ON A CHARACTERIZATION OF AW*-MODULES AND A REPRESENTATION OF GELFAND TYPE OF NONCOMMUTATIVE OPERATOR ALGEBRAS ## Hideo Takemoto ### 1. INTRODUCTION The direct integral decomposition of a von Neumann algebra $\mathfrak A$ has been obtained only for the case where $\mathfrak A$ is generated by its center $\mathfrak F$ and a countable family of other elements (see [2, Chapter 2], for example). As far as we know, the literature does not contain a successful treatment of the problem for nonseparable algebras. In the present paper, we investigate from the viewpoint of continuous-reduction theory an extension of the Gelfand representation of commutative C^* -algebras to noncommutative von Neumann algebras. That is, we show that noncommutative von Neumann algebras can be represented as continuous fields of von Neumann algebras; but we can not show that each component of continuous fields of von Neumann algebras is a factor. Before considering the continuous fields of von Neumann algebras, we shall introduce a continuous field of Hilbert spaces, to which AW^* -modules are equivalent; thus we can reconstruct AW^* -modules from the Hilbert-space representation, and we believe that this technique is new. By using the continuous field of Hilbert spaces, we shall show that every von Neumann algebra has a representation of Gelfand type. I. Kaplansky ([7], [8], and [9]) has discussed the theory of AW*-modules and AW*-algebras. In particular, he has shown [9] that if $\mathscr A$ is a commutative AW*-algebra and M is a faithful AW*-module over $\mathscr A$, then the set of all bounded $\mathscr A$ -module homomorphisms on M is an AW*-algebra of type I. Conversely, an AW*-algebra of type I with the center $\mathscr A$ is *-isomorphic to the AW*-algebra of all bounded $\mathscr A$ -module homomorphisms on a faithful AW*-module over $\mathscr A$. Now AW*-modules have many properties of Hilbert space, and they can be considered as a Banach space of all vector-valued continuous functions on a Stonean space; hence we shall have a continuous field of Hilbert spaces. Furthermore, by using this continuous field of Hilbert spaces, we can show that each von Neumann algebra can be represented as a continuous field of von Neumann algebras. In Section 3, we define a continuous field of Hilbert spaces over a compact Hausdorff space Ω , which is different from the one by J. Dixmier [3, Section 10]. Then we obtain a result, similar to Riesz's theorem in Hilbert space, which Kaplansky has established in the case of an AW*-module, but not in the case of a C*-module. Further, any bounded module homomorphism on our continuous field of Hilbert spaces has a bounded adjoint operator, and the set of all bounded module homomorphisms on our continuous field of Hilbert spaces is a C*-algebra. In particular, let Ω be a Stonean space; then our continuous field of Hilbert spaces over Ω is an AW*-module (see Section 4). Conversely, each AW*-module is representable Received June 26, 1972. The author expresses his indebtedness to the referee for rewriting the statement of Theorem 4.5. as a continuous field of Hilbert spaces over a Stonean space. Therefore we can decompose a bounded module homomorphism on an AW*-module to a field of bounded operators on Hilbert space. Let $H = \mathscr{C}_{\Omega}^{\bigoplus} H(\omega)$ be a continuous field of Hilbert spaces over a Stonean space Ω , let A be a bounded $C(\Omega)$ -module homomorphism, and let $A = \mathscr{C}_{\Omega}^{\bigoplus} A(\omega)$ be the representation obtained by the decomposition of A; then the function $\omega \to \|A(\omega)\|$ is continuous on Ω . Thus $\mathfrak{A} = \mathscr{C}_{\Omega}^{\bigoplus} \mathfrak{A}(\omega)$, where \mathfrak{A} is a von Neumann algebra and $\mathfrak{A}(\omega)$ is a von Neumann algebra for every $\omega \in \Omega$. #### 2. NOTATION AND PRELIMINARIES Let Ω be a compact Hausdorff space, and let $\mathscr{A} = C(\Omega)$ be the algebra of all complex-valued continuous functions on Ω . For a field $\{H(\omega): \omega \in \Omega\}$ of Hilbert spaces, the elements $\xi = \{\xi(\omega)\}_{\omega \in \Omega}$ of $\prod_{\omega \in \Omega} H(\omega)$ are called *vector fields*. If $f \in C(\Omega)$ and ξ is a vector field, $f\xi = \{f(\omega)\xi(\omega)\}_{\omega \in \Omega}$. If ξ and η are vector fields, then (ξ, η) is the function $\omega \to (\xi(\omega) \mid \eta(\omega))$, and $|\xi|$ is the function $\omega \to \|\xi(\omega)\|$. Let B(K) be the algebra of all bounded operators on a Hilbert space K; then each element of $\prod_{\omega \in \Omega} B(H(\omega))$ is called an *operator field*. If $A \in \prod_{\omega \in \Omega} B(H(\omega))$ and $\xi \in \prod_{\omega \in \Omega} H(\omega)$, then $A\xi = \{A(\omega)\xi(\omega)\}_{\omega \in \Omega}$. Let $\mathcal A$ be a commutative C*-algebra with unit, and let H be an $\mathcal A$ -module in the ordinary algebraic sense. Suppose there is defined on H an inner product taking values in $\mathcal A$ and satisfying the conditions - (1) $(\xi, \eta) = (\eta, \xi)^*$, - (2) $(\xi, \xi) \ge 0$ and $(\xi, \xi) = 0$ only for $\xi = 0$, - (3) $(a\xi + \xi_1, \eta) = a(\xi, \eta) + (\xi_1, \eta)$ for all ξ , ξ_1 , η in H and all a in \mathscr{A} . We use the notation $|\xi| = (\xi, \xi)^{1/2}$, $\|\xi\| = \|(\xi, \xi)\|^{1/2}$, where on the right we mean the usual positive square root and norm in \mathscr{A} . We see that $\|\xi\|$ is the norm of $|\xi|$ in the algebra \mathscr{A} . Therefore H is a