {11, Vol. II, p. 227]
states that if 1 < p < 2, then with every function f in LP(G) there is assoc1ated a
function f in LP' (D), where p' is the 1ndex con]ugate to p; the mapping f — fisa

bounded linear operator from L¥G) to P (T), and f is the usual Fourier trans-
form of f whenever f € L1(G) N LP(G). Accordingly, for 1 <p <2, let

FLP = {g € LP(I): g = for some f in LP(G)}.

For measurable sets E C T, denote by FLP | E the set of all functions on E that
are restrictions to E of functions in FLP. Clearly, FLP | E C LP'(E). This paper

deals with the possibility that FLP | E ¢ LYE) for some q # p'.

If E is either finite or locally null [11, Vol. I, p. 124], then all of the spaces
LYE) for q < « coincide. To avoid such trivialities, we assume for the rest of this
paper that the set E is infinite and not locally null. In two cases, it follows from the
Hausdorff-Young theorem that FLpl E c LYE) for some q # p'. First, if T is
discrete, then

FLP l E C LPT(E) c LYE) for all q>p'.
Second, if the Haar measure |E| of E is finite, then
FLP|E c LP(E) ¢ LYE) forall q<p'.

Thus the interest lies in the remaining cases:
(i) T is not discrete, and g > p';
(i) |E| =« and q <p'.
The following three theorems constitute the main results of this paper.
THEOREM 1. If T is not discrvete and E is not locally null, then

FLP|E ¢ U 1LYE).
q>p'
THEOREM 2. (a) If T is not discrete, then FLP ¢ U
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264 JOHN J. F. FOURNIER
(b) If T is not compact, then FLP ¢ Uq<pl LY(T).

(e) If T is neither compact nor discrete, then FLP ¢ Uq #p' LY.

THEOREM 3. If T is not compact, then it contains open sets E, of infinite
measure, such that for 1 <p <2

riPlEc [ 1y®m).
2<a<p’

By Theorem 1, the inclusion relation FLP | E Cc LYE) does not hold in case (i);
by Theorems 2 and 3, it depends on the set E whether the relation holds in case (ii).
We prove Theorems 1 and 2 in Section 2. In Section 3, we use Theorem 1 to give a
new proof that if G is not compact and q < p, then the only multiplier from LP(G) to
L9(G) is the 0-operator. Finally, in Section 4, we prove Theorem 3 and obtain as a
corollary the known fact that if T' is infinite and p # 2, then FLP = LPY(T).

Theorem 1 is new. Theorem 3 is known for discrete groups T (see [16, p.
130]), but is new for the case where I is not discrete. Theorem 2 is described as
known in [9, p. 81], but there is no complete proof in the literature; we include the
theorem here because it follows easily from Theorem 1 and complements Theorem
3. Special cases of Theorem 2 are proved in [1, pp. 261-263] and [4, Vol. II, p. 147].

This paper overlaps slightly with a recent paper of R. E. Edwards [5], although
the work on the two papers was done independently. Edwards concentrates on the
case where I' is discrete and infinite, and he shows in this case that if 1 < p <2,
then FLP is not contained in the algebralc sum

U ram+ U wrr.

qg<p' r>p

This result and Theorem 1 are complementary, and both are sharper than Theorem
2. I wish to thank Professor Edwards for providing me with a preprint of his paper.
I also wish to thank the referee for suggesting a method of extending Theorem 1 to
the case where I' is an infinite, compact, non-Abelian group.

2. NONINCLUSION THEOREMS

First we esiablish some notation. If g is a function on I"' and E is a subset of
I, we denote by gl E the restriction of g to E, and by ” gIE "’p the norm of g | E
as a member of LP(E); for a continuous function g we denote the support of g by
supp g. Sometimes we specify a particular normalization of the Haar measure on
I'; we assume in such cases that the Haar measure on G is also renormalized so
that the inversion theorem and the Plancherel theorem [16, pp. 22, 26] hold. Re-
normalization changes ncrms of functions but does not affect the containment or lack
of containment of FLP | E in LYUE).

