A NOTE ON DIVISION RINGS WITH INVOLUTIONS
I. N. Herstein and Susan Montgomery

There has been much interest recently in questions of the following type: if the
symmetric elements of a ring (or algebra) with involutions are subjected to certain
conditions, how does this affect the global structure of the ring (or algebra) itself?
Samples of results in this vein can be found in S. A. Amitsur [1], W. Baxter and W.
Martindale [2], I. N. Herstein [5], Martindale [10], S. Montgomery [11], and M.
Osborn [13]. The results we prove here are in the same general direction.

A well-known theorem of Jacobson asserts that a ring R in which xn(X)=x for
all x € R, where n(x) > 1 is an integer, is commutative [6], [8]. However, if we im-
pose the condition only on the symmetric elements of a ring with involution, the result
need no longer be true. For instance, consider the 2-by-2 matrices over a finite field

* -
of characteristic not 2, relative to the involution defined by ( 3 g) = ( ?y 2 ) ’

here the symmetric elements satisfy the condition stated above, yet the ring is not
commutative. Clearly, we could use such rings to build a wider class of rings with
the same property. Nonetheless, the result does become true for division rings, as
we show below. We also show that an appropriate generalization of the condition
xn(x) = x on the symmetric elements of a division ring leads to a complete descrip-
tion of the ring. Further, we obtain a parallel result under the appropriate condition
on the skew-symmetric elements.

Let D be a division ring with involution *, and let S = {x € D| x* = x} be its
set of symmetric elements. Suppose that for each s € S there exists an integer
n(s) > 1 such that sn(s) = g,

Now if s® = s and (2s)™ = 2s, where n > 1 and m > 1, then clearly s2=s and
(25)? = 25, where q =(n- 1)(m - 1) +1> 1. Hence 2s =21 s9=2%9g, and this im-
plies that (29 - 2)s = 0. In other words, D is of characteristic p # 0. Let P be the
prime field of D; then P C Z, where Z is the center of D.

LEMMA 1. Let x € D be such that x*x = xx*. Then x is algebvaic over P,
and x*X) = x for some integer n(x) > 1.

Proof. Since x*x = xx*, we see immediately that x + x* commutes with x*x

and that both of these commute with x. By our basic hypothesis on S, the elements
x +x* and x*x are algebraic over P, hence F = P(x + x*  x*x) is a finite field.
Every element in F commutes with x. If @ =x+x* and 8 =x*x, then o, B € F
and x2 - ax+ 8 =0. Therefore x is algebraic over F, and consequently it is alge-
braic over P. Since P(x) is a finite field, x™X) = x for some integer n(x) > 1.

COROLLARY. The center Z of D is algebraic over P.
Proof. I z € Z, then certainly z*z = zz*; hence the result follows.

LEMMA 2. If the chavacteristic of D is not 2 and if a € S is such that
a2 e Z, then a € Z.

Proof. Of course, we may assume that a #0. Let b € S; then, if ¢ =ba - ab,
we see that ¢c* = -c and ac = -ca. Since cZ € 8, it must be algebraic over P.

Received July 9, 1970.
Michigan Math. J. 18 (1971).
5



16 I. N. HERSTEIN and SUSAN MONTGOMERY

Therefore c is algebraic over P and so has finite multiplicative order. Since

a € S, it also has finite order. From these facts and the relation ac = -ca we im-
mediately get that a and ¢ generate a finite division ring Dg over P. By Wedder-
burn’s theorem, Dy is commutative; since a, ¢ € Dy, we obtain ac = ca. But

ac = -ca, from which we deduce that 2ac = 0. However, the characteristic of D is
not 2, and a # 0; it thus follows that ¢ = 0. In other words, a commutes with all the
symmetric elements of D.

Now it is known that if dimy D > 4, the symmetric elements generate D ([7],
[12]). Thus, if dimy D > 4, then a € Z. On the other hand, if dimy D < 4, then D
is algebraic over Z, and by the corollary to Lemma 1, Z is algebraic over P. In
short, D is algebraic over P. Therefore, if x € D, then x»{x) =x with n(x) > 1; by
the result of Jacobson [6], [8] mentioned earlier, D is commutative. In this case, a
is certainly in Z. The lemma has now been proved.