normed space with respect to the norm $\|\cdot\|$ defined above. In particular, if H is already complete, we shall call it a C*-module over \mathscr{A} . An AW*-algebra a is a C*-algebra satisfying the following two conditions. - (1) In the set of projections, each collection of orthogonal projections has a least upper bound. - (2) Each maximal commutative self-adjoint subalgebra is generated by its projections. Let Ω be a compact Hausdorff space. Ω is called a *Stonean space* if the closure of every open set is open [1]. If Ω is a Stonean space, then the algebra $C(\Omega)$ of all complex-valued continuous functions on Ω is a commutative AW*-algebra. Conversely, let $\mathcal A$ be a commutative AW*-algebra; then there exists a Stonean space Ω such that $\mathcal A$ is *-isomorphic to $C(\Omega)$. Let $\mathscr A$ be a commutative AW*-algebra. We say that H is an AW*-module over $\mathscr A$ if it is a C*-module over $\mathscr A$ and has the following two additional properties. - (1) Let $\{e_i\}$ be orthogonal projections in $\mathscr A$ with sup $e_i=e$, and suppose ξ is an element of H with $e_i \xi=0$ for all i; then $e\xi=0$. - (2) Let $\{e_i\}$ be orthogonal projections in $\mathscr A$ with sup $e_i=1$, and let $\{\xi_i\}$ be a bounded subset of H; then there exists an element ξ in H with $e_i \xi = e_i \xi_i$ for all i. By a *bounded operator* from a C*-module H_1 over a commutative C*-algebra $\mathscr A$ into a second C*-module H_2 over $\mathscr A$ we mean a linear and continuous mapping of H_1 into H_2 that is also an $\mathscr A$ -module homomorphism. The set B(H) of all bounded operators on a C*-module H over $\mathscr A$ forms a Banach algebra in the usual operator norm. We shall write the element of $\mathscr A$ (typically f, g, \dots, g, g, \dots) on the left of the element of H (typically f, g, \dots). # 3. CONTINUOUS FIELDS OF HILBERT SPACES OVER A COMPACT HAUSDORFF SPACE AND C*-MODULES In this section, we define a continuous field of Hilbert spaces over a compact Hausdorff space Ω . It is a C*-module, and the set of all bounded module homomorphisms on it is a C*-algebra. Definition 3.1. Let Ω be a compact Hausdorff space, and let $\{H(\omega): \omega \in \Omega\}$ be a field of Hilbert spaces. A subspace H of $\prod_{\omega \in \Omega} H(\omega)$ is said to be a continuous field of Hilbert spaces if there exists a subspace H_0 of $\prod_{\omega \in \Omega} H(\omega)$ such that - (1) for every $\xi \in H_0$, the function $\omega \to ||\xi(\omega)||$ is continuous on Ω , - (2) for each $\omega \in \Omega$, the subspace $\{\xi(\omega): \xi \in H_0\}$ is dense in $H(\omega)$, - (3) $H = \{ \xi \in \Pi_{\omega \in \Omega} H(\omega) : \text{ for each positive number } \varepsilon \text{ and each } \omega_0 \in \Omega, \text{ there exist an element } \xi_0 \text{ in } H_0 \text{ and a neighborhood } U(\omega_0) \text{ of } \omega_0 \text{ such that } \| \xi(\omega) \xi_0(\omega) \| < \varepsilon \text{ for every } \omega \in U(\omega_0) \},$ - (4) if ξ is a vector field such that the function $\omega \to \|\xi(\omega)\|$ is bounded, and if for each $\eta \in H_0$, the function $\omega \to (\xi(\omega) \mid \eta(\omega))$ is a continuous function on Ω , then $\xi \in H$. Property (1) in this definition is equivalent to the following: (1') For all ξ , $\eta \in H_0$, the function $\omega \to (\xi(\omega) \mid \eta(\omega))$ is continuous on Ω . The following example shows that our definition is more restrictive than the usual definition of a strong continuous field of Hilbert spaces (see [3, Section 10]) with properties (1), (2), and (3). *Example*. Let $\Omega = [-1, 1]$ be the closed interval in \mathbb{R}^1 , let $f_0(\omega) = |\omega|$ for every $\omega \in [-1, 1]$, and let $$H(\omega) = \begin{cases} \mathbb{C} & \text{if } \omega \neq 0, \\ 0 & \text{if } \omega = 0. \end{cases}$$ Then the subspace $\{ff_0: f \in C(\Omega)\}$ of $\prod_{\omega \in \Omega} H(\omega)$ satisfies the conditions (1) and (2) in Definition 3.1. Let $$f_1(\omega) = \begin{cases} 1 & \text{if } \omega \neq 0, \\ 0 & \text{if } \omega = 0; \end{cases}$$ then for each $f \in C(\Omega)$, the function $$\omega \rightarrow (f_1(\omega) \mid f(\omega) f_0(\omega)) = f(\omega) f_1(\omega) f_0(\omega) = f(\omega) \mid \omega \mid$$ is continuous on Ω . Therefore f_1 satisfies condition (4) in Definition 3.1. But since the function $\omega \to |f_1(\omega)|$ is not continuous, f_1 does not satisfy condition (3). Under Definition 3.1, for any ξ and η in H, the functions $\omega \to (\xi(\omega) \mid \eta(\omega))$ and $\omega \to \|\xi(\omega)\|$ are continuous on Ω . Further, we have the following result. PROPOSITION 3.2. If H is a continuous field of Hilbert spaces, and if $\xi \in H$ and $\|\xi\| = \sup\{\|\xi(\omega)\|: \omega \in \Omega\}$, then the normed space $(H, \|\cdot\|)$ is complete. That is, H is a Banach space. Definition 3.3. Let $(\{H(\omega): \omega \in \Omega\}, H_0, H)$ be a field of Hilbert spaces satisfying the conditions in Definition 3.1; then H is denoted by $\mathscr{C}_{\Omega}^{\bigoplus H_0}$ $H(\omega)$ or $\mathscr{C}_{\Omega}^{\bigoplus H(\omega)}$. Let $H = \mathscr{C}_{\Omega}^{\oplus} H(\omega)$ be a continuous field of Hilbert spaces over Ω ; for all ξ , $\eta \in H$, we identify (ξ, η) with the continuous function $\omega \to (\xi(\omega) \mid \eta(\omega))$. PROPOSITION 3.4. If Ω is a compact Hausdorff space, then a continuous field $H = \mathscr{C}_{\Omega}^{\bigoplus} H(\omega)$ of Hilbert spaces over Ω is a C^* -module over $C(\Omega)$. By Proposition 3.4, a bounded operator A on a continuous field $H = \mathscr{C}_{\Omega}^{\bigoplus} H(\omega)$ of Hilbert spaces is a mapping on H that is not only linear and continuous in the usual operator norm, but is also a $C(\Omega)$ -module homomorphism on H. We call A* the adjoint operator of A if $(A\xi, \eta) = (\xi, A^*\eta)$ for all $\xi, \eta \in H$. LEMMA 3.5 (Kaplansky [9]). Let H be a C*-module over a commutative C*-algebra $\mathcal A$, and let A be a bounded operator on H with an adjoint operator A^* that is also a bounded operator. Then $\|A\| = \|A^*\|$ and $\|A^*A\| = \|A\|^2$. Let \mathscr{A} be a commutative C*-algebra, and let H be a C*-module over \mathscr{A} ; then an \mathscr{A} -module mapping ϕ of H into \mathscr{A} will be called a *functional* of H into \mathscr{A} . We shall devote the present section to the proof that a continuous field $H = \mathscr{C}_{\Omega}^{\bigoplus} H(\omega)$ of Hilbert spaces over a compact Hausdorff space Ω is self-dual in the same way that Hilbert space is self-dual. The following result is analogous to a known result on AW^* -modules. THEOREM 3.6. Let Ω be a compact Hausdorff space, let $\mathcal{A} = C(\Omega)$, and let $H = \mathscr{C}_{\Omega}^{\bigoplus} H(\omega)$ be a continuous field of Hilbert spaces over Ω . If ϕ is a continuous functional of H into \mathcal{A} , then there exists a $\xi_0 \in H$ such that $\phi(\xi) = (\xi, \xi_0)$ for every $\xi \in H$, and $\|\phi\| = \|\xi_0\|$. *Proof.* Corresponding to each $\omega \in \Omega$, we define $\phi_{\omega}(\xi(\omega)) = \phi(\xi)(\omega)$ for every $\xi \in H$; the functional ϕ_{ω} is then well-defined. Indeed, suppose that $\xi \in H$, that $\omega_0 \in \Omega$, and that $\varepsilon > 0$. Since the function $\omega \to \|\xi(\omega)\|$ is continuous on Ω , the set $$G = \{\omega \in \Omega: \|\xi(\omega)\| < \|\xi(\omega_0)\| + \varepsilon\}$$ is open and contains ω_0 . Since Ω is compact, there exists an element f of $C(\Omega)$ such that $f(\omega_0)=1$, $0\leq f\leq 1$, and $f(\omega)=0$ for each $\omega\in\Omega\setminus G$. We have the relations $$\|f\xi\| = \sup \{f(\omega) \|\xi(\omega)\| \colon \omega \in \Omega\} = \sup \{f(\omega) \|\xi(\omega)\| \colon \omega \in G\} \le \|\xi(\omega_0)\| + \varepsilon,$$ and therefore $$\|\phi(f\xi)\| < \|\phi\| \cdot \|f\xi\| < \|\phi\| (\|\xi(\omega_0)\| + \varepsilon).$$ Furthermore, $$\left\|\phi(f\xi)\right\| = \sup\left\{\left|\phi(f\xi)(\omega)\right|: \omega \in \Omega\right\} \ge \left|\phi(f\xi)(\omega_0)\right| = f(\omega_0)\left|\phi(\xi)(\omega_0)\right| = \left|\phi(\xi)(\omega_0)\right|.$$ Therefore $|\phi(\xi)(\omega_0)| \leq \|\phi\| \cdot (\|\xi(\omega_0)\| + \epsilon)$. Since ϵ is an arbitrary positive number, $|\phi(\xi)(\omega_0)| \leq \|\phi\| \cdot \|\xi(\omega_0)\|$. Thus, if $\xi(\omega_0) = 0$, then $\phi(\xi)(\omega_0) = 0$, and consequently ϕ_{ω_0} is well-defined, for each $\omega_0 \in \Omega$. Since $\{\xi(\omega): \xi \in H\}$ is dense in $H(\omega)$ for each $\omega \in \Omega$, ϕ_{ω} is a bounded linear functional on $H(\omega)$. Therefore there exists an element $\xi_0 \in \Pi_{\omega \in \Omega}$ $H(\omega)$ such that $\phi_{\omega}(\xi(\omega)) = (\xi(\omega) \mid \xi_0(\omega))$ for each $\omega \in \Omega$ and each $\xi \in H$. Since $$(\xi(\omega) \mid \xi_0(\omega)) = \phi_{\omega}(\xi(\omega)) = \phi(\xi)(\omega)$$ for each $\omega \in \Omega$ and each $\xi \in H$, the function $\omega \to (\xi(\omega) \mid \xi_0(\omega))$ is continuous on Ω . Furthermore, since $\{\xi(\omega): \xi \in H\}$ is dense in $H(\omega)$ and the function $\omega \to \|\xi(\omega)\|$ is continuous on Ω , we see that $\|(\zeta \mid \xi_0(\omega))\| \le \|\phi\| \cdot \|\zeta\|$ for each $\zeta \in H(\omega)$, and therefore $$\|\xi_0(\omega)\|^2 < \|\phi\| \cdot \|\xi_0(\omega)\|$$ and $\|\xi_0(\omega)\| \le \|\phi\|$ for every $\omega \in \Omega$. Hence the function $\omega \to \|\xi_0(\omega)\|$ is bounded on Ω . Thus $\xi_0 \in H$ and $\phi(\xi) = (\xi, \xi_0)$ for each $\xi \in H$. Furthermore, since $\|\xi_0(\omega)\| \le \|\phi\|$ for every $\omega \in \Omega$, $\|\xi_0\| \le \|\phi\|$. Conversely, since $|\phi(\xi)(\omega)| \le \|\xi(\omega)\| \cdot \|\xi_0(\omega)\|$ for every $\omega \in \Omega$, $\|\phi\| \le \|\xi_0\|$. Therefore $\|\phi\| = \|\xi_0\|$. Using Theorem 3.6 and the theorem of Kaplansky [9], we obtain the following result. COROLLARY 3.7. Let Ω be a compact Hausdorff space, and let $H = \mathscr{C}_{\Omega}^{\bigoplus} H(\omega)$ be a continuous field of Hilbert spaces over Ω . If A is an operator on H, then A is a bounded operator if and only if A has a bounded adjoint operator A^* . Thus, B(H) is a C^* -algebra. # 4. DECOMPOSABLE OPERATORS, THE CONTINUOUS FIELD OF HILBERT SPACES OVER A STONEAN SPACE, AND AW*-MODULES In the previous section, we defined the continuous field of Hilbert spaces over a compact Hausdorff space. In this section, we define a decomposable operator on a continuous field of Hilbert spaces over a compact Hausdorff space; thus we shall discuss the relation between continuous fields of Hilbert spaces over a Stonean space Ω and AW*-modules over $C(\Omega)$. Let Ω be a compact Hausdorff space, and let $H = \mathscr{C}_{\Omega}^{\bigoplus} H(\omega)$ be a continuous field of Hilbert spaces over Ω ; then B(H) is a C*-algebra (see Section 3). This permits the formulation of the following definition. Definition 4.1. Let Ω be a compact Hausdorff space, and let $H = \mathscr{C}_{\Omega}^{\bigoplus} H(\omega)$ be a continuous field of Hilbert spaces over Ω . Then an element $A \in B(H)$ is decomposable if for each $\omega \in \Omega$ there exists an element $A(\omega)$ of $B(H(\omega))$ such that for all ξ , $\eta \in H = \mathscr{C}_{\Omega}^{\bigoplus} H(\omega)$ and each $\omega \in \Omega$, $$((A\xi)(\omega) \mid \eta(\omega)) = (A(\omega)\xi(\omega) \mid \eta(\omega)).