A GENERALIZATION OF MERGELYAN’S
UNIQUENESS THEOREM

J. S. Hwang

In [4, Chapter 2, inequality (21.3)], S. N. Mergelyan used the Phragmén-Lindeldf
Principle [6] to prove the following uniqueness theorem.

If f is holomorphic in H = {z: %z > 0}, and if there exist positive numbers K
and A such that |f(z)| < Ke'Alzl for each z € H, then f(z) = 0.

The essential condition in this theorem is the requirement that the inequality
holds throughout the half-plane H. Naturally, we may ask whether instead of the
whole half-plane we might consider only a sequence of arcs in H. The purpose of
this paper is to answer this question. Our results are similar to those of A. L.
Saginjan [8], V. I. Gavrilov [1], and D. C. Rung [7].

We use methods based on the notion of harmonic measure, the Carleman-
Milloux problem, and the two-constants theorem of F. and R. Nevanlinna [5, p. 42].

Definition 1. Let {y,}w., be a sequence of disjoint Jordan arcs in the right
half-plane H = {z: %tz > 0}. Write

z = reif, £, = min |z|, Ln = max |z|, Anp = £n/Ly, 6, = min Argz
z€')/n zE'yn Z€EY,

(the capital A indicates the principal branch), and let &, denote the angle subtended
by ¥, at the origin. We call {'yn} an avc-like sequence if

lim £, = lim L, = o, lim inf A, > O, lim inf @ > 0.
n—oo n-—co n-—oo n-—oo

Definition 2. Corresponding to each are-like sequence {'yn} with associated
parameters L., 0,, and o, , we define the sequence of circular sectors

Fo={z:0<]z| <L, 6,<argz<0,+a,}.
Definition 3. Let F be a domain in H, and let f be a complex-valued function
in H. By M(f, F) we denote the supremum of Max {log |f(z)|, 1} in F.
THEOREM. Suppose
(i) £ is holomovphic in H,

; (ii) {v,} is an arc-like sequence in H, with associated parameters L., L
and o,

n»

(iii) {A,} and {Rn} ave sequences of positive numbers such that
L, <R, L L, and such that, for some constants ag and p (0 < ag<Lm p>1),
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0 < Aa’? < A

lim inf lim suyp ——————— =

n — oo Rg/an_ﬂ/ao T p— o g/an—ﬂ/ao ’

M(f, Fn)
(iv) lim sup —Tq (1/p+1/q=1),
— 0 A4
n n

(v) l£(z)| < exp(-A, [z|ﬂ/ao) ony,(n=1,2, -+).
Then f(z) = 0.

The proof of this theorem is based on the notion of harmonic measure {2, p.
408]. We divide it into three lemmas. The first of these is almost the same as the
lemma in [3].

LEMMA 1. Let D, denote the half-disk {w: w >0, |w| <p}, let T be the
semicivcle on the boundary of Dp, and let w(w, T') denote the harmonic measuve of
the avrc T' at the point w, velative to the domain D, . Then

wlw, IT) = %[%‘z)tw +o(p‘1)] as p— .,

Proof. We first map Dp conformally onto the first quadrant by means of the
formula z = H Then the image z(I") is the upper half of the imaginary axis.
Thus, by [2, p. 407, Exercise 8],

w(z, z(T)) = %arg z .

Since harmonic measure is invariant under conformal mappings [5, p. 38], we have
the relations

2 ip - 2 o ip - 14 _
wlw, T) = w(z, z(I)) = —arg ;p+$ == S log %%_—% =T fw+O0(p-3)

%[%QRW +o(,o‘1):| as p — .

