ISOLATED SUBGROUPS
T. S. Motzkin, B. O’Neill, and E. G. Straus

A subgroup H of a group G is isolated provided its conjugates are strictly
disjoint; explicitly, H is isolated provided xHx-! N H = {1} whenever x € G and
x ¢ H. Isolated subgroups seem to have been used only in Frobenius’s theorem for
finite groups and its developments [4]. Our aim is to consider the effect on the
structure of a (possibly infinite) group G of its supply of isolated subgroups. At one
extreme, G has no isolated subgroups except {1} and G (G is I-simple); at the
other extreme, G admits a nontrivial partition by isolated subgroups (G is multic).
Most well-known classes of groups are mionic, that is, nonmultic (Sections 1, 2);
however, we obtain several noteworthy classes of multic groups. Our interest in
these questions arose from geometry, and in Section 5 we show that the isolated
subgroups of the fundamental group of a Riemannian manifold M are closely related
to the curvature of M. Finally, in Section 6 we discuss finite and infinite Frobenius
groups.

Our late colleague Theodore Motzkin participated in the beginning investigations
of this paper. We consider him a coauthor, even though the completed paper could
not have his customary meticulous scrutiny.

1. TOTAL GROUPS

1.1. LEMMA. (1) The intersection of an avbitravy collection of isolated sub-
groups of G is isolated.

(2) If A is an isolated subgroup of B, and B is an isolated subgvoup of C, then
A is isolated in C.

(3) If 1is an isolated subgroup of G and H is a subgroup of G, then I N H is
isolated in H.

(4) If 1 is isolated in G and x € G, then x® € I\ {1} implies x € 1.

(5) No proper isolated subgroup of G contains a nontvivial normal subgroup
of G.

By the first of these properties, if S is a subset of a group G, we may define Ig
to be the smallest isolated subgroup of G containing S. In particular, for each f
x € G we have the isolated subgroup I,. An element x € G isfotal if Iy = G.

We now distinguish some classes of groups that have successively richer sup-
plies of isolated subgroups.

1.2. Definition. (1) G is I-simple if {1} and G are the only isolated subgroups
of G.

(2) G is total if it contains a total element.
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(3) G is monic if there exists no nontrivial partition (see Section 2) of G into
isolated subgroups. Otherwise, G is mullic.

Obviously, I-simplicity implies totality, and totality implies monicity. We shall
see that the four (mutually exclusive) types implied by the definition actually occur:
I-simple, total but not I-simple, monic but not total, multic.

Remark. I elemenis x# 1 and y # 1 of G commute, then I = I In fact,
since xI x-1 N I # {1} we see that x € I , hence I, C I Symmetrlcally,
I, Iy

1.3. LEMMA. (1) If G has a nonirivial center, then G is I-simple.

y

(2) A dirvect product A X B of nontvivial groups is I-simple.

Pyroof. (1) Let z € Z(G)\ {1} and x € G\ {1}. For each g € G\ {1}, the
element z commutes with both x and g; hence, by the preceding remark,
gely=I,=1I;. Thus Iy =G.

(2) First we show that each nontrivial element of S=(AX {1})u ({1} X B) is
total. Suppose a € A\ {1} and b € B\ {1}. Since (a, 1) and (1, b) commute, it
follows that Iy, ;)=1I(;,,). Hence S is contained in this subgroup, so that (a, 1) and
(1, b) are total. Now (a b) # (1, 1) commutes with (a, 1) and (1, b); hence
I(a b) = = A X B.

1.4. LEMMA. For each x € G, the group 1, is the unique lavgest subgroup of
G in which X is a total element.

Proof. (a) The element x is total in Ix. In fact, if J is an isolated subgroup
of I, that contains x, then by transitivity J is isolated in G. Hence J O I,, so that
J =1,

(b) If x is total in a subgroup H of G, then H C I,.. Since I, N H is isolated in
H and contains x, we see that I, " H = H.

Assertion (b) has a very useful consequence.

1.5. LEMMA. Lel H be a subgroup of G that contains a nontrivial normal sub-
group of G. If x is total in H, then x is total in G.

Proof. Since x is total in H it follows that I, D H. The result now follows by
Lemma 1.1 (5).

Clearly, the preceding lemma generalizes to the case where H is subnormal in
G, that is, where there exists a sequence of subgroups H=H; < H, < --- <] G. (In
fact, the lemma extends to the case where H is (ransfinitely sulmormal in G [6].)

1.6. COROLLARY. Solvable groups are total.

Proof. A solvable group has a nontrivial subnormal abelian subgroup, and
abelian groups are total.