$$ We write $A = \mathscr{C}_{\Omega}^{\oplus} A(\omega)$. Definition 4.2. In the notation of Definition 4.1, let A be an element of $\prod_{\omega \in \Omega} B(H(\omega))$ with $A = \{A(\omega)\}_{\omega \in \Omega}$. Then A is called a bounded continuous operator field if (1) the function $\omega \to \|A(\omega)\|$ is bounded and (2), for each $\xi \in H$, A ξ is an element of H. Next, we show that the decomposition in Definition 4.1 is unique. In fact, if $A = \mathscr{C}_{\Omega}^{\bigoplus} A(\omega) = \mathscr{C}_{\Omega}^{\bigoplus} B(\omega)$, then, for each ξ , $\eta \in H$, we have the relation $$(A(\omega) \xi(\omega) \mid \eta(\omega)) = (B(\omega) \xi(\omega) \mid \eta(\omega))$$ for each $\omega \in \Omega$. For each $\omega \in \Omega$, the set $\{\xi(\omega): \xi \in H\}$ is dense in $H(\omega)$; therefore $A(\omega) = B(\omega)$ for each $\omega \in \Omega$. LEMMA 4.3. Let $A=\{A(\omega)\}_{\ \omega\in\Omega}\in\Pi_{\ \omega\in\Omega}$ B(H(ω)) be a bounded continuous field; then A is an element of B(H) and $$((A\xi)(\omega) \mid \eta(\omega)) = (A(\omega)\xi(\omega) \mid \eta(\omega)),$$ for each $\omega \in \Omega$ and all ξ , $\eta \in H$. *Proof.* The second assertion is evident by the definition. Thus, we must show that A is an element of B(H). A is a C(Ω)-module mapping of H into H, by the definition of A. We show that A is a bounded operator. For each ξ , $\eta \in H$, $A\xi \in H$, and therefore $$\begin{aligned} \left| \left((A\xi) \left(\omega \right) \mid \eta \left(\omega \right) \right) \right| &= \left| \left(A(\omega) \xi(\omega) \mid \eta \left(\omega \right) \right) \right| \leq \left(\sup \left\{ \left\| A(\omega) \right\| \colon \omega \in \Omega \right\} \right) \left\| \xi(\omega) \right\| \cdot \left\| \xi(\omega) \right\| \\ &\leq \left(\sup \left\{ \left\| A(\omega) \right\| \colon \omega \in \Omega \right\} \right) \left\| \xi \right\| \cdot \left\| \eta \right\| \end{aligned}$$ for each $\omega \in \Omega$. Thus $\|(A\xi, \eta)\| \le (\sup \{ \|A(\omega): \omega \in \Omega \}) \|\xi\| \cdot \|\eta\|$. Therefore $\|A\xi\| < \sup \{ \|A(\omega)\|: \omega \in \Omega \} \cdot \|\xi\|$, for every $\xi \in H$; that is, A is a bounded $C(\Omega)$ -module homomorphism. PROPOSITION 4.4. Let Ω be a compact Hausdorff space, let $\mathscr{A}=C(\Omega)$, and let $H=\mathscr{C}_{\Omega}^{\bigoplus}H(\omega)$ be a continuous field of Hilbert spaces over Ω ; then each element A of B(H) is a decomposable operator. *Proof.* For all ξ , $\eta \in H$, the method used in the proof of Theorem 3.6 shows that $$|\left((A\xi)(\omega) \mid \eta(\omega) \right)| \leq ||A|| \cdot ||\xi(\omega)|| \cdot ||\eta(\omega)||$$ for each $\omega \in \Omega$. Put $F_{\omega}((\xi(\omega) \mid \eta(\omega)) = ((A\xi)(\omega) \mid \eta(\omega))$ for all ξ , $\eta \in H$. Then F_{ω} can be extended to a bounded bilinear form on $H(\omega)$; thus there exists an element $A(\omega)$ of $B(H(\omega))$ such that $$F_{\omega}((\xi(\omega) \mid \eta(\omega)) = (A(\omega) \xi(\omega) \mid \eta(\omega)).$$ Now, since $F_{\omega}((\xi(\omega) \mid \eta(\omega)) = ((A\xi)(\omega) \mid \eta(\omega))$, we see that $$((A\xi)(\omega) \mid \eta(\omega)) = (A(\omega)\xi(\omega) \mid \eta(\omega))$$ for all ξ , $\eta \in H$. Therefore A is a decomposable operator. By Lemma 4.3 and Proposition 4.4, if A is a decomposable operator with $A = \mathscr{C}_{\Omega}^{\bigoplus} A(\omega)$, we can identify A with $\{A(\omega)\}_{\omega \in \Omega} \in \Pi_{\omega \in \Omega} B(H(\omega))$. That is, if $B = \{A(\omega)\}_{\omega \in \Omega}$, then B is a bounded continuous operator field, and $$((A\xi)(\omega) \mid \eta(\omega)) = ((B\xi)(\omega) \mid \eta(\omega))$$ for each $\omega \in \Omega$ and all ξ , $\eta \in H$; therefore $(A\xi, \eta) = (B\xi, \eta)$ for all ξ , $\eta \in H$. By Proposition 4.4, each element of B(H) is decomposable; thus, let A be an element of B(H) with $A = \mathscr{C}_{\Omega}^{\oplus} A(\omega)$; then for each $\omega \in \Omega$ we can define a mapping π_{ω} of B(H) into B(H(ω)) such that $\pi_{\omega}(A) = A(\omega)$. It is evident that π_{ω} is a *-homomorphism of B(H) into B(H(ω)). In the remainder of this section, we assume that Ω is a Stonean space, so that $\mathcal{A} = C(\Omega)$ is a commutative AW*-algebra. We have shown that every continuous field of Hilbert spaces over a compact Hausdorff space is a C*-module, and we show that every AW*-module is isometrically isomorphic to a continuous field of Hilbert spaces over a Stonean space. Thus we obtain a characterization of AW*-modules over $C(\Omega)$. THEOREM 4.5. Let $H=\mathscr{C}_{\Omega}^{\bigoplus} H(\omega)$ be a continuous field of Hilbert spaces over a Stonean space Ω . Then there exist an AW^* -module M over $C(\Omega)$ and a mapping U of H onto M such that - (1) $U(f\xi + g\eta) = fU\xi + gU\eta$ for all $f, g \in C(\Omega)$ and $\xi, \eta \in H$ and - (2) $(U\xi, U\eta)(\omega) = (\xi(\omega) \mid \eta(\omega)) \text{ for all } \xi, \eta \in H.