Even if G is not Abelian, we denote the group operation in G by + and the
identity by 0. If E and K are subsets of G, then E + K is the set of all sums
x +x' with x in E and x' in K; the set E - K is defined similarly.

To prove Theorems 1 and 2, we need the existence, on nondiscrete groups, of
positive-definite functions that have small support but are relatively large on rela-
tively large parts of their support.
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LEMMA 0. Let G be an infinite, compact group, or a nondiscvete, locally
compact, Abelian group. Then there exist a compact set K in G and a constant
6 > 0 such that to each € > 0 there corvesponds a continuous, positive-definite
Junction g on G with the properties

(a) 0<g<1 and g(0) =1,
(b) supp g € K and |supp g[ <eg,
(c) |{x e Giglx)>6}| > 0|supp g].

Proof. The model for g is the triangular function A on the real line R given
by

- x| it x| <1,

I
Alx) =
0 otherwise.

Clearly, A is at least 1/2 on half of its support. Note also that A is the convolution
square of the characteristic function of the closed interval [- 1/2, 1/2].

Functions g with the desired properties exist on every locally compact group G
satisfying the following condition.

Condition A. There exist a compact set K in G and a positive constant C such
that to each ¢ > 0 there corresponds a pair {U, V} of symmetric, compact neigh-
bourhoods of 0 with the properties

1. V+VCU,
2. U+ U CK,
3. |[u+vu| < clv] <.

Indeed, suppose that the group G satisfies Condition A. Given € > 0, choose
sets U and V as above. Let h be the characteristic function of U, and let

g = h*h/|U].
Clearly, the function g is continuous and positive-definite. Since
gx) = |[Un x+U)|/|U],
assertion (a) holds. Moreover, g vanishes off the compact set U + U; therefore as-

sertion (b) holds. Finally, for each x in V, we have the relation x + V C U; for
such x,

glx) > |x+v|/|U].
Now U C U+ U, because 0 € U. It follows that if x € V, then

gx) > |v]/|u+u| > 1/C.

Therefore
| {x: g(x) > 1/Cc}| > |v| > (1/¢)|]u+U| > (1/C) |supp g| .

This is assertion (c) with 6 = 1/C.
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It remains to show that if a nondiscrete group is locally compact and Abelian,
or merely compact, then it satisfies Condition A. We suppose first that G is in-
finite and compact, but possibly not Abelian. Consider the set of continuous, ir-
reducible, unitary representations of G. For each such representation «, of degree
dy, let a(G) be the image of G in the unitary group U(dy). There are two possi-
bilities:

Case 1. For some «, the group a(G) is infinite.

Case 2. For all «a, the group a(G) is finite.

In Case 1, o(G) is an infinite, compact subgroup of U(dy). Normalise the Haar
measure on a@(G) so that a(G) and G have the same mass. The proof of [11, Vol.
II, p. 651, 44.29] shows that there exist two constants k and k' and a sequence
{u,, Vn}::1 of pairs of symmetric, compact neighbourhoods of the identity in a(G)

such that
(i) Uy DU, D DU, D -,
(i) 0 < |U, +Uy| < & |U,],
(iii) every neighbourhood of the identity contains some u,,
(iv) Vo +V, C Uy, but |U,] < ' |Vy].

In the terminology of [11, Vol. II, p. 637, 44.10], the group @(G) admits a compact,
symmetric D"-sequence of neighbourhoods of the identity.

Because @(G) is infinite and compact, it has open sets of arbitrarily small posi-
tive measure. Given € > 0, use properties (iii) and (iv) to obtain an integer n for
which k«'|V,| <e. Then

|Un +Un| < kk'|Vy| <€

Returning to the group G, let K=G, let C=«k«k', and let U and V be the inverse
images a-1(U,) and a-1(V,). Assertions 1 and 2 of Condition A follow immedi-
ately from the definitions of the sets involved. As in [5, p. 195], the set mapping
a-l is measure-preserving. Therefore, Assertion 3 holds. This completes the
proof in Case 1.