1.7. LEMMA. Every finite group is total.

Proof. Suppose not. Let G be a finite nontotal group of smallest order. In
particular, G contains an isolated proper subgroup I. By a consequence of
Frobenius’s theorem (see Theorem 6.2), G contains a normal subgroup M such that
INM={1} and G =IM. Hence 1< |M| < |G| By hypothesis, M is total, and
thus G .is also total, contrary to our supposition.

A finite (solvable) group need not be I-simple. For example, if n is odd and
n > 3, the dihedral group D, contains proper isolated subgroups of order 2. On the
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other hand, if n # 3, then A, and S, are I-simple, since they are not Frobenius
groups (see Definition 6.1).

1.8. LEMMA. If G contains a total subgrvoup H of finite index, then G is total.

Proof. Since [G: H] < =, there exists a normal subgroup N of G such that
N C H and [G: N] < . Thus, if N= {1}, then G is finite, hence total. If N = {1},
then G is total, by Lemma 1.5.

Lemmas 1.3 (1) and 1.7 can be extended as follows.

1.9. PROPOSITION. If G contains an element x # 1 with only finitely many
conjugates, then G is total.

Proof. The hypothesis on x implies that the centralizer C(x) has finite index
in G. Since x # 1 is in the center of C(x), this subgroup is I-simple. Thus, by the
preceding lemma, G is total.

2. MONIC GROUPS

A partition P = {P;} of a group G by isolated subgroups is an ésolation of G.

Explicitly, G = U {P;: i € I}, where each P; is isolated and P; N Pj# {1} im-
plies P; = Pj . (For technical reasons, we also suppose that if G # {)1} , then no P;
is {1}.) Thus G is monic provided the only isolation it possesses is the trivial
one: P; =G for all i.

Remarks. (1) If P is an isolation of G, and if for each P; ¢ P we have an iso-
lation P¥ of P;, then Ui P¥ is an isolation of G.

(2) 1f {P;} is an isolation of G and H is a subgroup of G, then {P; N H} is
an isolation of H.

The latter fact has a consequence we shall use very often.

2.1. LEMMA. If H is a monic subgvoup of G and {Pi} is an isolation of G,
then H is contained in a single P;.

For example, we use this lemma to obtain analogues of earlier results on total
groups:

2.2. LEMMA. Let H be a monic subgvoup of G. If B has finite index orv con-
tains a nontvivial novmal subgroup of G, then G is monic.

Proof. Let P be an isolation of G. By the preceding lemma, H is contained in
P;, say. If H contains a nontrivial subgroup normal in G, then, since P; is iso-
lated in G, we see that G = P;. If H has finite index, we argue as in the proof of
Lemma 1.8.

For completeness, we give the proof of the following known result.
2.3. LEMMA. If G is minimally covered by subgvoups Hy, +*+, H, (that is, if

2

no n - 1 of these subgroups cover G), then H = ﬂ H; has finite index in G.

Proof. 1t suffices to show that each [H;: H] is finite. Assume not; then
[Hi: H] =, say. Thus [H; N «-- N Hy: H] == for k = 1. Suppose the assertion is
true for 1 <k <n, so that there exist infinitely many distinct cosets Hg;, Hg,, ***,
where g; € H; N --- N Hy. . By the hypothesis of minimality, there is an element
x€ G\ (H; U .- UHy). Thus there are infinitely many distinct cosets of the form
Hg;x in some H; with i >k, say H; ;. For these we have the relations
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- -1
gix(gjx)™! = gjgi € (H1 N =N Hyey) \ H

if i # j. Thus [H; N - N Hyp,q: H] = o, which leads, by induction, to the contradic-
tion [H: H] = 0,

2.4. COROLLARY. Let G be minimally covered by subgrvoups Hy, --+, H,. If
one of these subgroups is monic [total], then G is monic [total].

Proof. This follows from the preceding lemma and Lemma 2.2 [Lemma 1.8].
The following result was first proved for us by M. Schacher in a different way.
2.5. COROLLARY. A nountrivial isolation of G is infinite.

Proof. In fact we can show somewhat more. By Lemma 1.7, G is infinite; but,
if an infinite group G is minimally covered by subgvoups Hy, -, Hy, (n > 2), then
no Hi is isolated. For, by Lemma 2.3, each H; contains a nontrivial normal sub-
group; thus the result follows by Lemma 1.1(5).

2.6. PROPOSITION. Every group G has a unique monic isolation M, and M
consists of all the maximal monic subgroups of G.

Proof. Let & be the set of all isolations of G. Fix x € G\ {1} For each

P ¢ 2, let P(x) be the element of P containing x, and let M(x) = ﬂ {P(x): Pe 2}.
As an intersection of isolated groups, M(x) is isolated. To show that

M= {M(x): 1 + x € G} is an isolation of G, it suffices to verify that

M(x) N M(y) # {1} implies M(x) = M(y). But if 1 # z € M(x) N M(y), then

P(x) = P(z) = P(y) for all P € 2, hence M(x) = M(y).