Il

LEMMA 2. Let f satisfy the conditions (i), (ii), (iv), and (v) of the theorem,
and suppose that in addition there exists a constant ag (0 < ag < 7) such that

A111/p A,
(iii') 0 < lim inf ————— < lim sup =,

1 — o0 Lv;/ozn—ﬂ/ao 1 — 00 Lfl/an-n/ozo

Then f(z) = 0.
Proof. By Definition 1 and conditions (iii') and (iv), the arc-like sequence {v,}
has a subsequence (which we again denote by {yn ) such that
1
Allp An

/o, T/ Qg < nh_ljloo Lﬂ/an-ﬂ/ao -

n n

(1) 0 < G, = lim

n—oo I,
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M(t, F.)
(2) lim —7 = M < «,
A4
n—> n
(3) lim A, =x > 0.
n —©

Without loss of generality, we may assume that for each n, the arc y,, meets the
rectilinear portions of the boundary of ¥, only in its endpoints
i, w (0, +a )

£,€ and (pe

Also, extracting an appropriate subsequence if necessary, we may suppose that
(4) lim a, = «a and lim 6, = 6,
n—o n-—>o0

where 0 < a <7 and -7/2 < 8 <7/2.

By condition (v), Definition 3, and the two-constants theorem [5, p. 42], we have
for each z in F, the inequality

log [1(z)] < w(z, 7o) (A, 27/ %0) + (1 - w(z, ) M, F,)
(5)

m/ag

< -A_ 0 w(z, y,) + M(f, F,).

To estimate the harmonic measure of y, at a point z in F,, we denote by C, the
circular portion of the boundary of F,, and we observe that Carleman’s principle of
monotoneity [5, p. 69] yields the inequality

(6) w(z, v,) > wlz, C.).

In order to apply Lemma 1, we map F conformally onto the half-disk

D, = Dp by the mapping

(7) W = {z exp[-i(0,, + a, /2)] }ﬁ/an

n

Clearly, we have the relation

(8) p. = LTT/Oln.

n n

Let I', denote the semicircular part of the boundary of D, , and let w(w, I‘n) denote
its harmonic measure at the point w in D,. Lemma 1 implies that

(9) w(w, T) = pl—n[% RNw +o(pr“11):}.

By virtue of the conformal invariance of harmonic measure, equations (6), (7), (8),
and (9) allow us to write, for each point z = |z|el? in F_
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w(z, yn) > w(z, Cn) = wlw, T'y)

(10) = L;ﬂ/an{% 5t {z exp[-i(6y + 0, /2)]} /%0 + o(L;ﬂ/an)}
- (¢ - 6, - 2 -
_ Ln“""“{ﬁlzl”""n cos T 3 an/2) o(L ™/ }
S n

Combining equations (5) and (10) with condition (iv), we obtain the estimate

log |£(z)|

ﬂ/ao

In 4, mla, (9 0, a,/2) /g M, F,)
< -A, L“/an[ﬂlzl cos o +o(L "/ ¥n) —

(11) ?
~An T/ag| 4 m/a (¢ - 0, - a,/2) 1/
= = n n
Li/an_ﬂ/ao n l:” |z| cos an + o(L, ):l

L1/ /%0y 5y

For each ¢ with 0 <& <A, it follows from equations (1), (2), (3), and Definition
1 that there exists a positive integer N; such that, for all n > N,

T/o_-m/o
1L pom © 0<1+s
= . 7 = ,
Gp Anp Gp
M(f, F_)
M-¢& <—7 - <M+tg,
A4

0<Ar-e <A, <A+tg,

and the term o(L;ﬂ / “1) ig less than &. For sufficiently large n, we can write the
inequality (11) in the form

log | f(z)]

A -6 - 2
n {OL_S)‘IT/O!(),:%'ZI'IT/OZIICOS (¢ n O!n/ ) 'E:I

(12) s [Tlagmlag o,

n
- (i + 8) (M +¢)
Gp ’
Condition (4) implies that as n — «, the sequence {F, } converges to the sector

Fo = 12: 0< |z2]| <o, 6§ <argz< 6 +a}.
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By (4), there exists an integer N, such that

(6 +a/2 -6, -a,/2)

cos >0
an

for ¢ = 0 + @/2, whenever n > N,. Now let R(6 + a/2) denote the ray that bisects
the domain F, . There exists a number N3 (N3> N;) such that, for all z on
R(6 + a/2) with |z| > N3,

0 +a/2-60_-0a,/2
(- S)W/ao[%hw/an cos ul / n” /2 s:I

an
(13)

_ (Glp +e) (M+g) > G > 0.