In Case 2, for each continuous, irreducible representation «, the kernel G, is
a closed subgroup having finite index in G; hence G, is open. For each nonzero x
in G, there exists such a representation a with x ¢ G, (see [2, p. 15, 2.4], or [11,
Vol. II, p. 343, 22.12]). By taking finite intersections of suitable subgroups Gy, we
obtain open subgroups having arbitrarily large finite index in G. Given € > 0,
choose such a subgroup H of index at least IGI/S. Let U=V =H. Then Asser-
tions 1 to 3 hold with K= G and C = 1. This completes the proof in Case 2.

Now suppose that G is a nondiscrete, locally compact, Abelian group. By the
structure theorem ([11, Vol. I, p. 389}, or [16, p. 40]), the group G has an open
subgroup G; of the form G; = L X R™, where L is a compact, Abelian group.
Again there are two possibilities:

Case 3. n=0.

Case 4. n> 0.

In Case 3, the subgroup G; is itself compact; on the other hand, G; is infinite
because it is open in the nondiscrete group G. Therefore, by Cases 1 and 2, the
group Gj, with its own Haar measure, satisfies Condition A. But the Haar measure
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on G; is simply a multiple of the restriction to G; of the Haar measure on G;j
hence G also satisfies Condition A.

In Case 4, let K= L Xx[-1, 1]", and let C =4". For 0 <a <1/4, let
U =L Xx[-2a, 2a]® and V = L X [-a, al]®. Clearly, Assertions 1 and 2 hold, and
Assertion 3 holds for all sufficiently small a. This completes the proof of the
lemma.

Remark 1. In the original version of this paper, Lemma 0 was stated and
proved only for Abelian groups. I wish to thank the referee for observing that the
case of compact, non-Abelian groups can be handled in the manner described above.
In the rest of this paper, the main theorems will be stated and proved for Abelian
groups, and the analogous statements for non-Abelian groups will be discussed in
the remarks.

For the rest of Section 2, we consider Abelian groups only, and we use the
notation of Section 1.

THEOREM 1. Suppose that T is not discrete and that E C T' is not locally null.
Let 1<p<2. Then FLP|E ¢ Uy> i LYE).

Proof. Since E is not locally null, it contains a subset of positive but finite
measure; by the inner regularity of Haar measure, this subset contains a compact
set of positive measure. It is therefore sufficient to prove the theorem for compact
sets E, and we assume henceforth that E is compact and has positive measure.

Suppose that FLpl E C LYE) for some q in the interval (p', «). Then the
mapping f £ | E taking LP(G) into LY(E) is closed. Therefore it is bounded, and
there exists a constant C such that, for all £ in LP(G),

(1) "ﬂE"q < C“f"p .

Let € > 0. We apply Lemma 0 to the group T, obtaining a continuous, positive-
definite function g on T, with properties (a), (b), and (c). Let x = |supp g|. Be-
cause g is continuous, positive-definite, and compactly supported, there exists a
positive function £ in LY(G) such that g =1 [11, Vol. I, p. 297]. Now
el = f(0) = 1, and || Iz = el < al/z, Therefore, by the logarithmic convexity
of |If |p as a function of 1/p, we have the inequality

(2) lelp < At/P".

Next we consider the restrictions to E of translates of g. For y in T, let Ty 8
be the function given by T},g('y) =g(y' - y) for all ' in I". Consider the 1ntegra1

Y o — T q '
SE [7,e(r)]%dy SE gly' - ) dy'.

This is 0, unless for some y' in E, y' - y lies in the set K provided by LLemma 0.
Such 7' exist only if y lies in the compact set E - K. Thus

S SE gly' - )%y ' dy

E-K

SF SE gy’ - Nidy'dy

§ 5 et - navay = |m|- g2
ET
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It follows that, for some y in E - K|

§_ o) ar 2 (ml/1E - k) el

But, by assertion (c) of Lemma 0, ||g||q > 6971y hence, for some y in E - K,
(3) | 7ye B2 > s* N [E|/|E - K| .
Now, 7.g is the transform of the function yf. By inequality (1), applied to 1,
(4) | 7elEllq < cllntlp < ca'/P.
Combining inequalities (3) and (4), we see that
(5) s |E|/|E - K| < c9\/P'-L

Since A <& and q > p', the right side of (5) tends to 0 as ¢ tends to 0, but the left
side is fixed and positive. This contradiction proves that

(6) FLP |E ¢ LYE) if p'<q<.