$ Furthermore, the mapping U induces an isometric *-isomorphism of the algebra of all bounded continuous operator fields onto the algebra B(M) of all bounded $C(\Omega)$ -module homomorphisms on M such that (3) $(U\{A(\omega)\}U^{-1}\xi,\eta)(\omega)=(A(\omega)(U^{-1}\xi)(\omega)|(U^{-1}\eta)(\omega))$ for all bounded continuous operator fields $\{A(\omega)\}$ and all ξ,η in M. Conversely, let M be an AW*-module over $C(\Omega)$. For each $\omega \in \Omega$, let $I_{\omega} = \{\xi \in M: (\xi, \xi)(\omega) = 0\}$. Then I_{ω} is a closed submodule of M, and $M - I_{\omega} = H(\omega)$ is a Hilbert space with inner product induced by M. Furthermore, the continuous field $\mathscr{C}_{\Omega}^{\oplus}$ $H(\omega)$ (defined with respect to M) is isometrically isomorphic to M under a mapping U that satisfies (1), (2), (3) of the first part of the theorem. *Proof.* Put $\mathcal{M} = C(\Omega)$. Since H is a C*-module, we show that H is an AW*-module over $C(\Omega)$. Let $U\xi = \xi$ for every $\xi \in H$; then U satisfies (1) and (2), and by Proposition 4.4, we have (3). To show that H is an AW*-module, we must show that H has the following two properties. (α) Let $\{e_i\}_{i\in I}$ be a family of orthogonal projections in \mathcal{A} , with $\sup\{e_i\colon i\in I\}=e$, and let ξ be an element of H such that $e_i\,\xi=0$ for all $i\in I$; then $e\xi=0$. (β) Let $\{e_i\}_{i\in I}$ be orthogonal projections in $\mathscr A$ with sup $\{e_i\colon i\in I\}=1$, and let $\{\xi_i\}_{i\in I}$ be a bounded subset of H; then there exists an element ξ in H with $e_i\ \xi=e_i\ \xi_i$ for all $i\in I$. First we establish (α) . We can suppose that e=1. Let G_i be the closed and open set in Ω corresponding to e_i ; then $\bigcup_{i \in I} G_i$ is a dense subset in Ω , and $\xi(\omega) = 0$ for each $\omega \in \bigcup_{i \in I} G_i$. The function $\omega \to \|\xi(\omega)\|$ is continuous on Ω , and therefore $\xi(\omega) = 0$ for each $\omega \in \Omega$, and $\xi = 0$. Next we establish (β) . For each element $\xi \in H$, the family $\{(\xi, \xi_i): i \in I\}$ is bounded in \mathscr{A} ; thus the sum $\sum_{i \in I} e_i(\xi, \xi_i)$ is in \mathscr{A} . Hence, for each $\omega \in \Omega$ and every $\xi \in H$, we put $$\phi_{\omega}(\xi(\omega)) = \left(\sum_{i \in I} e_i(\xi, \xi_i)\right)(\omega).$$ Let G_i be the closed and open set in Ω corresponding to e_i ; then $\bigcup_{i \in I} G_i$ is dense in Ω . For each $\omega \in G_i$, we have the relations $$\left(\sum_{\mathbf{i}\in\mathbf{I}}\mathbf{e}_{\mathbf{i}}(\xi,\ \xi_{\mathbf{i}})\right)(\omega) = (\xi(\omega)\mid \xi_{\mathbf{i}}(\omega))$$ and $$\left| \left(\sum_{i \in I} e_i(\xi, \, \xi_i) \right) (\omega) \right| \leq \left\| \xi(\omega) \right\| \cdot \left\| \xi_i(\omega) \right\| \leq \sup \left\{ \left\| \xi_i \right\| \colon i \in I \right\} \cdot \left\| \xi(\omega) \right\|.$$ By the continuity of the function $\omega \to \left(\sum_{i \in I} e_i(\xi, \, \xi_i) \right) (\dot{\omega})$ and the density of $\bigcup_{i \in I} G_i$, there exists for each $\omega \in \Omega$ a net $\{\omega_{\alpha}\}_{\alpha \in A}$ in $\bigcup_{i \in I} G_i$ such that $\lim_{\alpha} \omega_{\alpha} = \omega$. Thus $$\begin{split} \left| \left(\sum_{i \in I} e_i(\xi, \, \xi_i) \right) (\omega) \right| &= \lim_{\alpha} \left| \left(\sum_{i \in I} e_i(\xi, \, \xi_i) \right) (\omega) \right| \\ &\leq \sup \left\{ \left\| \xi_i \right\| \colon i \in I \right\} \cdot \lim_{\alpha} \left\| \xi(\omega_{\alpha}) \right\| = \sup \left\{ \left\| \xi_i \right\| \colon i \in I \right\} \cdot \left\| \xi(\omega) \right\|. \end{split}$$ Therefore, ϕ_{ω} is well-defined and $|\phi_{\omega}(\xi(\omega))| \leq \sup\{\|\xi_i\|: i \in I\} \cdot \|\xi(\omega)\|$ for each $\xi \in H$ and $\omega \in \Omega$. Hence, since $\{\xi(\omega): \xi \in H\}$ is dense in $H(\omega)$, ϕ_{ω} is a bounded linear functional of $H(\omega)$ for each $\omega \in \Omega$. Thus there exists a vector field $\xi_0 \in \Pi_{\omega \in \Omega} H(\omega)$ such that $\phi_{\omega}(\xi(\omega)) = (\xi(\omega) \mid \xi_0(\omega))$ for each $\xi \in H$ and each $\omega \in \Omega$. Furthermore, we must show that ξ_0 is an element of H. Now, since $$(\xi(\omega) \mid \xi_0(\omega)) = \phi_{\omega}(\xi(\omega)) = \left(\sum_{i \in I} e_i(\xi, \xi_i)\right)(\omega)$$ for each $\omega \in \Omega$ and each $\xi \in H$, the function $\omega \to (\xi(\omega) \mid \xi_0(\omega))$ is continuous on Ω and $\|\xi_0(\omega)\| \le \sup\{\|\xi_i\|: i \in I\}$. Therefore ξ_0 is an element of H. For each $\omega \in \Omega$ and each $\xi \in H$, $$\left(\sum_{\mathbf{i}\in\mathcal{I}}e_{\mathbf{i}}(\xi,\,\,\xi_{\mathbf{i}})\right)(\omega)\,=\,(\xi,\,\,\xi_{0})(\omega)\,,$$ and therefore $\sum_{i \in I} e_i(\xi, \xi_i) = (\xi, \xi_0)$ for every $\xi \in H$. Thus, $e_i(\xi, \xi_i) = e_i(\xi, \xi_0)$ for each $i \in I$, and consequently $(\xi, e_i \xi_i) = (\xi, e_i \xi)$ for each $\xi \in H$. Therefore there exists an element ξ_0 in H such that $e_i \xi_0 = e_i \xi_i$ for each $i \in I$. Thus $H = \mathscr{C}_{\Omega}^{\oplus} H(\omega)$ is an AW^* -module over \mathscr{A} . Next we show the converse. It is evident that I_{ω} is a closed submodule of M, and M - I_{ω} = H(ω) is a Hilbert space with inner product induced by M. For each $\xi \in M$, we represent an element $\{\xi(\omega): \xi \in \Omega\}$ in $\prod_{\omega \in \Omega} H(\omega)$ by ρ_{ξ} , where $\xi(\omega)$ is the quotient element