Let N = max(N;, N3). For each n>N and each z € R(6 + @/2) with |z| >N,
the relations (12) and (13) imply that

A_G

Lﬁ/an—’ﬁ/ao ’

n

(14) log |1(z)| < -

Let n — ; from (14) and the second inequality in (1) it follows that log |f(z)| = - e,
in other words, that £(z) = 0 on the ray R(6 + a/2), for |z| > N. By the uniqueness
theorem for holomorphic functions, we can conclude that f(z) = 0.

LEMMA 3. Let f satisfy conditions (i), (ii), (iv), and (v) of the theovem; sup-
pose that in addition theve exists a constant aqg (0 < ag < w) such that

1
An/p An

(iii") O<11m1nfm_<_hmsupm=oo_
n

n— oo *Qn

n-—°o

Then (z) = 0.

Proof. Using the technique that lead to the estimate (11), we obtain the
inequality

log | (z) |
-Aq igles 4 T/ (¢ - 0, - an/z) -m/ o
(1) < ———g” Ja—Jag A, n[; |z|" “n cos o +o(L, ' ")
n
7/a, -1/ og
4y n M(f, F,)
Arll/pA‘].'El/q

By the argument in the proof of Lemma 2, lim x;’/ “n = A”/O‘, and therefore we see

that n=e
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loglf(z)l
-Ap mjate | 4 m/ay, (¢ - On- ay/2)
(12") < m {()\ - g) [;'ZI cos o - € :'
n
1
- (G—p +8> (M+8)}.

The remainder of the proof is the same as that of Lemma 2.
In the proof of our theorem, we distinguish two cases.

Case 1. If there exist infinitely many indices n for which the subtended angle
@, is at least ag, then condition (iii) implies condition (iii'), and the theorem fol-
lows from Lemma 2.

Case 2. If there exist infinitely many indices n for which o, < @y, then con-
dition (iii) implies (iii"), and the theorem follows from Lemma 3. This concludes
the proof.

We shall now discuss possible choices of the angle @, . If (after extraction of a
subsequence) the arcs y, satisfy the condition o, > ag, we can write (11) in the
form

- ¢ - 0,- o,/2 -
loglf(z)lS_Lw/ao w/ay, Aﬂhﬁ/aoliélzlﬂ/an cos R n/)+0(Lnﬂ/an)]

n n T on

M(f, Fp)

Cpr/egT/ oy

n

In this case, condition (iii) in the theorem becomes trivial, provided lim sup A, > 0.
n —» 0

We can then replace condition (iv) with the condition

_ M(f, Fy,)
lim sup ——— o,
n—» 00 Lg/ao—ﬁ/an

Instead of assuming that the sequence {An} tends to infinity, we need only assume
that it is bounded away from 0. Observing that R, <L , we then obtain the follow-
ing corollary.

COROLLARY 1. If
(i) f(z) is holomorphic in H,
(i) {y,} is an arc-like sequence such that oy, > ag (0 < ag <),

n/ag-m/a,

(iii) lim sup A, > 0 and  lim sup R, = w,
n—oo n —*co
M({, F
(iv) lim sup — /; —7Tn/)01 o
n — o Rn 0 n
(v) 1£2)] < exp(-A, |2]™'%)  on v, (=1, 2, ),

then f(z) = 0.
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If in this corollary we assume that f(z) is bounded in F, (or in H), we can omit
condition (iv). On the other hand, condition (ii) enables us to choose for each n a
subarc ¥} of y, such that the subtended angles a are all equal to &. Thus, if
a, > ag, we need consider only the special case o, = ag.

We have the following general result, whose proof we omit.

COROLLARY 2. Let conditions (i) and (ii) be the same as in the theovem. If in
addition

(iii) lim sup A, = ,

n — oo

M(f, Fn)
(iv) lim sup —3 <=,
i
n—oo
) #z)| < exp(-Ap |z|™ ) on oy, =1, 2, ),
then f(z) = 0.
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