The rest of the proof is an argument by Baire category. For q € (p', ©), con-
sider the extended real-valued function ¢ on LP(G) defined by the equation

¢() = | f| E|lq. By (6), ¢ takes the value +<; also, ¢ is sublinear and lower-
semicontinuous. Therefore {f € LP(G): ¢(f) = =} is a dense set of type Gg in

LP(G) [117, p. 99]. Choose a strictly decreasing sequence {qn}:ﬂ converging to
p'. By Baire’s theorem, the set

{t e LP@G): || E |y = « forall n}

is a dense set of type Gg in LP(G). Fix a function f in this set; let q € (p', «].
Now fl E e LP' (E), by the Hausdorff-Young theorem; if also f| E ¢ LYUE), then
£ |E € LIn(E) for all sufficiently large n, contrary to the choice of f. Therefore
f I E ¢ LYE) for all q > p', and the proof of the theorem is complete.

THEOREM 2. Let G be a locally compact Abelian gvoup with dual group T.
(a) If T' is not discvetle and 1 < p < 2, then FLP ¢ Uq>p- LYT).

(b) If T is not compact and 1 < p <2, then FLY ¢ Uq<p. LYT).

(c) If T is neithey compact nov discvete and 1 <p <2, then

re? ¢ U Lyo.
q#p'
Proof. Assertion (a) is simply Theorem 1 with E = T",
To prove (b), suppose first that p = 2. Then, by the Plancherel theorem,
FL2=L%T). I T is not compact, then L) ¢ Uq< > LYT); therefore
2
rr2 ¢ U o ,Lum).
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Next suppose that I' is not compact and p < 2. Suppose that FLP ¢ LYT), for
some ¢ in the interval [2, p'). By the closed-graph theorem, the mapping T: f — {
is bounded from LP(G) to LYT). Therefore the dual operator T' is bounded from
LI(T) to LP'(G). It is easy to verify that T'g = § for all functions g in
LI(I) N L*(T). Hence

(7) lel, < Il llellq

for all such g. Let FLI'(T) denote the space of functions on G that are Fourier
transforms of functions in L2'(T"). Since LY(T) N L*(I) is dense in L4 (), we
conclude from inequality (7) that

(8) FLY' () ¢ LP(G).

Now, because I' is not compact, G is not discrete; also, p' > q = (q')'. There-
fore assertion (a), with the roles of G and I interchanged and with p and ¢q re-
placed by q' and p', states that FL2'(I") ¢ LP'(G), contrary to (8). Therefore,
FLP ¢ LYT) for 2 <q <p'.

As in Theorem 1, we conclude by a Baire-category argument that
P q
reP ¢ U, o pU).
Finally, suppose that T is neither compact nor discrete; let p > 1. By asser-
tion (a), there exists a function g in LP(G) such that § ¢ Uq>p1 LY(I); by as-
sertion (b), there exists a function h in LP(G) such that h ¢ Uq<p. LYTI). One of

the three functions g, h, and g+ i does not lie in Uq?&p, LY(I). This proves as-
sertion (¢) and completes the proof of the theorem.

Theorem 2 says that the Hausdorff-Young theorem is the best possible state-
ment about containment of FLP in LY(T). Nevertheless, FLP = LP'(I") only if p =2
or T is finite (see [11, Vol. II, p. 431] or the corollary to Theorem 3 of the present
paper); indeed, there exist interesting spaces that are smaller than LP (I') when I'
is infinite and that are known to contain FLP [12, p. 125, Theorem 3], [18, p. 200,
Corollary 3.16], [19, pp. 825-826], [20, Vol. II, p. 121].