Clearly, M is the unique finest isolation of G. Hence, by Remark 1 above, M is
monic. By Lemma 2.1, every monic isolation of G is finer than M, hence equals M.

It remains to verify that the elements of M are the maximal monic subgroups of
G. Suppose H is a maximal monic subgroup; then, by Lemma 2.1, H is contained in
some M(x), so that H = M(x). On the other hand, if M(x) is contained in some monic
subgroup H, another application of Lemma 2.1 shows that H C M(x), hence H = M(x).

We say that two elements x, y of G are monically equivalent (notation: x ~ y)
if both are contained in the same monic subgroup of G. It follows from Proposition
2.6 that ~ is an equivalence relation on G\ {1} Thus if S is a set of monically

equivalent elements of G, the subgroup <S> is contained in a monic subgroup of G.

2.7. PROPOSITION. If a group G contains an element of ovder 2, then G is
monic.

Proof. Let N be the (nontrivial, normal) subgroup of G generated by all ele-
ments of order 2. Now suppose x and y have order 2. Then

x(xy)x ! = (xy)! = yxy)y!;

hence x, y € Ixy. Since the latter is monic, we see that x ~ y. Therefore, as we
noted above, N is contained in a monic subgroup of G. By Lemma 2.2, G is monic.

Thus in a multic group the order of every element is odd or infinite.

2.8. Example. A monic nontotal group. Let G be the free product of infinitely
many groups {1, a;} of order 2. Then G is monic. To see that it is not total we

write an element x of G\ {1} as a word aj aj *-ccay . M H= <ail, s By

b
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then x € H # G. But H is isolated; for if g € G\ H, then g as a word in the ele-
ments a; contains some a, ¢ H. Thus ghg-! ¢ H forall he H\ {1}.

2.9. Remark. In Example 2.8, the product cannot be finite, since a group G
generated by a total subgroup H and a finite number of elements of order 2 is total.

Proof. Let t be a total element of H. By induction, we can assume that G is
generated by H and a single element a of order 2. We assert that the commutator
c =tat-!a is total in G. Let I be an isolated subgroup of G that contains c¢. Since
both tat-! and a normalize <c >, these elements are in I, hence t € I. But then t
is in H N I, which is isolated in H, so that H C I. Thus I = G.

3. ¥-MULTIC GROUPS

We can generalize previous work by considering only isolated subgroups drawn
from a restricted class of groups. This leads to more refined notions of multicity.
In the case where the class is that of infinite cyclic groups, this notion of multicity
has geometric significance (see Section 5), and it is useful in the construction of 2
broad class of multic groups (Theorem 4.2).

Henceforth, 9 will denote a nonempty, hereditary class of groups (that is, &
contains every subgroup of each of its members). We can adapt our previous termi-
nology to the case at hand. For example, a subgroup H of G is ¥ -isolated if H is
isolated and H € &; an ¥ -isolalion is a partition of G by & -isolated subgroups; a
group G is ¥-wmultic if G has a nontrivial & -isolation (otherwise, G is ¥ -monic).
If ¥C 7, then ¥-multicity implies J-multicity; in particular, ¥ -multicity implies
multicity (and monicity implies & -monicity), for each &. The results of the pre-
vious section remain valid, mulatis mutandis, except for Proposition 2.4, which
holds when the group in question has an ¥ -isolation. But this may not obtain; in
fact one can easily verify the following assertion.

3.1. LEMMA. For a group G and a class ¥, the following ave equivalent:
(1) G is $-multic or G € ¥,

(2) G has an $-isolation,

(3) every monic subgroup of G is in 4.

Many natural choices of & consist solely of monic groups; for example, all
abelian groups, all cyclic groups, all finite groups—and also the infinite cyclic class
{{1}, Z}, which we denote simply by Z. For such classes, an ¥-multic group
cannot be in & ; thus Lemma 3.1 has this consequence.

3.2. COROLLARY. Let & counsist of monic groups. Then a group G is -
multic if and only if G ¢ & and every monic subgvoup of G is in .

In general, a group may have many ¢ -isolations; but in the monic case there is
at most one:

3.3. LEMMA. If every ¥ -subgvoup of G is monic, then each ¥-isolation of G
consists of the set of all maximal & -subgroups of G, and is the monic isolation
of G.