of ξ in M - I $_{\omega}$ = H(ω), and we write H = { ρ_{ξ} : $\xi \in M$ }. Then H is a subspace of $\prod_{\omega \in \Omega} H(\omega)$. Since $(\xi(\omega) \mid \eta(\omega)) = (\xi, \eta)(\omega)$ for all $\xi, \eta \in M$ and $\omega \in \Omega$, H is a Banach space with respect to the norm $\|\rho_{\xi}\| = \sup \{\|\xi(\omega)\| : \omega \in \Omega\}$. Thus H is an A-moduled Banach space, and therefore we can identify H with M, in our discussion. That is, for each $\xi \in M$, we identify ρ_{ξ} with ξ . Thus we must show that H is a continuous field of Hilbert spaces over Ω with respect to H. To show that H has property (3) in Definition 3.1, let ξ be an element such that for each positive number ϵ and each ω_0 ϵ Ω there exist an element ξ' ϵ H and a closed and open set $U(\omega_0)$ containing ω_0 with $\|\xi(\omega) - \xi'(\omega)\| < \varepsilon$ for each $\omega \in U(\omega_0)$. Then, by our assumption, there exists for each $\varepsilon > 0$ a family $\{U(\omega), \xi_{\omega}\}$ of pairs of closed and open sets $U(\omega)$ containing ω and elements of H such that $\|\xi(\omega') - \xi_{\omega}(\omega')\| < \epsilon \text{ for each } \omega' \in U(\omega). \text{ Now, since } \{U(\omega) \colon \omega \in \Omega\} \text{ is an open covering of } \Omega, \text{ there exists a finite subcovering } \{U(\omega_i) \colon i = 1, 2, \cdots, n\} \text{ of } \Omega.$ Since each $U(\omega_i)$ is a closed and open set, we can assume that the sets $U(\omega_i)$ (i = 1, 2, \cdots , n) are disjoint. Let z_i be the projection in $\mathcal A$ corresponding to $U(\omega_i)$; then the sets $\{z_i\}$ are mutually orthogonal. Thus, let $\xi_0 = \sum_{i=1}^n z_i \xi_i$; then ξ_0 is an element of H and $\|\xi - \xi_0\| < \epsilon$. Therefore ξ is an element of H. Next we show that H satisfies condition (4) of Definition 3.1. Let ξ' be an element of $\Pi_{\omega \in \Omega}$ H(ω) such that, for each $\xi \in H$, the function $\omega \to (\xi(\omega) \mid \xi'(\omega))$ is continuous on Ω and the function $\omega \to \|\xi'(\omega)\|$ is bounded; for every $\xi \in H$, let $\phi(\xi) = (\xi, \xi')$, and let $\beta = \sup\{\|\xi'(\omega)\| : \omega \in \Omega\}$. Then ϕ is an \mathscr{A} -module mapping of H into \mathscr{A} , and for each $\xi \in H$, $$\begin{split} \|\phi(\xi)\| &= \|(\xi, \, \xi')\| = \sup \{ |(\xi(\omega) | \, \xi'(\omega))| \colon \omega \in \Omega \} \\ &\leq \sup \{ \|\xi(\omega)\| \cdot \|\xi'(\omega)\| \colon \omega \in \Omega \} \leq \beta \|\xi\| \, . \end{split}$$ Thus ϕ is a bounded linear functional of H into \mathscr{A} . Since M is an AW*-module, there exists an element ξ_0 of H such that $\phi(\xi) = (\xi, \xi_0)$. Thus H is a continuous field of Hilbert spaces over Ω (defined with respect to H). We denote H by $\mathscr{C}_{\Omega}^{\oplus}$ H(ω). Let $U\xi = \xi$ (that is, $U\xi = \rho_{\xi}$); then it is evident that U satisfies (1), (2), (3) of the first part of the theorem. ### 5. REPRESENTATION OF GELFAND TYPE OF VON NEUMANN ALGEBRAS In Section 4, we considered the decomposition of bounded operators on a continuous field of Hilbert spaces. In this section, we obtain a representation of Gelfand type of von Neumann algebras. Definition 5.1. Let Ω be a compact Hausdorff space, let $H = \mathscr{C}_{\Omega}^{\bigoplus} H(\omega)$ be a continuous field of Hilbert spaces, and let $\mathfrak{U}(\omega)$ be a C*-subalgebra of $B(H(\omega))$ for each $\omega \in \Omega$; then we put $$\mathfrak{A} = \{ A \in B(H) : A(\omega) \in \mathfrak{A}(\omega) \text{ for every } \omega \in \Omega, \text{ where } A = \mathscr{C}_{\Omega}^{\bigoplus} A(\omega) \}.$$ Thus we write $\mathfrak{A} = \mathscr{C}_{\Omega}^{\bigoplus} \mathfrak{A}(\omega)$. Then $\mathfrak{A}=\mathscr{C}_{\Omega}^{\oplus}$ $\mathfrak{A}(\omega)$ is a $C(\Omega)$ -moduled C^* -subalgebra of B(H). Further, let \mathfrak{A} be a $C(\Omega)$ -moduled C^* -subalgebra of B(H), and for each $\omega\in\Omega$, let $$\mathfrak{A}(\omega) = \{A(\omega) = \pi_{\omega}(A) : A \in \mathfrak{A} \};$$ then we must give a condition under which $\mathfrak{A}=\mathscr{C}_{\Omega}^{\bigoplus}\mathfrak{A}(\omega)$. We shall show that if Ω is a Stonean space, in this problem, then $\mathfrak{A}=\mathscr{C}_{\Omega}^{\bigoplus}\mathfrak{A}(\omega)$. This requires some preliminary considerations. Let Ω be a compact Hausdorff space, let $H = \mathscr{C}_{\Omega}^{\bigoplus} H(\omega)$ be a continuous field of Hilbert spaces over Ω , and let A be an element of B(H) with $A = \mathscr{C}_{\Omega}^{\bigoplus} A(\omega)$; then, by the argument in the proof of Theorem 3.6, we can show that $$\|\mathbf{A}\| = \sup \{\|\mathbf{A}(\omega)\| : \omega \in \Omega\};$$ further, we can show that, for each $\omega \in \Omega$, $$\|A(\omega)\| = \sup \{ \|A(\omega) \, \xi(\omega)\| \colon \xi \in H, \|\xi\| \le 1 \},$$ so that the function $\omega \to \|A(\omega)\|$ is lower-semicontinuous. In particular, if Ω is a Stonean space and $H = \mathscr{C}_{\Omega}^{\oplus} H(\omega)$ is a faithful continuous field (that is, if there exists an element ξ_0 of H such that $|\xi_0| = 1$ in \mathscr{A}), then the function $\omega \to \|A(\omega)\|$ is continuous on Ω , as shall be shown in Lemma 5.3. Before Lemma 5.3, we have the following result. LEMMA 5.2. Let Ω be a Stonean space, let $\mathcal{A} = C(\Omega)$, and let $H = \mathscr{C}_{\Omega}^{\bigoplus} H(\omega)$ be a continuous field of Hilbert spaces over Ω . If H is a faithful continuous