Remark 2. In Theorem 2, we used a duality argument to show that (a) implies
(b). We can use the same argument to show that Theorem 1 implies the following
extension of assertion (b): Suppose that G is a nondiscrete, locally compact,
Abelian group, and that E is a subset of G that is not locally null. Then there

exists a function f in LP(G), with f = 0 off E, such that £y Uq<p. LYT). That is,

FLP(E) ¢ U LYD).
q<p'

3. MULTIPLIERS

Let p and ¢ lie in the interval [1, 2]. A measurable function ¢ on T is called
a multiplier from LP(G) to LUG) if ¢-FLP c FLY, that is, if ¢-f ¢ FLY for all f
in LP(G). A more general definition is that, for p and q in [1, «), a multiplier from
LP(G) to LYG) is a bounded linear operator from LP(G) to LG) that commutes
with translation; however, when p, q € [1, 2], the equation
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~

()" =¢-f

defines a correspondence between such multiplier operators T and the multiplier
functions ¢ defined above [9, pp. 102-103], [14, Section 4.1]. Since all locally null
functions ¢ correspond to the 0-operator, we follow E. Hewitt and K. A. Ross [11,
Vol. I, p. 141} and identify such functions with the 0-function. To indicate how
Theorem 1 is related to known results, we use it to give a new proof of a well-known
fact about multipliers.

PROPOSITION. Suppose that T is not discvete and that 1 < q <p < 2. Then
the only multiplier from LP(G) to LY(G) is the O-function.

Proof. Suppose that ¢ is a nontrivial multiplier from LP(G) to LG). Then,
for some ¢ > 0, the set
E={yel:|¢(»]|>¢}
is not locally null. Now
¢-FLP|E c FLY|E c LY (E).
Hence, by the definition of E, we have the relation
FLP|E < LY'(E),

contrary to Theorem 1. Thus the only multipliers from LP(G) to LYG) are trivial.

Using the more general definition of multipliers, one can prove that the proposi-
tion actually holds whenever 1 < q <p < [9, p. 99], [14, p. 149].

Remavk 3. We now discuss the analogues of Theorems 1 and 2 and of the above
proposﬂ:lon for infinite, compact, non-Abelian groups. Fix such a group G with dual

G [2, p. 75] [11, Vol. II, p. 2]. There exist spaces 2P(G) of operator-valued func-

tions on G (see [2, p. 144] these spaces are denoted by € ,(2) in (11, Vol. N, p.
70]) that correspond to the usual ¢P-spaces on I when G 1s Abelian and compact.
Accordingly, for 1 <p <2, let F#P be the space of functions on G that are inverse

transforms of members of i’p(é). By R. A. Kunze’s extension of the Hausdorff-
Young theorem [2, p. 144], [11, Vol. II, p. 229], [13, p. 535],

FeP c 1P (G).
Thanks to the referee, we have a proof of Lemma 0 for infinite, compact, non-

Abelian groups. Using this result, we can extend Theorem 1 to such groups G and
prove that if E C G has positive measure and 1 <p < 2, then

F¢P|E ¢ U wym).
q>p'

In particular, the analogue of assertion (a) of Theorem 2 holds in this situation. It
follows by a duality argument that if G is compact and infinite and 1 < p < 2, then

rLPc) ¢ U 2%6).

q<p'



LOCAL COMPLEMENTS TO THE HAUSDORFF-YOUNG THEOREM 271

Moreover, as in Remark 2, there is a similar non-inclusion result for FLP(E),
provided that E C G has positive measure.

Finally, the proposition above can be extended to infinite, compact, non-Abelian
groups. The extended result is that if 1 < q < p <2, then the only measurable func-
tion ¢ with the property that ¢ - F 2P C FZ 9 is the 0-function. The usual proof of
triviality [14, p. 149] does not work in this situation. A different proof of the ex-
tended result appears in [3, p. 360].

4. A(g)-SETS IN NONDISCRETE GROUPS

Fix p in the interval (1, 2). We now consider sets E C I" with the property
that

(9) FLP |E c LYE) for some q <p'.

