FREDHOLM PERMUTATIONS AND STABLE HOMOTOPY
Stewart B. Priddy

Let &%, denote the infinite symmetric group; then there is a map
B%, X Z — Q°S” inducing isomorphisms of integral homology groups [2], [3].
Because this observation has led to several new results in stable homotopy theory
[5], it is of interest to find other “algebraic” models for infinite loop spaces.

Let 2271 8% =1im @""!§" . The purpose of this note is to establish the
homotopy equivalence 2%~ !8® = (BF,)" conjectured by J. Wagoner [12], where F,
is the group of Fredholm permutations (see Section 1), and where ( - )* is D. Quil-
len’s construction, which in this case abelianizes the fundamental group (by adding
2- and 3-cells) without changing the homology groups [9], [12].

The proof (Section 3) uses the simplicial techniques of Quillen [10] and of M.
Barratt and the author [3]. Section 1 contains the necessary preliminaries on
Fredholm permutations, and Section 2 is devoted to the simplicial monoids used in
Section 3.

I would like to thank J. Wagoner, whose ideas on Fredholm permutations in
homotopy theory prompted this work.

1. PRELIMINARIES ON FREDHOLM PERMUTATIONS

We recall some of Wagoner’s definitions and results (see [12] for details and
proofs). Let E=IN XN = {ek} (1<i k <=). Byaproper map a: E = E we
mean a map « for which {a@-1(ek)} is finite for each i, k. Two proper maps «
and B are in the same germ class (notation: « ~ g) if ¢ and B agree except on a
finite set. A proper map « is a Fredholm pevrmutation if a -~ id and 8- a ~ id
for some proper map B.

Let P, be the group of all bijections a of E with a(e%‘) = el.f (i>n). Let
Z, € P, be the subgroup of finite permutations o (o ~ id). Let F, be the group of
all germ classes of Fredholm permutations @ with a(elf) = e]f (i>n). Let
T = UEn, P, = UPn, Feo = UFn . Then there is an exact sequence [12, Sec-
tion 7.1}

(1.1) 1—-3,—»P, BF_,
where p associates each permutation with its germ class, and where moreover
im(p) = [Fy, Fool and Fo, /[F, Fol = Z.

(1.2) Now BP,, is acyclic [12, Corollary 2.2], and hence BP[, is contractible;
hence, using (1.1), one obtains the following result [12, Proposition 7.3].

THEOREM 1.3 (Wagoner). Z X (BZ )t £ Q(BFL).
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2. THREE SIMPLICIAL MONOIDS

In this section, we discuss three simplicial monoids used in the proof of
Wagoner’s conjecture. Define

= =*] JJ.nZl W=,
P=*1 1, WP,
FC =¥ Los) WF,

where F[ =[F,, F,]. Multiplication is induced by the juxtaposition homomorphisms

2o X T = e (PaX P, — P, FEXFS — FS, ) defined by
aed)  (1<i<n),
(a x B)(e}) = ej£+n (n <i<n+m), where ng = Blek ),
ek (n+m <i)

1

for a XB € Z,X (P, X Py, Fo X Fo). The identity element in each dimension
is the degeneracy of the basepoint *. This multiplication is clearly associative, and
therefore Z, P, and F€ are simplicial monoids.

LEMMA 2.1. The homology algebras H,Z, H, P, and H, F® are commutative.
Proof. Let a € P, be the permutation of E defined by the rule

ei—m (1_<._i_<_n):
a(ezl.f = eli‘_n m<i<n+m),
ei‘ (n+m <i).

Let o: F;+m - Fme denote conjugation by the element of Ffler represented by «
(see (1.1)). Then the diagram

C
n+m

E o)
F¢ X F¢ —> F€
m n n+m

(o4 C
FCXFS —> F

(where T is transposition) commutes. Now, since Wo = id [11], the induced multi-
plication WF_ x WF; — WF_, _  is homotopy commutative, and hence the result
follows for F€. A similar argument works for P and Z.

Let &, denote the symmetric group acting on {1, 2, -+, n}. Barratt [1] has
defined a simplicial monoid I'"S? = *|| an>1 W &_ with multiplication induced by
FaX o= Pnim- If U(+) denotes the universal group functor [3] (or group com-
pletion functor [9]) and I'S? = U(r*S0), then |I'S®| = ©®5®. We shall compare
Is% and UZ. Let i &, — =, be the monomorphism defined by
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k _ .
y Y ean) k=1, 1<i<n),
i a) (ei) =
ei‘ otherwise,

and let i, =lim Wi W&, — WZ .
LEMMA 2.2. The induced homomorphism
iy HLW &) —» HWZ,)

is an isomorphism.

Proof. Let E_ = {ef} (1< i< n), and define a bijection f: E, — IN by
f(ef) = (k - 1)n +i. Define an isomorphism ¢,: ¥, — = by

f-laf (ei‘e E),
o_(a) (ek) =
k .
e; otherwise.

Since the inclusion ¢ — & induces an isomorphism in integral homology in the
n-+1
2

[8], and since ¢, extends i, in the sense of the diagram

yOO
7\
in

yn > 2y,

range k <

the result follows upon passage to direct limits.

