ON A CHARACTERIZATION OF AW*-MODULES AND
A REPRESENTATION OF GELFAND TYPE OF
NONCOMMUTATIVE OPERATOR ALGEBRAS

Hideo Takemoto

1. INTRODUCTION

The direct integral decomposition of a von Neumann algebra % has been ob-
tained only for the case where 9 is generated by its center ¥ and a countable
family of other elements (see [2, Chapter 2], for example). As far as we know, the
literature does not contain a successful treatment of the problem for nonseparable
algebras. In the present paper, we investigate from the viewpoint of continuous-
reduction theory an extension of the Gelfand representation of commutative C*-
algebras to noncommutative von Neumann algebras. That is, we show that noncom-
mutative von Neumann algebras can be represented as continuous fields of von
Neumann algebras; but we can not show that each component of continuous fields of
von Neumann algebras is a factor. Before considering the continuous fields of von
Neumann algebras, we shall introduce a continuous field of Hilbert spaces, to which
AW*-modules are equivalent; thus we can reconstruct AW*-modules from the
Hilbert-space representation, and we believe that this technique is new. By using
the continuous field of Hilbert spaces, we shall show that every von Neumann alge-
bra has a representation of Gelfand type.

I. Kaplansky ([7], [8], and [9]) has discussed the theory of AW*-modules and
AW*-algebras. In particular, he has shown [9] that if « is a commutative AW*-
algebra and M is a faithful AW*-module over ., then the set of all bounded -
module homomorphisms on M is an AW*-algebra of type I. Conversely, an AW*-
algebra of type I with the center g is *-isomorphic to the AW*-algebra of all
bounded F-module homomorphisms on a faithful AW*-module over 3.

Now AW™*-modules have many properties of Hilbert space, and they can be con-
sidered as a Banach space of all vector-valued continuous functions on a Stonean
space; hence we shall have a continuous field of Hilbert spaces. Furthermore, by
using this continuous field of Hilbert spaces, we can show that each von Neumann
algebra can be represented as a continuous field of von Neumann algebras.

In Section 3, we define a continuous field of Hilbert spaces over a compact
Hausdorff space §, which is different from the one by J. Dixmier [3, Section 10].
Then we obtain a result, similar to Riesz’s theorem in Hilbert space, which
Kaplansky has established in the case of an AW*-module, but not in the case of a
C*-module. Further, any bounded module homomorphism on our continuous field of
Hilbert spaces has a bounded adjoint operator, and the set of all bounded module
homomorphisms on our continuous field of Hilbert spaces is a C*-algebra. In par-
ticular, let  be a Stonean space; then our continuous field of Hilbert spaces over
is an AW™*-module (see Section 4). Conversely, each AW*-module is representable
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as a continuous field of Hilbert spaces over a Stonean space. Therefore we can de-
compose a bounded module homomorphism on an AW *-module to a field of bounded
operators on Hilbert space.

Let H = %”g) H(w) be a continuous field of Hilbert spaces over a Stonean space
Q, let A be a bounded C(£2)-module homomorphism, and let A = € S@z A(w) be the
representation obtained by the decomposition of A; then the function w — [|A(w)| is
g_cglzinuous on . Thus A = @g % (w), where ¥ is a von Neumann algebra and
% (w) is a von Neumann algebra for every w € Q.

2. NOTATION AND PRELIMINARIES

Let € be a compact Hausdorff space, and let « = C(2) be the algebra of all
complex-valued continuous functions on Q. For a field {H(w): w € @} of Hilbert
spaces, the elements £ = {’g’(w)}weg of Hweﬂ H(w) are called vector fields. If
f e C(Q) and ¢ is a vector field, f£ = {f(w) &(w)} .- If £ and 5 are vector

fields, then (£, 7) is the function w — (£(w) | n(w)), and |£] is the function
w — ||£(w)||. Let B(K) be the algebra of all bounded operators on a Hilbert space

K; then each element of 1l .o B(H(w)) is called an operator field. If
Aell,.oBMH() and ¢ € II , o H(w), then Af = {A(w)E(w)}peq -

Let + be a commutative C*-algebra with unit, and let H be an # -module in
the ordinary algebraic sense. Suppose there is defined on H an inner product taking
values in « and satisfying the conditions

(1) (§, 77) = (77: g)*’
(2) (& &) > 0 and (& £) =0 only for £ =0,

(3) (at +&;, 1) = alg, n) +(&, n)

forall & £, 7 in H and all a in . We use the notation |£| = (&, £)!/2,

i€l = (& €)]|1/2, where on the right we mean the usual positive square root and
norm in «. We see that |£]| isthe norm of |£| in the algebra . Therefore H
is a normed space with respect to the norm || - || defined above. In particular, if H
is already complete, we shall call it a C*-module over .