As we noted in the introduction, this inclusion holds for all q <p' if |E| < 3 in
particular, if I" is compact, then every measurable set E satisfies (9). If T is not
compact and we take E = T, then, by Theorem 2, (9) does not hold. We now show,
however, that every noncompact group I" contains open sets E, of infinite measure,
with the property (9).

We use the known fact that every infinite discrete group contains infinite sets E
for which (9) holds. Indeed, eyery such group contains an infinite Sidon set E [16,
p. 126] for which FLP|E C ¢ 2(E) [16, p. 130]. In nondiscrete groups, the analogues
of Sidon sets are Helson sets [16, p. 144]. All Helson sets E have property (9); un-
fortunately, this is so because they all have Haar measure 0 [11, Vol. II, p. 573] To
get sets E that have infinite measure and satisfy (9), we extend to nondiscrete groups
another notion of thin set.

Definitions. Let E be a measurable subset of I'. A function f, in LP(G) for
some p < 2, is called an E-function if fis essentially supported by the set E. For
q € (2, »), the set E is called a A(g)-set if every E-function in L2(G) is actually
in LYG).

When T is discrete, this definition is equivalent to the usual one [11, Vol. II,
p. 420, 37.7 (ii)] . The point is that a set E is a A(q)-set, with q > 2, if and only if
FLY' | E C L2(E) (see [11,Vol. II, p. 421, 37.9 (iv)] for the case where T is
discrete).

THEOREM 3. Every noncompact group I' contains open sets E, of infinite
measuve, that ave A(q)-sets for all q in the interval (2, ). These sets have the
property that if 1 < p <2, then

FLP |E C N L.
2<q<p'

Proof. By the structure theorem, I" has an open subgroup of the form H X R",
where H is compact.

Case 1. Suppose n > 0. Normalize the Haar measure on I' so that the open set
V = H X (0, 1)™ has measure 1. The desired set E will be a union of disjoint trans-
lates of V, say
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[~}

x +V)
j=1

Y

with the Xj to be chosen later.

We imitate the usual proof that the Rademacher system is a Alq)-set 20, Vol. I,
p. 213]. Suppose that f is an E- function 1n L2(G) and that f is supported by f1n1tely

many of the sets Ej = x; +V. Then fe LYD), so that f € LYG) for all q in [2, «).
Fix an integer k > 1 we want to estimate | f| . Now

{ lel2ax = {920 = § 1609 0)]2ar.
G G r

Note that the transform (fX)” of fX is the convolution product

A

F = Faf s o %1
of k copies of £,

Let f; be the function on I' that is equal to f on the set E; and vanishes else-
where. To expand

j=1

we use multiindex notation. The symbol « denotes a sequence {« j}?}:l of nonnega-

0
tive integers with all but finitely many terms equal to 0. Let |oz| = EJ-:I a; and

°o *a *o
al = Hj=1 aj!. Denote by f, the finite convolution product f; 1 %£,"2 % .... Then
S 2 a—i- fo -
] =k

Now the support of f, is contained in the set Ey = Eaj#) a;E;, where «; EjA :

denotes the sum E; + Ejt+ - +E;j of a; copies of E_l Suppose for the moment that,

whenever « and B are dlstmct multunchces with |« |8] =k, the sets E4 and Eg
are disjoint. Then

2

§r|f*k<y)|2dy= o (H) Srlfamlzd

|a|=x

Let c; = £ |5, and let c¢® Ha-;éo c?j. Because |V| = 1, we have the inequali-

ties an” 1 < cj and ]| fy ”2 < c¢¥. Therefore
2

S If(x)Idex < (—k—') e’ .

T Ia‘

Compare this expression with
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k o k :
(SGIf(x)lzdx> = jZ:)lcjz) = 2 %cza.

la|=x
Clearly,
(10) (el 0% < wr (el %

Since the set of E-functions { in LZ(G) with f supported by finitely many of the sets
E; is dense in the set of all E-functions in L2(G), we conclude that inequality (10)
persists for all E-functions f. Therefore E is a A(2k)-set.