field, then the set $$\ker \pi_{\omega} = \{ A \in B(H) : A(\omega) = 0, where \ A = \mathscr{C}_{\Omega}^{\bigoplus} A(\omega) \}$$ is the norm closure of $$\left\{ \sum_{i=1}^{n} z_{i} A_{i} : A_{i} \in B(H) \text{ and } z_{i} \in \mathcal{A} \text{ with } z_{i}(\omega) = 0 \right\},$$ for each $\omega \in \Omega$. The above ideal I_{ω} , that is, the norm closure of $\left\{\sum_{i=1}^{n}z_{i}A_{i}:A_{i}\in B(H)\right\}$ and $z_{i}\in\mathscr{A}$ with $z_{i}(\omega)=0$, has been defined for von Neumann algebras by J. Glimm [4, p. 232], and it has been used by many authors. Furthermore, we must consider the analogous result, which has been established by Glimm [4, Lemma 10] for von Neumann algebras. Proof of Lemma 5.2. Our argument follows closely the proof of Glimm's result [4, Theorem 4]. In fact, since there exists an element ξ_0 of H with $|\xi_0| = 1$, and since H is an AW*-module over A, H is a faithful AW*-module over A, and B(H) is an AW*-algebra of type I with the center * (Theorem 4.5 and [9]). Let E_0 be an Abelian projection of B(H), defined by the equation $E_0 \xi = (\xi, \xi_0) \xi_0$ for every $\xi \in H$; then the central support of E_0 is 1. Let Φ_0 be the \mathscr{A} -module mapping of B(H) onto \mathcal{A} defined by the equation $\Phi_0(A) = E_0 A E_0$, and let ϕ_{ω} be the state of B(H) defined by the equation $\phi_{\omega}(A) = \Phi_0(A)(\omega)$ for each $\omega \in \Omega$. Further, let $(\pi'_{\omega}, H'(\omega))$ be the canonical representation and representative space induced by ϕ_ω . Then Φ_0 is an $\mathscr A$ -irreducible linear mapping of B(H) (the term $\mathscr A$ -irreducible" is due to H. Halpern [5, p. 200]). Furthermore, by using a result of Halpern [5, Theorem 4.3], we see that (1) $H = \{A\xi_0: A \in B(H)\}$, (2) for each $\omega \in \Omega$, ϕ_{ω} is a pure state of B(H). Thus π'_{ω} is irreducible (see [6], for example), and therefore $\pi'_{\omega}(B(H)) \supset C(H'(\omega))$ for each $\omega \in \Omega$, because $\pi'_{\omega}(B(H))$ contains the nonzero abelian projection $\pi'_{\omega}(E_0)$ for every $\omega \in \Omega$. Furthermore, by the argument used in the proof of Theorem 4 in [4], $I_{\omega} = \ker \pi'_{\omega}$. The assertion $\ker \pi_{\omega} \supset I_{\omega}$ is obvious; we shall show that $\ker \pi_{\omega} \subset I_{\omega}$ for each $\omega \in \Omega$. If $A(\omega) = 0$, then $(A(\omega) \xi(\omega) \mid \eta(\omega)) = 0$ for each ξ , $\eta \in H$. Now, since $H = \{A\xi_0 \colon A \in B(H)\}$, we have, for all B, $C \in B(H)$, the relations $$\begin{split} 0 &= (\mathsf{A}(\omega)\,\mathsf{B}(\omega)\,\xi_0(\omega) \,\big|\,\,\mathsf{C}(\omega)\,\xi_0(\omega)) = (\mathsf{C}(\omega)^*\mathsf{A}(\omega)\,\mathsf{B}(\omega)\,\xi_0(\omega) \,\big|\,\,\xi_0(\omega)) \\ &= ((\mathsf{C}^*\mathsf{A}\mathsf{B})\,(\omega)\,\xi_0(\omega) \,\big|\,\,\xi_0(\omega)) = ((\mathsf{C}^*\mathsf{A}\mathsf{B})\,(\omega)\,\mathsf{E}_0(\omega)\,\xi_0(\omega) \,\big|\,\,\mathsf{E}_0(\omega)\,\xi_0(\omega)) \\ &= ((\mathsf{E}_0\,\mathsf{C}^*\mathsf{A}\mathsf{B}\mathsf{E}_0)\,(\omega)\,\xi_0(\omega) \,\big|\,\,\xi_0(\omega)) = \Phi_0(\mathsf{E}_0\,\mathsf{C}^*\mathsf{A}\mathsf{B}\mathsf{E}_0)\,(\omega) = \Phi_0(\mathsf{C}^*\mathsf{A}\mathsf{B})\,(\omega) \;. \end{split}$$ Therefore, $\phi_{\omega}(C^*AB) = 0$ for all B, C \in B(H), and therefore $\pi'_{\omega}(A) = 0$. Thus, $\ker \pi_{\omega} = \ker \pi'_{\omega} = I_{\omega}$. This proves Lemma 5.2. By Lemma 5.2, we see that for each $A \in B(H)$, $\|A(\omega)\| = \|\pi'_{\omega}(A)\|$ for each $\omega \in \Omega$. Glimm has shown that if B(H) is a von Neumann algebra (that is, if Ω is a hyperstonean space), then the function $\omega \to \|\pi'_{\omega}(A)\|$ is continuous on Ω . His argument uses topological properties, but is independent of measure theory. Thus we can show that even if Ω is a Stonean space, the function $\omega \to \|\pi'_{\omega}(A)\|$ is continuous, by an argument similar to the proof of Lemma 10 in [4]. These considerations yield the following result. LEMMA 5.3. Under the hypotheses of Lemma 5.2, let A be an element of B(H) with $A = \mathscr{C}_{\Omega}^{\bigoplus} A(\omega)$; then the function $\omega \to \|A(\omega)\|$ is continuous. PROPOSITION 5.4. Let Ω be a Stonean space, let $\mathcal{A}=C(\Omega)$, and let $H=\mathscr{C}_{\Omega}^{\bigoplus}H(\omega)$ be a faithful continuous field of Hilbert spaces over Ω . Let $\mathfrak A$ be an $\mathscr A$ -moduled C^* -subalgebra of B(H), and for each $\omega\in\Omega$, let $$\mathfrak{A}(\omega) = \{A(\omega) \in B(H(\omega)); A \in \mathfrak{A} \text{ and } A = \mathscr{C}_{\Omega}^{\bigoplus} A(\omega)\};$$ then $\mathfrak{A} = \mathscr{C}_{\Omega}^{\oplus} \mathfrak{A}(\omega)$. In particular, since $\mathscr{A}(\omega) = \mathbb{C}(\omega)$ for every $\omega \in \Omega$, $\mathscr{A} = \mathbb{C}(\Omega) = \mathscr{C}_{\Omega}^{\oplus} \mathbb{C}(\omega)$, where $\mathbb{C}(\omega)$ is the complex number field. *Proof.