An AW*-algebra %A is a C*-algebra satisfying the following two conditions.

(1) In the set of projections, each collection of orthogonal projections has a
least upper bound.

- (2) Each maximal commutative self-adjoint subalgebra is generated by its
projections.

Let © be a compact Hausdorff space. @ is called a Sfornean space if the clo-
sure of every open set is open [1]. If Q is a Stonean space, then the algebra C(Q2)
of all complex-valued continuous functions on  is a commutative AW*-algebra.
Conversely, let .« be a commutative AW*-algebra; then there exists a Stonean
space  such that . is *-isomorphic to C(Q).

Let « be a commutative AW*-algebra. We say that H is an AW™*-module
over « if it is a C*-module over # and has the following two additional
properties.
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(1) Let {ei} be orthogonal projections in  with sup e; = e, and suppose § is
an element of H with e; £ =0 for all i; then e£ =0.

(2) Let {e;} be orthogonal projections in ¢ with sup e; = 1, and let {%;} be
a bounded subset of H; then there exists an element £ in H with e; £ = e; §; for
all i.

By a bounded opevator from a C*-module H; over a commutative C*-algebra
« into a second C*-module Hz over « we mean a linear and continuous mapping
of H; into Hp that is also an # -module homomorphism. The set B(H) of all
bounded operators on a C*-module H over «« forms a Banach algebra in the usual
operator norm. We shall write the element of ¢ (typically f, g, **-, a, b, -*) on
the left of the element of H (typically &, 7, --).

3. CONTINUOUS FIELDS OF HILBERT SPACES OVER A COMPACT
HAUSDORFF SPACE AND C*-MODULES

In this section, we define a continuous field of Hilbert spaces over a compact
Hausdorff space Q. It is a C*-module, and the set of all bounded module homomor-
phisms on it is a C*-algebra.

Definition 3.1. Let £ be a compact Hausdorff space, and let {H(w): w € £} be
a field of Hilbert spaces. A subspace H of II we o H(w) is said to be a continuous
field of Hilbert spaces if there exists a subspace Hp of Hwe o H(w) such that

(1) for every ¢ € Hgp, the function w — ||§(w)” is continuous on £,

(2) for each w € Q, the subspace {£(w): £ € Hy} is dense in H(w),

(3) H=1¢ € Il ,eq H(w): for each positive number & and each wg € &, there

exist an element £, in Hy and a neighborhood U(wg) of wg such that
| £(w) - £o(w)|| <& for every w e U(wp)},

(4) if £ is a vector field such that the function w — [|£(w)|| is bounded, and if
for each 7 € Hy, the function w — (£(w) | n(w)) is a continuous function on €, then
£ e H.

Property (1) in this definition is equivalent to the following:
(1') For all ¢ n € Hg, the function w — (&(w) l 7{w)) is continuous on .

The following example shows that our definition is more restrictive than the
usual definition of a strong continuous field of Hilbert spaces (see [3, Section 10])
with properties (1), (2), and (3).

Example. Let Q =[-1, 1] be the closed interval in R!, let fy(w) = |w| for
every w € [-1, 1], and let

C if w+0,
H(w) =
0 if w=0.

Then the subspace {ffy: f e C(R)} of I, o H(w) satisfies the conditions (1) and
(2) in Definition 3.1. Let
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1 if w# 0,
fl(w)=
0 if w=0;

then for each f € C(f2), the function
w = (f;(w) | f(w) fo(w)) = f(w)f;(w) fylw) = fw) |w|

is continuous on . Therefore f; satisfies condition (4) in Definition 3.1. But since
the function w — |f,(w)| is not continuous, f 1 does not satisfy condition (3).

Under Definition 3.1, for any £ and 7 in H, the functions w — (¢(w) | 7 (w)) and
w — ||£(w)| are continuous on . Further, we have the following resuit.

PROPOSITION 3.2. If H is a continuous field of Hilbevt spaces, and if £ € H
and |£| = sup { | &(w)|: w € Q}, then the normed space (H, || - ||} is complete.
That is, H is a Banach space.