Now define x; in H X R" tobe (0, 4/, 0, 0, ---). For large, fixed k, the sets
Eq, for distinet @ with |a| =k, need not be disjoint, but it is possible to split
{Xj}c;-o:l into a finite number of subsequences, depending on k, so that, for each
subsequence, the corresponding sets E, with [a| = Kk are disjoint for distinct «.

This makes E a finite union of A(2k)-sets; as in [15, p. 217], E must be a A(2k)-
set. Finally, since E is of type A(2k) for all integers k > 1, it is of type A(q) for
all g in the interval (2, «).

Case 2. Suppose n = 0. If the open subgroup H is finite, then I' is discrete
and infinite; as we noted above, I" then contains infinite Sidon sets E that are of
type A(q) for all q <« [11, Vol. II, p. 423].

If the subgroup H is infinite, normalize the Haar measure on I' so that
IHI = 1. Let E be a union of distinct cosets of H, say

o0 o]
E=U(Xj+H)=UEj.
i=1 i=1

As in Case 1, it is sufficient to prove that E is a A(2k)-set for all integers k > 1.
Suppose that f is an E-function in LZ(G) with f supported by finitely many of the
cosets E;j.

We keep the notation of Case 1 and let g € L2(G) satisfy the condition that
g = c; on each set E; and g=0 otherwise; then Hg”z = ||f]|2 It |a| =k > 1, then
each function fy is supported by the coset Eg ; also, H Iy ||oo < ¢®. On the other

hand, the corresponding function g, is identically equal to ¢® on the coset E,, and
gy = 0 otherwise. Therefore

0] < T B < B m =%,
l o ol

aj=k o=k

for all ¥ € T'. We conclude that Hf“ ok < ”g” 2k -

Now, because é is constant on cosets of H, the function g is essentially sup-
ported by H', the annihilator of H [16, p. 53]. Note that H' is a compact open
subgroup of G, because H is open and compact in I'; also, applying the Plancherel
theorem to the characteristic function of H, we see that the Haar measure in G of
H' is 1. Therefore [g|q is the same whether we view g as a function on all of G
and take the norm in LUG), or restrict g to H' and take the norm with respect fo
the Haar measure in the compact group H' .
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The dual group of H- is I'/H [16, p. 35], and I'/H is infinite because H is
compact and T is not compact. Choose the sequence {x;}j.; in I' so that the co-
sets x; +H are distinct and form an infinite Sidon set in I'/H. Now view g as a
function on H*; it is easy to verify that g is supported by the Sidon set {x;+ H}f:l
in T/H. Therefore |g| .. <CVk|g|, [16, p. 130]. Hence

(11) Ielzic < lelex < CVklelz = V1]

for all E-functions f that have f supported by finitely many of the cosets E;; as in
Case 1, inequality (11) persists for all E-functions f. Therefore E is a A(2k)-set
for all integers k > 1 and a A(q)-set for all q > 2.

We have shown that every noncompact group I' contains an open set, of infinite
measure, that is of type A(q) for all q > 2. Consider such a set E, and let
1 < p < 2. Then the Plancherel transform T: L%(E) — L2(G) actually takes LZ%(E)
into LP'(G). Therefore the dual mapping T' takes LP(G) into LZ(E); as in the proof

of Theorem 2, we see that T'f =f | E for all f in L1(G) n L%(G), hence for all f in
LP(G). Thus FLP|E c L%(E) and

FLP |E c L%E) n LP'(E) c LYE)

for all q in the interval [2, 15']. This completes the proof of the theorem.

COROLLARY [10, p. 572], [11, Vol. II, p. 431]. If G is infinite and 1 <p <2,
then FLP # LP ().

Proof. Suppose first that T' is not compact; let E C T" be an open A(p')-set of
infinite measure. Then

FLP|E c L%(E)
but
LP(T)|E = LP(E) ¢ LXE).

Therefore FLP # LP'(I).

Now, when G is infinite, either G or I' is not compact. Therefore at least one
of the two mappings

~ LP(G) - LP(I) and “: LP(I) — LP(G)

is not surjective. But the maps are dual and injective, and it follows that if one of
them is surjective, then the other is also surjective [11, Vol. II, p. 713, (E.9)].
Hence

FLP(G) # LP(I) and FLP(I) # LP(G).