Proof. If P is an ¥ -isolation of G, then obviously P is monic—and by Lemma
3.1, every monic subgroup of G is an & -subgroup. We have hypothesized the re-
verse. Thus the set of all [maximal] & -subgroups of G is the same as the set of
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all [maximal] monic subgroups of G. Hence, by Proposition 2.6, the monic isolation
of G consists of all the maximal & -subgroups of G.

This leads to a basic criterion for ¥ -multicity:
3.4. PROPOSITION. If G ¢ & and
(a) each x € G\ {1} is contained in a maximal & -subgroup,
(b) distinct maximal I -subgroups ave disjoint,
(c) maximal S -subgvoups of G ave self-normalizing,
then G is & -multic. The converse holds if ¥ consists of monic groups.

Proof. (a) and (b) assert that G is partitioned by the maximal ¢ -subgroups of
G, and the partition is nontrivial, since G € 4. We need only verify that each maxi-
mal ¥ -subgroup H is isolated. But if xHx1 N H # {1}, then, since xHx"! is also
a maximal &-subgroup, (b) implies that xHx~! = H. Thus (c) implies that H is iso-
lated. When & consists of monic groups, the converse follows from the preceding
lemma and Corollary 3.2.

We apply this to some monic classes. For example, for the class of abelian
groups we have the following result.

3.5. COROLLARY. A group G is abelian-multic if and only if G is nonabelian
and for each x € G\ {1} the centralizer C(x) is isolated (or abelian and self-
novmalizing).

Proof. The parenthesized formulation follows from Proposition 3.4 in view of
the equivalence of the following:

(1) C(x) is abelian for all x # 1;
(2) C(x) is the largest abelian subgroup containing x;
(3) if C(x) N C(y) # {1} and x# 1, y # 1, then C(x) = C(y).

But if C(x) is isolated, then y € C(x) \ {1} implies C(y) € C(x). Hence, if
C(y) is isolated for all y # 1, then C(x) is abelian.

Next we consider the cyclic-multic case. By using Zorn’s lemma, we can re-
place (a) in Proposition 3.4 with various equivalent conditions, for example, with the
condition that every ascending chain of cyclic groups is finite. In context with (2) of
the following Corollary, (1) can replace (a).

3.6. COROLLARY. A group G is cyclic-multic if and only if G is not cyclic
and

(1) every x € G\ {1} has only a finite number of voots,
(2) if xt =y) # 1 for some i and j, then (x, y> is cyclic,
(3) if xyx~1 e <y> , then <x, y> is cyclic.

The following corollary gives another criterion.

3.7. COROLLARY. A group G is cyclic-multic if and only if G is not cyclic
and the group 1, is cyclic for each x € G.

Proof. The conditions are necessary, by Lemma 3.2, because I, is total, hence
monic, hence cyclic. For the sufficiency, it suffices to note that (in the case at hand)
distinct subgroups I, are disjoint. -
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We now consider the Z-multic case, showing in particular that every free non-
cyclic group is Z-multic. Clearly, the two preceding corollaries give necessary
and sufficient conditions for G to be Z-multic provided we add the hypothesis that
G is torsion-free. In a torsion-free group, the height of an element x € G is

sup {n: there is a y € G such that y* = x} .

It is easy to see that condition (1) in Corollary 3.6 can now be replaced by the hy-
pothesis of finite height. Condition (3) of the corollary can be simplified by the fol-
lowing observation. (Recall that a subgroup S C G is pure provided x™ € S\ {1}
implies x € S.)

Remavrk. Suppose that G has no elements of order 2, and that A is a pure, in-
finite cyclic subgroup of G. If A is self-centralizing, then A is isolated. In fact, if
xAx-1 N A # {1} for x # 1, then xAx~! = A, since both A and xAx~! are pure.
Since A = <a> is infinite cyclic, xax-! is either a or a-!. In either case, x% and
a commute. But x2 # 1, hence x € A.

Thus we obtain the following result.

3.8. COROLLARY. A forsion-free group G is Z-wmultic if and only if G is
noncyclic and

(1) each element of G has finite height,
(2) if xi=yl# 1 for some i and j, then <x, y> is cyclic,
(3) if xy = yx, then <x, y> is cyclic.

3.9. COROLLARY. A group G is Z-multic if and only if it is noncyclic and the
centvalizer of each element is infinite cyclic.

Proof. Suppose G is Z-multic with Z-isolation {Pi}. It suffices to prove
that the centralizer C(x) of x € G\ {1} is cyclic. If x € P;, then P; C C(x). But
since P; is isolated, it follows that y € P; for each y in C(x). Thus P; = C(x).