* The assertion $\mathfrak{A}\subset\mathscr{C}^{\bigoplus}_{\Omega}\mathfrak{A}(\omega)$ is obvious. Thus, we must show that $\mathfrak{A}\supset\mathscr{C}^{\bigoplus}_{\Omega}\mathfrak{A}(\omega)$. If A is an element of $\mathscr{C}^{\bigoplus}_{\Omega}\mathfrak{A}(\omega)$, then $A(\omega)\in\mathfrak{A}(\omega)$ for each $\omega\in\Omega$; that is, for each $\omega\in\Omega$, there exists an element $B_{\omega}\in\mathfrak{A}$ such that $A(\omega)=B_{\omega}(\omega)$. For each $B\in\mathfrak{A}\subset B(H)$, the function $\omega\to\|B(\omega)\|$ is continuous, and therefore, for each positive number ε and each $\omega\in\Omega$, there exists a closed and open set $U(\omega)$ containing ω such that $\|A(\omega')-B_{\omega}(\omega')\|<\varepsilon$ for every $\omega'\in U(\omega)$. Since Ω is compact, there exists a finite subcovering $\{U(\omega_i)\colon i=1,2,\cdots,n\}$ of $\{U(\omega)\colon \omega\in\Omega\}$, and since $U(\omega)$ is closed and open, we can assume that the sets $U(\omega_i)$ ($i=1,2,\cdots,n$) are disjoint. Let z_i be the projection in \mathscr{A} , corresponding to each closed and open set $U(\omega_i)$, and let $B=\sum_{i=1}^n z_i B_{\omega_i}$. Then $B\in\mathfrak{A}$ and $\|A(\omega)-B(\omega)\|<\varepsilon$ for each $\omega\in\Omega$. Thus, by the comment preceding Lemma 5.2, $$\|\mathbf{A} - \mathbf{B}\| = \sup \{\|\mathbf{A}(\omega) - \mathbf{B}(\omega)\| : \omega \in \Omega\} < \varepsilon,$$ and consequently A ϵ \mathfrak{A} . Therefore $\mathfrak{A}\supset\mathscr{C}_{\Omega}^{\bigoplus}\mathfrak{A}(\omega)$. Thus we have proved Proposition 5.4. COROLLARY 5.5. Let $\mathfrak A$ be an AW^* -algebra of type I with the center $\mathscr A=C(\Omega)$; then there exists a faithful continuous field $H=\mathscr C_\Omega^{\bigoplus}H(\omega)$ of Hilbert spaces over Ω such that $\mathfrak A$ is *-isomorphic to $\mathscr C_\Omega^{\bigoplus}\mathfrak A(\omega)$, where $\mathfrak A(\omega)$ is an irreducible C^* -subalgebra of $B(H(\omega))$ containing $C(H(\omega))$. Let Ω be a Stonean space, let $\mathscr{A}=C(\Omega)$, let $H=\mathscr{C}_{\Omega}^{\bigoplus}H(\omega)$ be a faithful continuous field of Hilbert spaces over Ω , let $\mathfrak A$ be an $\mathscr A$ -moduled C^* -subalgebra of B(H), and denote the set $$\{A \in B(H): AB = BA \text{ for all } B \in \mathfrak{A}\}$$ by \mathfrak{A}' . Then we have the following result. LEMMA 5.6. Let Ω be a Stonean space, let $\mathscr{A}=C(\Omega)$, let $H=\mathscr{C}_{\Omega}^{\bigoplus}H(\omega)$ be a faithful continuous field of Hilbert spaces over Ω , and let \mathfrak{A} be an \mathscr{A} -moduled C^* -subalgebra of B(H) with $\mathfrak{A}=\mathfrak{A}^{"}$. Then $\mathfrak{A}=\mathscr{C}_{\Omega}^{\bigoplus}\mathfrak{A}(\omega)$, where $\mathfrak{A}(\omega)$ is the weak closure of $\mathfrak{A}(\omega)=\{A(\omega)\colon A\in\mathfrak{A},\ A=\mathscr{C}_{\Omega}^{\bigoplus}A(\omega)\}$. *Proof.* It is evident that $\mathfrak{A} \subset \mathscr{C}_{\Omega}^{\bigoplus} \widetilde{\mathfrak{A}(\omega)}$. Thus we show that $\mathfrak{A} \supset \mathscr{C}_{\Omega}^{\bigoplus} \widetilde{\mathfrak{A}(\omega)}$. In Proposition 5.4, we have shown that $\mathfrak{A} = \mathscr{C}_{\Omega}^{\bigoplus} \mathfrak{A}(\omega)$ and $\mathfrak{A}' = \mathscr{C}_{\Omega}^{\bigoplus} \mathfrak{A}'(\omega)$. If A_0 is an element of $\mathscr{C}_{\Omega}^{\bigoplus} \widetilde{\mathfrak{A}(\omega)}$, then, for each $A \in \mathfrak{A}'$, $\omega \in \Omega$, and all ξ , $\eta \in H$, $$(A_0(\omega) A(\omega) \xi(\omega) \mid \eta(\omega)) = (A(\omega) A_0(\omega) \xi(\omega) \mid \eta(\omega)).$$ Thus $A(\omega)A_0(\omega) = A_0(\omega)A(\omega)$ for each $\omega \in \Omega$, because $\{\xi(\omega): \xi \in H\}$ is dense in $H(\omega)$, and therefore $A_0A = AA_0$. Since $\mathfrak{A} = \mathfrak{A}^{"}$, A_0 is an element of $(\mathfrak{A}')' = \mathfrak{A}'' = \mathfrak{A}$. Thus $\mathfrak{A} = \mathscr{C}_{\Omega}^{\oplus} \mathfrak{A}(\omega)$. Let \mathscr{B} be a von Neumann algebra with the center $\mathscr{A} = C(\Omega)$; then the commutant \mathfrak{A} of \mathscr{A} is a von Neumann algebra of type I. Therefore there exists a faithful continuous field $H = \mathscr{C}_{\Omega}^{\bigoplus} H(\omega)$ of Hilbert spaces over Ω such that \mathfrak{A} is *-isomorphic to $\mathscr{C}_{\Omega}^{\bigoplus} B(H(\omega)) = B(H)$. Furthermore, by Lemma 5.6 and the fact that $\mathscr{B} = \mathscr{B}''$, \mathscr{B} is *-isomorphic to $\mathscr{C}_{\Omega}^{\bigoplus} \mathscr{B}(\omega)$, where $\mathscr{B}(\omega)$ is a von Neumann algebra in $B(H(\omega))$. Hence we have the following result. THEOREM 5.7. Let $\mathfrak A$ be a von Neumann algebra with center $\mathscr A=C(\Omega);$ then there exists a faithful continuous field $H=\mathscr C_\Omega^{\bigoplus}H(\omega)$ of Hilbert spaces such that $\mathfrak A$ is *-isomorphic to $\mathscr C_\Omega^{\bigoplus}\mathfrak A(\omega),$ where $\mathfrak A(\omega)$ is a von Neumann algebra in $B(H(\omega)).$ This *-isomorphism extends the isomorphism of $\mathscr A$ with $C(\Omega).$ #### REFERENCES - 1. J. Dixmier, Sur certains espaces considérés par M. H. Stone. Summa Brasil. Math. 2 (1951), 151-182. - 2. ——, Les algebres d'opérateurs dans l'espace hilbertien. Gauthier-Villars, Paris, 1957. - 3. ——, Les C*-algèbres et leurs représentations. Gauthier-Villars, Paris, 1964. - 4. J. G. Glimm, A Stone-Weierstrass theorem for C*-algebras. Ann. of Math. (2) 72 (1960), 216-244. - 5. H. Halpern, Irreducible module homomorphisms of a von Neumann algebra into its center. Trans. Amer. Math. Soc. 140 (1969), 195-221. - 6. R. V. Kadison, Irreducible operator algebras. Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 273-276. - 7. I. Kaplansky, Projections in Banach algebras. Ann. of Math. (2) 53 (1951), 235-249. - 8. ——, Algebras of type I. Ann. of Math. (2) 56 (1952), 460-472. - 9. ——, Modules over operator algebras. Amer. J. Math. 75 (1953), 839-858. Tôhoku University Sendai, Japan