Remark 4. It follows from the definition that for q > 2, a A(q)-set E has the
further property that, if p < 2, then every E-function in LP(G) is also in LYG); to
see this, one argues as in [15, pp. 204-205]. When I is discrete, it follows trivially
from our definition of A(q)-sets that for 2 < p < q every E-function in LP(G) is in
LYG); when T is not discrete, one can extend the definition of E-functions to the
case p> 2 (see [8, pp. 478-479] and [7, p. 469], or [9, pp. 143 and 150]); but it is
not clear whether the A(g)-sets E defined above have the property that for
2 <p <q, every E-function in IP(G) is in LYG). Also, in the case where T is not
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discrete, it is possible for an E-function to belong to L2(G) but not to LP(E) for any
p < 2; to obtain such a function, we simply take the inverse Plancherel transform of
a function on T that is supported by E and belongs to L2(E) but not to LYE) for

q > 2. Finally, we note that the assumption p > 1 in Theorem 3 is essential; for
FL! contains functions in Co(T) that tend to 0 arbitrarily slowly [11, Vol. II, p. 286,
32.47 (b)].

Remark 5. The analogue of Theorem 3 for an infinite, compact, non-Abelian
group G is that the dual G contains an infinite set that is of type A(p) for all finite
p. This statement is false for some groups G [11, Vol. II, p. 434, 37.21(b)]. On the
other hand, the analogue of the Corollary to Theorem 3 does hold for compact, non-
Abelian groups G [2, p. 148].

Remavk 6. We end the paper with a variation on its main theme: For what
indices p and q and what sets E c T" is FLP | E equalto LY(E)? To avoid triviali-
ties, suppose that E is infinite and not locally null.

Of course, FL? | E = L2(E). On the other hand, FL! | E is never equal to LY(E)
for any q. Indeed, when T is discrete, FL! contains elements of Cy(I) that tend
to 0 arbitrarily slowly [11, Vol.Il, p.286, 32.47(b)]. When I is not discrete, the
compact sets E satisfying the condition C(E) ¢ FL! | E are Helson sets and have
measure 0 [11, Vol. II, p. 573]; therefore FL! | E = LYE) for no compact set E of
positive measure, hence for no set E that is not locally null.

There remains the case 1 < p < 2. Since E is infinite and not locally null, the
relation FLP | E = L9YE) can hold for at most one index q. Suppose that T is dis-

crete. Then FLP|E = ¢%(E) if and only if E is a A(p')-set [11, Vol. I, p. 421].
Therefore, if E is not a A(p')-set then FLP | E # 2%(E); but even in this case, E
contains an infinite A(p')-set, E' say, and we see that FLP | E' = 2%(E"), while, if
q# 2,

(UE) | B = 2YE") + 2E).

We conclude that FLP | E = (4(E) only if q =2 and E is a A(p')-set.

Finally, suppose that I" is not discrete and that 1 <p < 2. Then
FLP ] E = LYE) for no index q. For suppose that FLP | E = LYE) for some set E
that is not locally null. Replacing E by a subset, if necessary, we can assume that
E is compact and has positive measure. Now, by the Hausdorff- Young theorem,

LYE) = FLP|E C LP'(E);

because I’ is not discrete, this implies that q > p'. But by Theorem 1, the condi-
tion FLP | E = LYE) implies that q < p'. Hence q = p', and the mapping

*: LP(G) — LP(E)
is surjective. Therefore the dual mapping
~: LA(E) — LP'(G)

has closed range [11, Vol. II, p. 713, E.9]. Consider, however, the functions &, de-
fined for £ =1/2 and E =M in [6, p. 182]. They satisfy the condition

@ lp > (|E|/2)}/P, because & = 1 on at least half of the set E. On the other hand,

2], = oN"1*2/P") w0 as N— .
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This shows that the one-to-one mapping

~ 1P(E) — LP(G)

does not have closed range. Therefore FLP | E = L4(E) for no q.
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