Our first main result is the following.

THEOREM 1. Let D be a division ving with involution such that each s € S
satisfies sn(s) = s for some integer n(s) > 1. Then D is commutative. Moveover,
D is algebraic over the prime field P.

Proof. If we show that D is algebraic over P, then the theorem follows from
the theorem of Jacobson cited earlier. Therefore we set about proving that D is
algebraic over P.

If SC Z, then it is almost trivial to show that x*x = xx* for all x € D. By
Lemma 1, we see that each x in D is algebraic over P, and the desired conclusion
follows.

We may therefore assume that some element a € D with a = a* does not lie in
Z. We shall show that this is not possible.

Since a is algebraic over P and D is of characteristic p # 0, a special case of
the Skolem-Noether theorem (see [4], for instance) implies that there exists an ele-
ment b € D such that bab-! = al #a. Note that if b is of finite multiplicative order,
such a relation is not possible, for then a and b generate a finite division ring D
over P; by Wedderburn’s theorem, D is commutative, and this leads to the contra-
diction a = bab-! =al #a.

We shall show that in the relation bab-! = al #a we can replace b by an ele-

ment ¢ of finite order such that cac-! = bab-! =al #a. This will finish the proof of
the theorem.

Applymg * to the relation bab~! =a' and using a* = a, we get the relat1ons
(b*)~1ab* = al = bab~!. Thus b*Db commutes with a. Let A = b*b; since A* =2,
our hypothes1s on S implies that Ak = )\ for some k > 1.

If k is even, then we are done. For if u=aK/2 then A=p2=p*u and u
commutes with a. Since b*b=xr=pu*u, (bu- 1)*(bu'1)— 1. If c=bu"1, then
c*c =1 = cc¥*; hence, by Lemma 1, ¢ is algebraic over P and so has f1n1te order
But, since pa =ap,

-1

cac™" = b,u‘l aub'l = bab~! = al 2 a,

and this we have seen to be impossible. Therefore k cannot be even. In particular,
the characteristic of D cannot be 2; for if the characteristic of D is 2 and X is

t
algebraic over P = GF(2), then A = A% with t > 1.
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Thus we may assume that whenever AKX = ) the exponent k is odd, and further-
more, that the characteristic of D is not 2. A consequence of these reductions is
that A has even order.

Suppose that A is of order 2V m, where m is odd and v > 1. The Sylow decom-
position of the cyclic group generated by A yields that A = A; A2, where A} and A,
are powers of A, and where

2V — m _ * _ * _
Now A?’H = A2 ; hence A, = uz = ,u*u, where p = ?x&mﬂ)/z. Let ¢ =bu"1 .

Since b*b =1 =2x12;,

= ?tl .

But then (c* c)2V = 1; since the characteristic of D is not 2, we can use Lemma 2
repeatedly to obtain that ¢*c € Z. But then c*c = cc*, and so, by Lemma 1, ¢ is
algebraic over P. However, this implies that ¢ has finite order; in addition,
cac~! =bu-laub-1 =bab-! =al #a. As we showed earlier in the proof, this is not
possible. The theorem is thereby proved.

We now prove another theorem of a similar sort. This result generalizes, at
least for division rings, a result proved in [3].

THEOREM 2. Let D be a division ving with involution, and let S be its set of
symmelvic elements. Suppose that fov each s € S there exists an integer n(s) > 1
such that s™8) - s € Z (the center of D). Then D is either commutative or 4-
dimensional over Z.

Proof. We shall first show that SC Z. Let s € S, and let ST=2 n§; clearly,
Z*' is a subfield of Z. Let K = Z*(s); if s ¢ Z, then KD Z* but K # Z*. Since both
Zt=SNZcCS and s € S, every element of K is in S. Hence, for u € K, our hy-
pothesis implies that u™®) - u € Z for some n(u) > 1. Since u™®) - u is also in S,
ur{W -y e Z*. But then every u € K satisfies a relation of the form
ar{w) -y e zt. By a theorem of Krasner [9] we see that K is of characteristic
p # 0 and that every element of K is algebraic over the prime field P. Therefore
7% is algebraic over P. Since z € Z satisfies the quadratic equation
x% - (z+2z*)x+2z*z =0 over Z¥, Z is algebraic over Z*, and hence Z is alge-
braic over P.