Conversely, since each C(x) is abelian, it follows as in the proof of Corollary
3.5 that {C(x): x € G\ {1}} is a partition of G—and thus, in the case at hand, a
nontrivial Z-partition. But each C(x) is then a pure, infinite cyclic group and
CC(x) = ZC(x) = C(x). Hence, by the Remark before Corollary 3.8, each C(x) is
isolated.

By either of the preceding corollaries, every free noncyclic group is Z-multic.
This provides the last of the four examples promised after Definition 1.2. Many
further examples of multic groups appear in the next two sections.

CONJECTURE (M. Schacher). All torsion groups are monic.

We give some positive evidence for this conjecture. First, note that monicity is
a “two-element” condition, that is, if every pair of elements of G lies in some monic
subgroup, then (by remarks preceding Proposition 2.5) G is monic. In particular, a
2-finite group--that is, a group such that each pair of elements generates a finite
subgroup—is monic.

3.10. COROLLARY. There exists no nontvivial isolation by cyclic groups Z.,
Jor any n fov which the Burnside conjecture holds.

In particular, if G is a group in which every nontrivial element has order 3,
then G is I-simple, for it is known that each element of G commutes with all its
conjugates.
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4. MULTIC GROUPS

We describe some methods for constructing or recognizing multic groups. A
partial isolation A of G is a collection of mutually disjoint, isolated subgroups of

G. Partial isolations A and B are complementary if U AU U B =G and

U AN U B= {1} . If A and B are complementary, then A U B is an isolation
of G.

4.1. LEMMA. Let A be a partial isolation of a group G that has no elements of
order 2. Let X = (G\ U A) U {1}. Suppose

(1) X is torsion-free,

(2) each x € X\ {1} has finite height in X,

(8) if x,ye X and xt =y) # 1 for some i and j, then <X, y> is cyclic,

(4) if xy =yx for %,y € X, then <x, y> is cyclic.

Then A has a complementary partial isolation consisting of all the maximal cyclic
subgroups contained in X.

We omit the proof, which is a minor variant of earlier arguments.
4.2. THEOREM. Let {Gy} be a collection of at least two groups with no ele-

*
ments of ovdev 2. Then the free product G = II Gy is multic, with an isolation
consisting of (a) all subgroups of G conjugate to any Gg, and (b) all maximal cyclic
subgroups of G that meet no conjugate of any Gy .

Proof. By well-known properties of free products, the collection (a) is a partial
isolation of Gj thus it suffices to verify that conditions 1 to 4 in Lemma 4.1 are
satisfied. The first condition is clearly satisfied, since an element of G has finite
order only if it is conjugate to an element of some G, . To show that conditions 2
to 4 are satisfied, we recall some facts about free products.

Each element x # 1 of G has a unique expression x = g; -+ g,,, where each g;
is a nontrivial element of some Gy, and where adjacent letters g; belong to differ-
ent groups G, . Then n = L(x) is the length of x. If a # 8, let Wqpg consist of all
x with the first letter in G4 and the last in Gg. For each o, let W, consists of
those x with L(x) > 3 and with first and last letter in G, that are not conjugate to
an element of some Gg. Finally, let C consist of all elements of G conjugate to an
element of some Gy . Then G has the following two properties.

(i) ¥ x ¢ C, then x is conjugate to an element of some Wqyg, and L(x®) > 2n.

(ii) G is the disjoint union of C and all the sets Wqg and W, each of which is
closed under powers—hence pure.

We now prove properties 2, 3, 4 of the lemma in the case at hand where
X=(G\C) u {1}. Property (2) follows immediately from (i).

(3) If xi=yiz 1 for %,y € X, then <x, y> is cyclic.

Note that if this is true for a certain x (and all y satisfying the hypothesis),
then it is true for each conjugate of x. Thus by (i) we can assume X € Wy . Hence
it follows from (ii} that y € W, g- But then the word x!=yJ is reduced as written,
hence the conclusion that < X, y> is cyclic follows by the same formal argument as
in a free group.
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(4) If x, y € X and Xy = yx, then <x, y> is cyclic.

As above, if this holds for x it holds for any conjugate; therefore we can as-
sume that x € Wag. Let y € Wy5 (which we understand to be W., if 6 = y).
Case 1. v # B. Here xy is reduced as written; that is, L{xy) = L(x) + L(y). Hence
the same is true for yx, and the conclusion follows as in a free group. Case 2. y = 8.
Here L(xy) < L{x) + L(y). The same must be true for yx, hence 6 = @. Thus
y € Wgg . But then y-le Wap, hence we have reduced the problem to Case 1.

The preceding theorem lets us construct a variety of multic groups. In par-
ticular, it gives a characterization of the groups that appear in isolations.

4.3. COROLLARY. A group H is isomorphic to an element of a nontvivial iso-
lation of some group if and only if H has no elements of ovder 2.