Definition 3.3. Let ({H(w): w € Q}, Hg, H) be a field of HI_‘}lbert spaces satis-
fying the conditions in Definition 3.1; then H is denoted by € 0 H(w) or
¢
Q H(w).

Let H= %g H(w) be a continuous field of Hilbert spaces over ; for all
£, n € H, we identify (£, 7) with the continuous function w — (&(w) | 7 (w)).

PROPOSITION 3.4. If Q is a compact Hausdovff space, then a continuous field
H= &9 H(w) of Hilbert spaces over § is a C*-module over C(S).
Q

By Proposition 3.4, a bounded operator A on a continuous field H = %g) H(w) of

Hilbert spaces is a mapping on H that is not only linear and continuous in the usual
operator norm, but is also a C()-module homomorphism on H.

We call A* the adjoint opevator of A if (AE, )= (¢, A*n) for all £ 1 € H.

LEMMA 3.5 (Kaplansky [9]). Let H be a C*-module over a commutative C*-
algebva A, and let A be a bounded operator on H with an adjoint opevator A* that
is also a bounded operator. Then ||A| = ||A*| ana |A* A| = ||A2.

Let « be a commutative C*-algebra, and let H be a C*-module over .« ;then
an « -module mapping ¢ of H into « will be called a functional of H into .
We shall devote the present section to the proof that a continuous field H = ¥ H(w)
of Hilbert spaces over a compact Hausdorff space © is self-dual in the same way
that Hilbert space is self-dual. The following result is analogous to a known result
on AW*-modules. '

THEOREM 3.6. Let Q be a compact Hausdovff space, let A& = C(Q), and let
H= %S%D H(w) be a continuous field of Hilbert spaces over . If ¢ is a continuous
Junctional of H into A, then theve exists a &y € H such that $(&) = (&, &g) for
every £ €H, and ||o| = || £o]|-

Proof. Corresponding to each w € §, we define ¢, (£(w)) = ¢(£) (w) for every
¢ € H; the functional ¢, is then well-defined. Indeed, suppose that £ € H, that
wqy € 2, and that € > 0. Since the function w — | &(w)|| is continuous on €, the set

G = {we 2 e < |5l + e}
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is open and contains w(. Since Q is compact, there exists an element f of Cc(Q)
such that f(wg) =1, 0 <f<1, and f(w) =0 for each w € £\ G. We have the
relations

lig]| = sup {f(w) | £()]: w € @} = sup {f(w) [[£(W)]|: w € G} < ||&(wp)]| + €,

and therefore

o)l < lloll - lzgll < loll (ltwolll + e

Furthermore,

o) || = sup {|o(te) (W)]: w € R} > |$(tE) (wp)| = Hwg) |#(&) (wo)| = |(E) (wp)] -

Therefore |¢(£) (wg)| < ||¢]l * (|| &(wg)|| +€). Since € is an arbitrary positive num-
ber, |¢(z§)(wo)| < ||¢|| . “.E(wo) || . Thus, if £(wg) =0, then ¢(£) (wg) = 0, and conse-
quently ¢w0 is well-defined, for each wy € Q. Since {E(w): £ € H} is dense in

H(w) for each w € Q, ¢y is a bounded linear functional on H(w). Therefore there

exists an element £, € Hweg H(w) such that ¢y(&(w)) = (&(w) | £o(w)) for each
we Q and each £ € H. Since

(£(@) | (@) = ¢y &) = ¢(£) ()

for each w € © and each £ € H, the function w — (£(w) | £3(w)) is continuous on .
Furthermore, since {&(w): £ € H} is dense in H(w) and the function w — || £w) ]l

is continuous on €, we see that |(¢ | & (w))| < || ¢l - |¢]| for each € € H(w), and
therefore

léo@® < llo]l - féo@]  and || < |4

for every w € Q. Hence the function w — |[ £y (w) M is bounded on £. Thus &, € H
and ¢(£) = (&, &,) for each £ € H. Furthermore, since “ & (w)" < "qb” for every
we (& <l¢l]l. Conversely, since [¢(£)(w)| < [|&(@)| - || & (w)|| for every
we [of <[ ]. Therefore [[¢f = |-

Using Theorem 3.6 and the theorem of Kaplansky [9], we obtain the following
result.

