HARDY CLASSES AND RANGES OF FUNCTIONS

Lowell J. Hansen

I. INTRODUCTION

1. Let D be a region (that is, a connected, nonempty, open set) in the complex
plane ¥. Following M. Parreau [6] and W. Rudin [8], for each positive real number
p, we let Hp(D) denote the collection of functions f, analytic on D, for which |f|P
has a harmonic majorant. (In the case where D is the unit disk, Hp(D) as just de-
fined coincides with the usual Hardy class H,.) We let Hg(D) denote the collection
of analytic functions on D. For each fixed function £ € Hy(D), we seek to determine,
by studying £(D), the numbers p for which f € Hy(D).

One of the first results in this direction is due to Smirnov [7, p. 64]. He showed
that if f is analytic on A, where A = {|z| < 1}, and has positive real part, then
f € Hy(A) (0 <p <1). It is an easy step to go from Smirnov’s Theorem to the re-
sult that f € Hp(A) (0 <p <7/a) if f(A) is contained in a sector whose angular
opening is @ (0 < @ < 27). This was pointed out by G. T. Cargo [2], who also proved
the following results for a function f € Hp(A):

(1) ¥ f(A)c @ g €, where Q is simply-connected, then f € Hp(A) (0 <p<1/2).

(2) If £(A) is contained in an infinite strip, then f € HP(A), for all positive
numbers p.

Cargo proved these last two results using the principle of subordination. Thus,
the existing results are limited to the case where f(A) cQ g % and 2 is simply-

comnmected.

We begin by introducing the Hardy number h(2) of a region @ C € (Chapter II).
The Hardy number h(2) has the property that if £ € Ho(D), (D) € €, and h(R2) > 0,
then f € Hp(D) (0 < p <h(R)). Therefore, progress in solving the stated problem
will come from a study of Hardy numbers; in particular, from lower bounds for
Hardy numbers. Chapter III is a step in this direction. Whereas the existing re-
sults are limited to functions whose image lies in a proper simply-connected sub-
region of €, we give a lower bound for the Hardy number of an arbitrary region
(Section 3). Some theorems of M. Tsuji play the central role here. The bound in
Section 3 permits us to determine exactly the Hardy number of a starlike region
(Section 4). We also derive a lower bound for the Hardy number of a simply-
connected region whose boundary is sufficiently regular (Section 5). In some cases
this is an improvement of the bound in Section 3, since it takes into account a rota-
tional factor. Our tool here is Ahlfors’ distortion theorem [1].
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In the special case where f € Hp(A), existing theorems for Hardy classes on A
allow us to relate the Hardy number of f(A) with the growth of the maximum modulus
and with the Taylor coefficients of £ (Chapter IV).

Finally, we prove a theorem for an arbitrary region, of which the Phragmén-
Lindeldf Theorem for a half-plane is a special case (Chapter V). This enables us to
give a lower bound for the lower order of an entire function f in terms of the Hardy
numbers of the components of the sets {|f| > c}.

I wish to express my thanks to my teacher and advisor, Maurice Heins, for his
advice during the preparation of this paper.

II. THE NOTION OF A HARDY NUMBER

2. Let DC % be aregion, and let f € Hy(D). Let Q C € be a region containing
f(D). If g € Hp(Q) for some p > 0, then |g|P has a harmonic majorant u. There-
fore |g o f|p < uof and thus, since u © { is again harmonic, we conclude that
g of € Hp(D). In particular, if g is the identity map on Q, then f € Hy(D).

We are thus motivated to make the following definition.

Definition 2.1. Let Q C % be a region. The Hardy number of @ is defined by
the condition

h(Q) = sup {p > 0: Ip € Hy(Q)},

where I is the identity map on .

Let 2 C % be a region with h(2) > 0, and let 0 <p < q. Since |z|P <1+ |z|9,
it follows that Ip € Hp(R) as long as 0 < p < h(R). The significance of Definition
2.1 is that if f € Ho(D) and {(D) C €, then f € Hy(D) for all p satisfying the in-
equality 0 < p < h(R).