Let G be a group acting (by means of permutations) on a set X. We say that G
acts multicly on X provided that

(1) each g € G\ {1} has exactly one fixed point in X, and
(2) not all g € G have the same fixed point.
4.4. LEMMA. A group G is multic if and only if G acts multicly on some set.

Proof., Suppose G is multic. If D is the monic isolation of G, then G acts by
inner automorphisms on D. That (1) above holds follows immediately from the
definition of isolated subgroup, and (2) holds since D is nontrivial.

Conversely, suppose G acts multicly on a set X. Let G, be the stability group
{g € G: gx = x} of the element x of X. Then (1) implies that {G,: x € X} isa
partition of G. Furthermore, each Gy is isolated; for if gG,g-1 N G, # {1}, then
Ggx N Gx # {1} (since gGyg-l = Ggx). Hence (1) implies that gx = x; that is,
g € Gx. Finally, (2) shows that this isolation is nontrivial.

We can improve the lemma as follows. If f: X — X, let F(f) denote the fixed-
point set of f.

4.5. PROPOSITION. Suppose G acts on a set X so that

(1) each element of G has a fixed point, but not all g € G\ {1} have the same
Jixed-point set, and

(2) if h(F(g)) = F(g) for g+ 1, h # 1, then F(h) C F(g).
Then G is multic.

Proof. Under our hypotheses, F(g) C F(h) implies F(g) = F(h), for then
hF(g) = F(g), hence F(h) C F(g).

Let Y={F(g):ge G\ {1}}. The group G acts on Y with h € G sending
F(g) to hF(g) = F(hgh-1). We assert that this action is multic. First, g € G ob-
viously has the fixed point F(g) € Y. If g # 1, this is the only fixed point; for if
gF(h) = F(h) with h # 1, then by (2) and the observation at the beginning of the proof,
F(g) = F(h). Finally, (1) implies that not all g € G have a common fixed point in Y.

For example, if G is a subgroup of the rotation group SO(3), then by consider-
ing the usual action on the sphere S2 one can show that the necessary conditions

(i) G nonabelian and
(ii) G contains no elements of order 2

are sufficient for G to be multic.
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Another application of the proposition: if a torsion-free group G acts on a set
X so that every g € G\ {1} has exactly n fixed points but not all have the same
set of fixed points, then G is multic.

5. GEOMETRIC APPLICATIONS

The geometric properties of a Riemannian manifold, notably its sectional curva-
ture K, are closely related to the monicity of its fundamental group 7;(M).

5.1. COROLLARY. If M is a complete Riemannian manifold with sectional
curvature K > 0, then ny(M) is fotal.

Proof. By a theorem of J. Cheeger and D. Gromohl [2], the group 7 = 7;(m)
contains a finite normal subgroup ¢ such that 7/¢ is a crystallographic group. If ¢
is nontrivial, then 7 is total, by Lemmas 1.5 and 1.7. If ¢ is trivial, then, being
crystallographic, 7 contains a normal abelian subgroup of finite index. Hence again
7 is total, by Lemmas 1.3 and 1.8.

5.2. THEOREM. If M is a compact Riemannian manifold with X < 0, then
71 (M) is Z-multic.

This result is implicit in Théoreéme 7, Chapitre 3, of Preismann [5]. He argued
as follows: Consider 7 = 7;(M) as the deckiransformation group of the simply con-
nected Riemannian covering M — M of M, and let X be the set of geodesics of M
(considered as 1-dimensional submanifolds of M). Preismann showed that (in our
language) 7 acts multicly on X. The stability groups 7, are well known to be in-
finite cyclic; hence the result follows by Lemma 4.4. Preismann’s actual conclusion
was that 71(M) is not cyclic and that every abelian subgroup of M is infinite cyclic.
In view of Corollary 3.2, the conclusion above is stronger to the extent of replacing
abelian by monic.

These ideas were extended in [1] and [3], where a complete Riemannian manifold
M with curvature K < ¢ <0 is called parabolic, axial, or fuchsian depending on
whether the number of closed geodesics in M is 0, 1, or « (these being the only
possibilities). If M is parabolic, nothing significant is known about its fundamental
group; if M is axial, 7;(M) is infinite cyclic. However, if M is fuchsian, then
7;(M) is multic. This case may almost be considered typical, since M if fuchsian
if one of the following holds:

(1) M is compact,
(2) M has at least two closed geodesics,
(3) M has a closed but not simply closed geodesic,

(4) M is not diffeomorphic to a product L X R! or to a vector bundle over a
circle,

(5) M has more than two ends.