COROLLARY 3.7. Let Q be a compact Hausdovff space, and let H = %g H(w)

be a continuous field of Hilbert spaces over Q. If A is an operator on H, then A is
a bounded opevator if and only if A has a bounded adjoint opevator A*. Thus, B(H)
is a C*-algebra.

4. DECOMPOSABLE OPERATORS, THE CONTINUOUS FIELD OF HILBERT
SPACES OVER A STONEAN SPACE, AND AW*-MODULES

In the previous section, we defined the continuous field of Hilbert spaces over a
compact Hausdorff space. In this section, we define a decomposable operator on a
continuous field of Hilbert spaces over a compact Hausdorff space; thus we shall
discuss the relation between continuous fields of Hilbert spaces over a Stonean
space © and AW *-modules over C(f2).
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Let © be a compact Hausdorff space, and let H = "6(3 H(w) be a continuous

field of Hilbert spaces over Q; then B(H) is a C*-algebra (see Section 3). This
permits the formulation of the following definition.

Definition 4.1. Let © be a compact Hausdorff space, and let H = ‘6(3 H(w) be a

continuous field of Hilbert spaces over 2. Then an element A ¢ B(H) is decompos-
able if for each w € 2 there exists an element A(w) of B(H(w)) such that for all

£, m e H=%g H(w) and each w € Q,
((A£) (w) | n(w)) = (Alw) &) | n(w)).

We write A = %08 A(w).
Definition 4.2. In the notation of Definition 4.1, let A be an element of

IT ;g B(H(w)) with A = {A(@)}, eq- Then A is called a bounded continuous
operator field if (1) the function w — ||A(w) " is bounded and (2), for each ¢ € H,
A¢ is an element of H.

Next, we show that the decomposition in Definition 4.1 is unique. In fact, if
A= %SD A(w) = %g B(w), then, for each &, 1 € H, we have the relation

(Aw) &(w) | (@) = (B(w) &(w) | n(w))

for each w € . For each w € §, the set {£(w): £ € H} is dense in H(w); there-
fore A(w) = B(w) for each w € Q.

LEMMA 4.3. Let A = {A(w)} we € HweQ B(H(w)) be a bounded continuous
field; then A is an element of B(H) and

((AE) (W) | n(w)) = (A(w) &(w) | n(w)),

Jor each we Q andall &, 11 € H.

Proof. The second assertion is evident by the definition. Thus, we must show
that A is an element of B(H). A is a C()-module mapping of H into H, by the
definition of A. We show that A is a bounded operator. For each §, 1 € H,

A% € H, and therefore

| ((A8) () | 1(@)| = |(A(w) &) | n(w)| < (sup {[|AW)]|: w € @}) | £)] - || &)
< (sup{A)]: 0 e @) [I£] - [0 ]
for each w € Q. Thus [(Af, n)| < (sup{]JA(w): w € @}) ||£]| - |n]||. Therefore
lag] < sup {Aw)]: w € 2} - £,

for every £ € H; that is, A is a bounded C(£2)-module homomorphism.

PROPOSITION 4.4. Let Q be a compact Hausdovff space, let & = C(Q), and
let H = %g H(w) be a continuous field of Hilbert spaces over Q; then each element
A of B(H) is a decomposable operator.

Proof. For all & 71 € H, the method used in the proof of Theorem 3.6 shows
that
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[((A8) (@) | n(@)| < [A] - | &w)] - || 7 ()]

for each w € Q. Put F,((((w) | n(w)) = (A&) (w) | n(w)) for all & 1 € H. Then Fy,
can be extended to a bounded bilinear form on H(w); thus there exists an element
A(w) of B(H(w)) such that

Fio((E(@) [ n(0)) = (Alw) £w) | n(w)).

Now, since F((((w) | n(w)) = ((A£) (w) | n(w)), we see that
((A8) () | n()) = (A(w) &(w) | 7(w))

for all §, n € H. Therefore A is a decomposable operator.

By Lemma 4.3 and Proposition 4.4, if A is a decomposable operator with
A= ?g A(w), we can identify A with {A(w)}peg € e B(H(w)). That is, if
B = {A(w) }pweq, then B is a bounded continuous operator field, and

(A) (0) | 1 () = (BE) (w) | 7(w))

for each w € © and all £, 5 € H; therefore (Af, ) = (B, n) for all &, 5 € H.