However, every element of S is algebraic over Z, by assumption; hence every
element of S is algebraic over P. The upshot of this is that sm(s) = s, for some
m(s) > 1, for every s € S. By Theorem 1, D is commutative, in contradiction to the
existence of an s € S, s ¢ Z. In short, we have shown that S C Z.

But then, each x € D satisfies the quadratic relation x2 - (x +x*) x+x*x =0
over Z, since both x + x* and x*x are now in Z. Since D is quadratic over Z, by
a standard ring-theoretic theorem [6] the dimension of D over Z is at most 4.
This proves the theorem.

We conclude the paper with the skew-symmetric version of Theorem 1.

THEOREM 3. Let D be a division ring with involution *, such that for each
a € D with a* = -a theve exists an integer n(a) > 1 for which a™?@) = a. Then D is
commutative. Movreover, D is algebraic over the prime field P of p elements.
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Proof. As in the case of Theorem 1, we immediately see that D is of charac-
teristic p # 0. By Theorem 1, we may suppose that p # 2. Suppose that A is a sym-
metric element in the center Z of D. Then, for each a € D with a* = -a, we have
the relation (xa)™ = da. Playing these off against each other, we find that A® = A,
Hence every element in Z N S is algebraic over the prime field P.

Suppose that there exists an element g #0 in 2 w1th p*=-p. If s € S, then
(s)® = -us; hence (us)t = us for some t > 1. Since p* = = -, our hypothesis im-
plies that pu* = for some r > 1. If weuse k=(r - 1)(t - 1) + 1, the two relations
pkX = and (us)k = us are satisfied. Together, they imply that sk = s, for every
s € S. In that case, Theorem 1 is applicable and gives the commutativity of D.

Hence we may suppose that p* # -y for p #0 in Z; that is, u*= pu for all
p € Z. Consequently, Z is algebraic over P.

If a* = -a, then a™@) = 3, hence a@)-! ¢ Z. Let k be the least positive inte-
ger with ak € Z. Since (ak)* = ak and a* = -a, we see that k is even. If k = 2" m

where m is odd, then am)2” ¢ Z; if b =a™, then, since b*=-b #0, b ¢ Z and
r
0% € Z.

fr>1,l1let c= bZr 1. Then c¢* =c¢ and ¢ € Z. Since Z is algebraic over P,
c? is algebralc over Z; therefore the element c is algebraic over P. If s € S, then
c(cs - sc) + (es - sc)e = 0, since c2 € Z. However, (cs - sc)* = -(cs - sc), whence
(cs - sc)t =cs - sc for some t > 1. But then ¢ and cs - s¢ generate a finite divi-
sion ring over P; by Wedderburn’s theorem, this ring is commutative. As before,
since p # 2, we ﬁnd that cs = sc for all s € S. Therefore ¢ centralizes S.

Now, if dimz D > 4, then S generates D [7], and therefore ¢ € Z. On the other
hand, if dimy D < 4, then D is algebraic over P, since Z is algebraic over P. By
Jacobson’s theorem, we conclude that D is commutative.

-1
Thus we have shown that if b2 € Z with r > 1, then ¢ = b? € Z. In other
words, we have reduced the proof to the case b? € Z. We want to show that b € Z.

Since b* = -b, we see that (bd - db)* = -(bd - db) for each d € D satisfying
d* = -d; hence, by our basic hypothesis, the relation (bd - db)t = bd - db holds for
some t > 1. But since b% e Z, b(bd - db) + (bd - db)b = 0. As before, this allows
us to conclude that bd = db for each skew-symmetric 4 in D.

However, if dimy D > 4, then the skew elements generate D [7], in which case
we obtain that b € Z. Since b* = -b, and since we have seen that we may suppose
that Z contains no skew elements, this is not possible. Thus dimy D < 4. This
forces D to be commutative. In short, we have proved the theorem.

One can wonder about the analogue of Theorem 2 for the skew-symmetric case;
that is, suppose that an(@) - 3 € Z for all a with a* = -a. It seems likely that this
should imply that dimy D < 4. However, to settle this will require certain types of
purely field-theoretic results. We hope to return to this in a later paper.
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