By a suvface we mean a connected, paracompact, 2-dimensional manifold. The
fundamental groups of surfaces go to extremes in their supplies of isolated sub-
groups:

5.3. COROLLARY. The fundamental group wi M of a surface M is I-simple if
M is one of the following: a plane, a sphere, a pvojective plane, a lorus, a Klein
bottle, a cylindev, an open MObius band. Othevwise, m; M is Z-multic.
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Proof. The fundamental groups of the seven listed surfaces are abelian, except
for the group of the Klein bottle, which has nontrivial center. Hence all are I-
simple, by Lemma 1.3.

Now suppose M is a surface not on the list above. If M is not compact, then
71(M) is free, hence Z-multic. If M is compact, then M is a sphere with two or
more handles, or is double-covered by such a surface. But all such surfaces admit
a Riemannian structure of constant negative curvature; hence 7; M is Z-multic, by
Theorem 5.2. (The fundamental groups in this case are well-known [7], and they
have presentations with a single relation.)

6. FROBENIUS GROUPS

6.1. Definition. A finite group G with a nontrivial isolated subgroup is called a
Frobenius group. The nontrivial isolated subgroups are known as Frobenius com-
plements of G.

Particularly simple examples of Frobenius groups are the following.

(i) The group G of linear mappings x — ax +b (a # 0) of a finite field GF(q)
onto itself. The isolated subgroups G, consist of those mappings that leave an ele-
ment a fixed. Since G is transitive, all the G, are conjugates in G, and, since ‘
only the identity has more than one fixed point, G5 N Gp = {1} for @ # 8. The

complement of U Gy together with the identity forms the normal subgroup T of
translations x — x +b.

(ii) The dihedral group D, with odd n. Here the n subgroups of order 2 are
isolated, since each is its own normalizer. Again, the complement of these isolated
subgroups together with the identity is the cyclic normal subgroup of order n.

The study of Frobenius groups is quite extensive, and we list here a few of the
more important results, referring to D. S. Passman’s book [4] for proofs and
references.

6.2. THEOREMS (Frobenius, Thompson, Higman, Zassenhaus, and others).

1. All Frobenius complements H; of a Frobenius group G ave conjugates. The
elements of G not contained in any H;, together with the identity, form a normal
subgroup M of G, called the Frobenius kevnel of G.

2. The Frobenius kevnel acts transitively and fixed-point-free (undev conjuga-
tion) on the set of Frobenius complements of G. Thus the number of nontrivial iso-
lated subgroups is |M|, and |G| = IHI IMI

3. The Frobenius complements H act fixed-point-free (undev conjugation) on
the elements of the Frobenius kevnel M. Thus the number of elements in any
novmal class of M, other than {1}, is a multiple of ]H|, and IMl = 1 (mod IHI)
In pavticular N <M, N <] G implies |N| = 1 (mod |H|).

4. The Frobenius kevnel M is nilpotent, If p is a prime divisoy of IHI , then
theve exists an upper bound k(p), depending on p alone, of the nilpotency class of M.

The Sylow subgroups of M are thus normal Sylow subgroups of the Frobenius
group.

5. If a subgvoup G of a Frobenius group G is not contained in either a
Frobenius complement H ov in the Frobenius kevnel M, then Gy is itself a
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Frobenius group with Frobenius complements Hy = Gy N H and Frobenius kernel
Ml = Gl N M.

6. Any homomorphic image G® of a Frobenius group G, where the kevnel Ky of
¢ does not contain the Frobenius kevnel M, is itself a Frobenius group. The relation
K¢ < M holds, and the Frobenius complements H® of G are isomorphic to the
Frobenius complements H of G, while the Frobenius kevnel is M$ = M/K¢ .

7. The Sylow subgroup Sp of a Frobenius complement H is cyclic for p> 2
and cyclic or quaternion for p=2. If p and q ave distinct pvimes, then each sub-
group of H of ovder pq is cyclic. If |H| is even, then H contains a unique (cen-
tral) element of order 2.

8. If the Frobenius complement H is solvable, then it has a novmal subgroup
Ho <| H such that H/H is isomorphic to a subgvoup of the symmetric group Sy,
and Hy has cyclic Sylow subgroups.

9. If the Frobenius complement H is not solvable, then H has a normal sub-
group Hy of index 1 ov 2 in H with Hy = SL(2, 5) X H;, where H has cyclic Sylow
subgroups and (|H,|, 30) = 1.

10. A group is a Frobenius complement if and only if it can be faithfully repre-
sented as a fixed-point-free group of linear tvansformations on a finile vector space.

The Frobenius complements of G share an important property with Sylow sub-
groups.

6.3. THEOREM. A subgroup K of the Frobenius group G with |K| = |H|,
wheve H is a Frobenius complement of G, is itself a Frobenius complement, and
hence a conjugate of H.