By Proposition 4.4, each element of B(H) is decomposable; thus, let A be an
element of B(H) with A = ‘68 A(w); then for each w ¢ © we can define a mapping

7, of B(H) into B(H(w)) such that m,(A) = A(w). It is evident that n, isa *-
homomorphism of B(H) into B(H(w)).

In the remainder of this section, we assume that © is a Stonean space, so that
A = C(R) is a commutative AW*—algebra. We have shown that every continuous
field of Hilbert spaces over a compact Hausdorff space is a C*-module, and we
show that every AW*-module is isometrically isomorphic to a continuous field of
Hilbert spaces over a Stonean space. Thus we obtain a characterization of AW™*-
modules over C(£).

THEOREM 4.,5. Let H= ‘%8 H(w) be a continuous field of Hilbevt spaces oveyr

a Stonean space Q. Then theve exist an AW*-module M over C(2) and a mapping
U of H onto M such that

(1) U(t& +gn) =fUt +gUn forall £, g € C(Q) and &, n € H and
(2) (Ug, Un) (w) = (&(w) | n(w)) for all & 1 € H,

Furthermove, the mapping U induces an isometric *-isomorphism of the alge-
bra of all bounded continuous operatov fields onto the algebva B(M) of all bounded
C(Q)-module homomorphisms on M such that

(3) W{AW)}IU ¢ 1)(w) = AW (U E) (0) | (U-17) () for all bounded con-
tinuwous operator fields {A{w)} and all &, 1 in M.

Conversely, let M be an AW*-module over C(R). For each w € Q, let

={& eM: (& &) (w) =0}. Then 1, is a closed submodule of M, and M - Iy = H(w)
zs a Hilbert space with inner product induced by M. Furthermove, the continuous
field %og) H(w) (defined with vespect to M) is isometvically isomovphic to M under
a mapping U that satisfies (1), (2), (3) of the first part of the theovem.
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Proof. Put « =C(R). Since H is a C*-module, we show that H is an AW*-
module over C(2). Let U = £ for every £ € H; then U satisfies (1) and (2), and
by Proposition 4.4, we have (3). To show that H is an AW *-module, we must show
that H has the following two properties.

(a) Let {e;};c1 be a family of orthogonal projections in «, with
sup{e;: i€ I} =e, and let £ be an element of H such that e; £ =0 for all i € I;
then e& = 0.

(B) Let {e;}ier be orthogonal projections in .« with sup{e;: i € I} =1, and
let {%;};c1 be a bounded subset of H; then there exists an element £ in H with
eié =ejé; forall i€ I.

First we establish (@). We can suppose that e = 1. Let G; be the closed and
open set in 2 corresponding to e;; then Ui e1 G; is a dense subset in {2, and

£(w) = 0 for each w € Ui€ 1 G;. The function w — ||£&(w)| is continuous on &, and
therefore £(w) =0 for each w € , and £ = 0.

Next we establish (8). For each element £ € H, the family {{(%, £)iel} is
bounded in #; thus the sum Eiel e;(¢, £;) isin . Hence, for each w € © and
every & € H, we put

PolE@) = (20 e, gg) ().

iel

Let G; be the closed and open set in © corresponding to e;; then UieI G; is dense
in ©. For each w € G;, we have the relations

(Z et &) @ = (€@ ] &)
i€l
and

(Z et 80) @| < le@ ] [5@] < swodllesl: e 1} - @l

iel

By the continuity of the function w — ( Eiel e (£, 3;1)) (w) and the density of

UieI G;, there exists for each w € £ anet {wg fgea in UieI G; such that
lim, wy = w. Thus

(EI e; (&, Ei)) (@) = 1im

(Z et £)) (@
i€l
< swp{fg )1 e 1} - lim | elwg)| = sup{f&5]: 1 e 1} - et

Therefore, ¢, is well-defined and |¢y(&(w))| < sup {||&;|: 1€ I} - ||&(w)]| for each
£ e Hand w e Q. Hence, since {£(w): £ € H} is dense in H(w), ¢, is a bounded
linear functional of H(w) for each w € ©. Thus there exists a vector field

g € Hweﬂ H(w) such that ¢, (£(w)) = (£(w) | £9(w)) for each £ € H and each

w € . Furthermore, we must show that £; is an element of H. Now, since
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(5@) ] £0(@)) = b)) = ( 2 et &) @)

i€l

for each w € © and each ¢ € H, the function w — (£(w) | £,(w)) is continuous on £
and | £o(w)|| < sup{| &]: i€ I}. Therefore £y is an element of H. For each
w € £ and each § € H,

( 2 (s, Si)) (w) = (& &) (),

i€l

and therefore Eiﬂ e;(£, &) = (& &) for every £ € H. Thus, e;(£, &;) = e; (&, &)
for each i € I, and consequently (£, e; &;) = (&, e; £) for each & € H. Therefore
there exists an element 3 in H such that e; {g = e; &§; for each i € I. Thus

H= ?8 H(w) is an AW*-module over ..