Let q, r, s denote the basepoints of W(Z1), W(P;), W(F}), respectively. We
shall consider q, r, and s as the generator of my Z, my P, and g FC, respectively,
since all these monoids are isomorphic to Z* . Define a map of simplicial sets
a™: W2, — (UZ) by q”% = lim (xq™™), where xq™™: W Z, — (UZ)y denotes multi-
plication by q ™ in UZ, and where (UZ), is the component of the basepoint *.
Similarly, define the map r~*°: WP, — (UP), (respectively, the map
s™®: WFS, — (UF®)g). By Lemma 2.1, the algebras H, %, H, P, and H FC are
commutative; further Z, P, and F¢ are clearly free monoids in each dimension.
Hence Quillen’s theorem [9] implies the following result.

LEMMA 2.3. The induced homomovphisms
;7 H W2 — H(UZ),
ry®: H,WP — H(UP),,
sy : H,WF® — H_(UF°),

ave isomovphisms,

By [3], there is an isomorphism p,*: H*W F oo — H*(I’SO)O , where
p = lim (xp~™) and p is the basepoint of W & . Let i rs® — UZ be the homo-
morphism of simplicial groups induced by the maps Wi : W&, - WZ,.
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COROLLARY 2.4. The map i: TS° - UZ is a homolopy equivalence.

Proof. Let j: (I"SO)O — (UZ), be the map restricted to the component of the
basepoint *. It suffices to show that j is a homotopy equivalence. Consider the
commutative diagram

bl

(rs%), ——> (Uz),

The induced diagram of homology groups shows (by Lemmas 2.2 and 2.3) that
Js H*(I‘SO) — H,(UZ), is an isomorphism. Since (rs%), and (UZ), are connected
simplicial groups (H-space objects), the H-space version of the Whitehead theorem
implies j is a homotopy equivalence.

3. THE HOMOTOPY EQUIVALENCE

The following is our main resulf.
-] o0

THEOREM 3.1. Theve is a homolopy equivalence BF:F0 =0 S
The proof is given in paragraph (3.7); first we establish the following.
PROPOSITION 3.2. |(UF®),| = B(Q*5™), .

Proof. The epimorphisms p,: P, — F§, (1.1) induce surjective maps
Wp,: WP, — WF{ and hence an epimorphism p': (UP)g — (UF®)y of simplicial
groups. Let K = Kker p'; then the short exact sequence

K — (UP), — (UF%),
of simplicial groups becomes a short exact sequence
(3.3) K| = [(UP)g| — |(UF),|

of topological groups, by the exactness properties of the geometric realization
functor (with values in the category of compactly generated spaces, see [4, Chapter
ITI, Section 3.3]).

Now |VV—POO| is acyelic, by (1.2); hence (UP)g is acyclic, by Lemma 2.3. Thus,
by simplicity, (UP)o is contractible, and therefore (3.3) is a universal |K|-bundle;
that is, |(UF®),| =B |K]|.

Consider the commutative diagram of simplicial Kan fibrations

—_ — Wp —
WZ, — > WP, ——> WF_

Fob, e

K ——> (UP), ——> (UF®),

o0

where ¢ =r~%° IWZOO . By Lemma 2.3, s and r~* induce isomorphisms in

homology, and
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(3.4) 7,(UF®)g = H (UF®), = Hl(‘_N—Ffo)
Since F$ is a perfect group (see (1.1), (1.2)),
(3.5) H,(WFg) = FS/[Fe, Ful = 0.

By the argument of [12, Lemma 3.1], T WFOCO = Ffo acts trivially on H*—W—Ew
Hence, by the Comparison Theorem [6, p. 355],

H, (W Zs,) — H(K)
is an isomorphism.

Now ¢ has the factorization ¢ =i - q~* indicated by the diagram

WZ: —————)K

N o

(UZ)g

and hence, by Lemma 2.3, i induces an isomorphism in homology. By simplicity, i
is a homotopy equivalence. Hence |K| and [(Uz)y] are homotopy equivalent via a
map of topological groups. By Corollary 2.4, (UZ), = (T's? )o ; thus

IR

|(UF©)y| = BIK| = B|(UZ)y| = B(TSY),] 2 BQ7S™),.

COROLLARY 3.6. (BFS)T = B(Q® 8% )

Proof. By Lemma 2.3, s;™: H*(WFEO) — H,((UF),) is an isomorphism, and
hence |s |, HA|WFS|) — H,(|(UF®)]|) is also an isomorphism [7, Proposition
16.2]. By the ( - )t construction [12, Section 1],

(|57 BLUWFG[) - B[ WUF), )

is therefore an isomorphism. Now ﬂl(lWFfo[+) =0 (3.5) and (UF®)y is simply
connected (see (3.4), (3.5)), and therefore |WFS | = [(UF®)s|. By [3, Lemma
2.3.3], |WFS| = B|FS|; thus it follows that (B |FS|)Y = |(UF€)g| = B9 S®)0 .
(3.7) Proof of Theorem 3.1. Let f: S — BF}Y represent a generator of

71 BFY =7 (1.2). Since FS is normal in F.,, the space (BFS)T is homotopy

equivalent to the universal cover of BFOO . Since BF;LO is an H-- space [12; 1.2], the
composite map

incl X f ;
(BFS)" x sl =21, gt x prf, WLy ppt

is a homotopy equivalence, hence by Corollary 3.6, B(2°8%)y x S! 2 BF,. Now the
natural multiplication (2% S8%°)y X Z — QS is strongly homotopy multiplicative,
and therefore B((2°8%)g X Z) = B(2°S*) [2, Lemma 7.1]. Combining these equiva-
lences, we obtain the desired result BFY = B(Q®s®) = @*-1g®
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