Proof. Since the orders of the elements of K are prime to the order IMI of
the Frobenius kernel, each element of K belongs to a Frobenius complement. We
may therefore choose a complement H such that H N K # {1} If Hy=HnN K=K,
then K is itself a Frobenius group with complement H; and kernel M;, where
(|7,], |M;|) = 1. According to Theorem 6.2, part 1, we have the relations
|H'1| = ]H' N KI = |H1| whenever H' N K # {1}, contrary to the fact that each
element of M| must be contained in one of the Frobenius complements of G. Thus
the assumption 1 < |H N K| < |K| leads to a contradiction, and we conclude that
H = K for some Frobenius complement H.

Some of the theory of Frobenius groups can be extended to groups that are not
necessarily finite.

6.4. Definition. A group G will be called a Frobenius group if

(i) G contains nontrivial isolated subgroups all of which are isomorphic under
automorphisms of G (these will be called the Frobenius complements of G),

(ii) those elements of G that are not contained in a Frobenius complement,
together with the identity, form a normal subgroup, the Frobenius kernel of G.

Examples of infinite Frobenius groups are quite easy to construct.

6.5. Examples. 1. The infinite dihedral group D, , which is the free product of
two groups of order 2, say {1, a} * {1, b}. Here the Frobenius complements are
the groups of order 2, that is, {1, g-lag}, {1, g-!bg}. Note that these form iwo
conjugacy classes, in contrast to the finite case. The Frobenius kernel is the cyclic

group < ab> .
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2. Any multiplicative subgroup H of a division ring R acts fixed-point-free on
the additive group M of that ring. Thus the semidirect product

{(h, m)| h € H, m € M}
with
(hl’ ml)(hz, mz) = (hl hz, m; hz +m2)

is a Frobenius group whose complements are
(h].’ ml)(hz, m2)=(h1 hz, mlh2+m2) (m € R+),

while the kernel is {(1, m)| m ¢ M} 2R, .

6.6. Remark.. Each Frobenius group G is total. In fact, each element m # 1 of
the Frobenius kernel M is total.

Note that I,,, is isolated and contains m. By hypothesis, no m in M belongs to
a nontrivial isolated subgroup of G. Thus I, = G.

We can now strengthen our previous remark that 2-finite groups are monic.

6.7. THEOREM. A 2-finite group G with a nontrivial isolated subgroup is a
Frobenius group (which is total).

Proof. Let H and H' be two nontrivial conjugate isolated subgroups of G. Pick
he H\ {1} and h' € H'\ {1}; then G; = <h, h'g is a finite Frobenius group with
Frobenius complements H; =H N G; and H; =H' N G;. Let M; be the Frobenius
kernel of G;. Then M; N H" = {1} for any conjugate H" of H; for otherwise M;
would have nontrivial intersection with the Frobenius complement H =H" N G,

of Gl .

We have thus proved that the conjugates of H do not cover G. We next prove
that the elements not contained in any conjugate of H, together with the identity, form
a characteristic subgroup consisting of those elements whose order is prime to the
orders of the elements of H. To see this, let m; and m, be two elements not con-
tained in any conjugate of H, and set G; = { m, m2> . If G nH ={1} for all
H' ~ H, then either mim, =1 or m| m; is not contained in any conjugate of H.

If GinH'# {1}, then G; is a finite Frobenius group with complement
H;=H'N G;. Since m; and m are not contained in any conjugate of H;, they are
contained in the Frobenius kernel, and so is mjm,. The elements m thus do form
a group M whose intersection with the conjugates of H is trivial.

Let me€ M\ {1} and h € H\ {1}; then in the finite Frobenius group
G, = <m, h>, the element m is in the Frobenius kernel M; of G;, and h is in the
Frobenius complement H; =H N G of G;. Thus (ord m, ord h) = 1.

It remains to show that every nontrivial isolated subgroup is conjugate to H.
Let K be such an isolated subgroup. Choose k ¢ K\ {1} with (ord k) | (ord m) for
some m € M, and choose h € H\ {1}. Then G; ={k, h ) is a finite Frobenius
group with nonconjugate Frobenius complements KN G; and H N G;, a contradic-
tion. Thus every element of K is conjugate to an element of H. Let
ke KNH'\ {1} and k, e KN H"\ {1}, where H' and H" are distinct con-
jugates of H. Then G| = <k1, K2> is a finite Frobenius group with complement
H'N G;. By what we proved above, the Frobenius kernel M; of G; is a subgroup
of M, and since G; < K, the intersection K N M # {1}, contrary to our remark on
the relative primeness of the orders of the elements of K and M.
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