Next we show the converse. It is evident that I,, is a closed submodule of M,
and M - I, = H(w) is a Hilbert space with inner product induced by M: For each

£ € M, we represent an element {£(w): £ € Q} in Hweg H(w) by pg, where £(w)
is the quotient element of £ in M - I, = H(w), and we write H = {p;;-: £ € M}. Then
H is a subspace of Hweg H(w). Since (¢(w) l n(w)) = (&, n)(w) forall £, n € M and
w € Q, H is a Banach space with respect to the norm ||pz || = sup { || £&(w)||: w € @}.

Thus H is an #-moduled Banach space, and therefore we can identify H with M, in
our discussion. That is, for each § € M, we identify pg with £. Thus we must show

that H is a continuous field of Hilbert spaces over £ with respect to H. To show
that H has property (3) in Definition 3.1, let £ be an element such that for each
positive number & and each wj € 2 there exist an element £' € H and a closed and

open set U(wg) containing wo with ||§(w) - £ (w) |] < & for each w € U(wg). Then,
by our assumption, there exists for each ¢ > 0 a family {U(w), £,} of pairs of
closed and open sets U(w) containing w and elements of H such that

| £(w") - £(w)| <& for each w' € U(w). Now, since {U(w): v € Q} is an open
covering of €, there exists a finite subcovering {U(w;):i=1, 2, ---, n} of Q.

Since each U(w;) is a closed and open set, we can assume that the sets U(w;)

(i=1, 2, -+, n) are disjoint. Let z; be the projection in # corresponding to U(w;);
then the sets {z;} are mutually orthogonal. Thus, let &y = Eirll z; £;; then &, is
an element of H and [[£ - £4[| < . Therefore £ is an element of H.

Next we show that H satisfies condition (4) of Definition 3.1. Let £' be an ele-

ment of Hweﬂ H(w) such that, for each £ € H, the function w — (£(w) | £'(w)) is

continuous on £ and the function w — ||£'(w)|| is bounded; for every £ € H, let
¢(£) = (&, &), and let B =sup{ &' (w)||: w € R}. Then ¢ is an «-module mapping
of H into £, and for each £ € H,

[a@ ] = [[& &7 = sup {}(s(@) ] &' ())]: © € @}
< swp {flE@)] - &' @)]: 0 e @} < B &]l
Thus ¢ is a bounded linear functional of H into .. Since M is an AW¥*-module,

there exists an element &3 of H such that ¢(£) = (£, £g). Thus H is a continuous
field of Hilbert spaces over  (defined with respect to H). We denote H by



124 HIDEO TAKEMOTO

‘"6‘9 H(w). Let UZ = ¢ (that is, U¢ = Pt ); then it is evident that U satisfies (1), (2),
(3) of the first part of the theorem.

5. REPRESENTATION OF GELFAND TYPE OF VON NEUMANN ALGEBRAS

In Section 4, we considered the decomposition of bounded operators on a con-
tinuous field of Hilbert spaces. In this section, we obtain a representation of Gelfand

type of von Neumann algebras.

Definition 5.1. Let € be a compact Hausdorff space, let H = %g) H(w) be a

continuous field of Hilbert spaces, and let %(w) be a C*-subalgebra of B(H(w)) for
each w € ©; then we put

a={Ac¢€ B(H): A(w) € %(w) for every w € , where A = %"g Alw)}.
Thus we write % = %8 2 (w).

Then ¥« = ‘io”g % (w) is a C(R)-moduled C*-subalgebra of B(H). Further, let
% be a C(R)-moduled C*-subalgebra of B(H), and for each w € Q, let

A(w) = {Aw) =7,(A): A e u};

then we must give a condition under which % =€ % %(w). We shall show that if ©

is a Stonean space, in this problem, then ¥ = ‘Eg) %(w). This requires some pre-

liminary considerations.

Let 2 be a compact Hausdorff space, let H = %(3 H(w) be a continuous field of

Hilbert spaces over £, and let A be an element of B(H) with A = ‘6(3 A(w); then, by
the argument in the proof of Theorem 3.6, we can show that

lAll = sup {||A(w)]: w e @};
further, we can show that, for each w € £,

[A(@)] = sup{[Alw) &(w)||: £ € B, [£]| < 1}

so that the function w — |A(w)|| is lower-semicontinuous. In particular, if @ isa
Stonean space and H .= %g H(w) is-a faithful continuous field (that is, if there exists
an element £ of H suchthat |[£| =1 in ), then the function w — ||A(w)] is
continuous on £, as shall be shown in Lemma 5.3. Before Lemma 5.3, we have the
following result.

LEMMA 5.2. Let Q be a Stonean space, let A = C(Q), and let H = %Q H(w)
be a continuous field of Hilbevt spaces over . If H.is a faithful continuous field,

then the set
ker 1y, = {A € B(H): A(w) =0, where A = %(g Alw)}

is the norm closure of

n

21 z; At Ay € B(H) and z; € o with z;(w) =0(,
i=
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Jor each w € Q.
The above ideal I, that is, the norm closure of {E?zl z; At A; € B(H) and

z; € A with z;(w) =0 } , has been defined for von Neumann algebras by J. Glimm [4,
p. 232], and it has been used by many authors. Furthermore, we must consider the
analogous result, which has been established by Glimm [4, Lemma 10] for von
Neumann algebras.

Proof of Lemma 5.2. Our argument follows closely the proof of Glimm’s result
[4, Theorem 4]. In fact, since there exists an element £, of H with |£,| = 1, and

since H is an AW*-module over ., H is a faithful AW*-module over ¢, and
B(H) is an AW™*-algebra of type I with the center ¢ (Theorem 4.5 and [9]). Let
Eo be an Abelian projection of B(H), defined by the equation Eg £ = (£, £j) &g for
every & € H; then the central support of Eg is 1. Let &g be the -module map-
ping of B(H) onto .« defined by the equation &¢(A) = EgA Ep, and let ¢, be the
state of B(H) defined by the equation ¢(A) = &¢(A) (w) for each w € Q. Further,
let (my, H'(w)) be the canonical representation and representative space induced by
¢, - Then &, is an -irreducible linear mapping of B(H) (the term % .#-irreduci-
ble” is due to H. Halpern [5, p. 200]). Furthermore, by using a result of Halpern [5,
Theorem 4.3)], we see that (1) H={A&y: A € B(H)}, (2) for each w € Q, ¢y isa
pure state of B(H). Thus my, is irreducible (see [6], for example), and therefore
Tw(B(H)) O C(H'(w)) for each w € £, because y,(B(H)) contains the nonzero abelian
projection m,(E;) for every w € §. Furthermore, by the argument used in the
proof of Theorem 4 in [4], I,) = ker m},. The assertion ker n, D I, is obvious; we
shall show that ker 7y, C I, for each w € Q. If A(w) =0, then (Azgo) £(w) l 7(w)) =0
for each £, 1 € H. Now, since H ={A£0: A € B(H)}, we have, for all B, C € B(H),
the relations

0

(A(w) B(w) £g(w) | Cw) &p(w)) = (C(w)*A(w) B(w) £5(w) | £g(w))

((C*AB) (w) £0(w) | £o(w)) = ((C*AB) () Eg(w) £o(w) | Eg(w) £y (w))

1l

= ((Eg C*ABE() (w) £0(w) | £9(w)) = @o(Ey C¥*ABEy) (w) = &4(C*AB) (w) .

Therefore, ¢,(C*AB) =0 for all B, C € B(H), and therefore m(A) = 0. Thus,
ker 7, = ker 7y =1, . This proves Lemma 5.2.

By Lemma 5.2, we see that for each A € B(H), [|A(w)| = || n{(A)| for each
w € Q. Glimm has shown that if B(H) is a von Neumann algebra (that is, if Q isa
hyperstonean space), then the function w — ||1r('v(A)” is continuous on 2. His argu-

ment uses topological properties, but is independent of measure theory. Thus we
can show that even if © is a Stonean space, the function w — ||7{,(A)| is continu-

ous, by an argument similar to the proof of Lemma 10 in [4]. These considerations
yield the following result.

LEMMA 5.3. Under the hypotheses of Lemma 5.2, let A be an element of B(H)
with A = %% A(w); then the function w — ||A(w)|| is continuous.

PROPOSITION 5.4. Let Q be a Stonean space, let A& = C(Q2), and let

H= (656% H(w) be a faithful continuous field of Hilbevt spaces over Q. Let ¥ be an
f -moduled C*-subalgebra of B(H), and for each w € Q, let

A(w) = {A(w) € BH(w)); A € A and A = ??%) Alw)} ;
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then A = z)g W(w). In particular, since A (w)=C(w) for every w € Q,
A =C(Q) = %g) C(w), where C(w) is the complex number field.

P?’OOf The assertion % C %g %(w) is obvious. Thus, we must show that

A D %Q A(w). If A is an element of %S) %(w), then A(w) € %A(w) for each w € Q;
that is, for each w € @, there exists an element By, € % such that A(w) = B,(w).
For each B e % C B(H), the function w — || B(w) " is continuous, and therefore, for
each positive number ¢ and each w € 9, there exists a closed and open set U(w)
containing w such that |A(w') - By,(w)| < € for every w' e U(w). Since £ is

compact, there exists a finite subcovering {U(w;):i=1, 2, +-, n} of
{U(w): w e Q} and since U(w) is closed and open, we can assume that the sets
U(w;) (1= -+, n) are disjoint. Let z; be the projection in «, corresponding

to each closed and open set U(w;), and let B = El 1 2;B, . Then B € ¥ and
|A(w) - B(w)|| <& for each w € Q. Thus, by the comment precedmg Lemma 5.2,

|A - B|| = sup{||A(w) - Blw)||]: w e &} < &,

and consequently A € %A. Therefore % D @0%') %(w). Thus we have proved Proposi-

tion 5.4.

COROLLARY 5.5. Let % be an AW™*-algebra of type I with the center
A = C(Q); then there exists a faithful continuous field H = %8 H(w) of Hilbert
spaces over Q such that A is *-isomorphic to eg %Uw), where Alw) is an irve-
ducible C*-subalgebra of B(H(w)) containing C(H(w)).

Let £ be a Stonean space, let « = C(Q), let H = %’% H(w) be a faithful contin-
uous field of Hilbert spaces over @, let % be an -moduled C*-subalgebra of
B(H), and denote the set

{A ¢ B(H): AB = BA for all B ¢ %}

by #%'. Then we have the following result.

LEMMA 5.6. Let Q be a Stonean space, let & = C(Q), let H = %8 H(w) be a
Jaithful continuous field of Hilbevt spaces over %, /a\n_ci let A be > an, oL -moduled C*-
subalgebva of B(H) with % = %A". Then U = %g A(w), where A(w) is the weak

closure of %(w) = {A(w): A e u, A= “68 A(w)}.
NS N
Proof. It is evident that % C ‘E? QI(w) Thus we show that % D %g A(w). In

Proposition 5 4 we | have shown that o = %9 A(w) and uA' = %g A (w). If Ag is an

element of ?Q Ql(w) then, for each A € %', w € Q, and all &, 5 € H,
(Ag(w) Aw) £(w) | 7(w) = (A(w) Ap(w) E(w) | n(w)) .

Thus A(w)Ag(w) = Ag{w) A(w) for each w € 2, because {£(w): £ € H} is dense in
H(w), and therefore AgA = AA,. Since % = %", Ag is an element of

(a)'= A"=9u. Thus A = 9 A(w).

Let & be a von Neumann algebra with the center « = C(Q); then the commu-
tant % of « is a von Neumann algebra of type I. Therefore there exists a faithful
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*

continuous field H = %08 H(w) of Hilbert spaces over £ such that % is "-iso-

morphic to %Gg B(H(w)) = B(H). Furthermore, by Lemma 5.6 and the fact that
u % @ Y~ —~ . .
B =RB", B is *-isomorphic to ¥ B(w), where B(w) is a von Neumann algebra in
B(H(w)). Hence we have the following result.

THEOREM 5.7. Let % be a von Neumann algebra with center & = C(Q); then
there exists a faithful continuous field H = %”g H(w) of Hilbert spaces such that U

—~~~ lan e

is *—isomorphic to ‘%g Ww), where U(w) is a von Neumann algebra in B(H(w)).
This *-isomorphism extends the isomovphism of £ with C(S).
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