This may not always lead to a significant result. For example, if

F(z) = (1+:)3 (lz] <),

then F € H,(A) (0 <p <1/3). However, F(A) = ¢ - {0}, which has Hardy number
zero (see observation 4 below).

We may make the following observations.

(1) If Q; and ©, are regions with ) C Q, C €, then h(®;) < h(Q;).

(2) Let Q; € € be a region, and suppose that Q, = {az +b: z € Q; }, where
a,b€e® and a #0. Then h(;) = h(R3).

(3) Let € C € be a bounded region. Then h(Q) = +. Thus, in the sequel, the
only case of interest will be the case where 2 is unbounded.

(4) If % - Q is bounded, then h(Q) =0. For, if € - @ € {|z] <R} (R>0),

then F(z) =R exp (—if—;) maps A into £, and F belongs to HP(A) for no p > 0.
(5) Smirnov’s Theorem shows that J € Hp(A) (0 <p < 1), where

J(z)= (1 +2)/(1 - z). Since J maps A conformally onto {% z > 0}, we have that

h{{%z>0}]>1. However, since J ¢ Hy(A), we must have that h[{%z > 0}]=1.
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Similarly, one shows that h(S) = 7/a, where S is a sector whose angular opening is
a (0 <a<2n).

ITT. LOWER BOUNDS FOR HARDY NUMBERS

In Section 3, we derive a lower bound for the Hardy number of an arbitrary
region € C €. We show in Section 4 that if € is unbounded and starlike with re-
spect to the point z = 0, then the lower bound of Section 3 determines h(f2) exactly.
We use the Ahlfors Distortion Theorem to give a lower bound for the Hardy number
of a simply-connected region whose boundary is sufficiently regular (Section 5).

3. Let & C @ be an unbounded region. Let po =inf {|z|: z € 2} and
p; =1+4+pg. For t € (py, +=), we define

(1) agq(t) = max {m(E): E is a subarc of £ N {|z| =t}},

where m(E) denotes the angular Lebesgue measure of E. The function 1/ag is up-
per-semicontinuous and hence is bounded on compact subsets of (pg, +), For
t > 0, we define

0 if {|z|

ttca,

t} Q.

We note that x ¢ is the characteristic function of the circular projection of @ - Q
onto the nonnegative real axis. For t > p;, let

(2) Xot) =

1 if {|z]

T t XQ(I‘)dI‘

(3) B(t) = log t o W'
1
THEOREM 3.1. If Q C € is an unbounded region, then
(4) h() > lim inf Bg(t).
t— 00

Proof. Since the theorem holds trivially otherwise, we consider only the case
where £ = lim inf;_, ;o Bg(t) > 0. We must show that if 0 < p < £, then there exists
a function u, harmonic on §2, that satisfies the inequality |z|P < u(z) for all z € Q.
This follows from the proof of Theorem IIIL. 70 of M. Tsuji [10, pp. 118-119], if, in-
stead of the estimate for harmonic measure that is used there, we use the stronger
estimate proved by Tsuji in [9].

In general, equality does not hold in (4), as the examples at the end of Section 5
illustrate. However, we shall show in Section 4 that if Q = ¢ is an unbounded region

that is starlike with respect to the point z = 0, then equality does hold in (4), and

h(Q) = lim EZ%

t—c

Using the method of proof of Theorem 3.1, one could get an upper bound for
h(R), if a lower estimate for harmonic measure were available (just as a better
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upper estimate for harmonic measure would give a better lower bound for h($2)). In
general, however, lower estimates for harmonic measure do not exist.

We now fix some notation for the remainder of this section. Let E be a
Lebesgue-measurable set of positive real numbers. We let my(E) denote its
logarithmic measure: my(E) = S tl dt. If r is a real number (r > 1), we put

E
E(r)=E N [1, r]. Then the lower logarithmic density of E is given by the expres-
sion
m, [E(r)]

gﬂ(E) = lim inf log T

T — +0c0

Q C # is aregion, we let Pg={|z|: z € # - @}, the circular projection of
¢ - Q onto the nonnegative real axis.

=

Corollaries 3.2 to 3.4 follow easily from Theorem 3.1.

COROLLARY 3.2. Let Q C € be an unbounded vegion. Let E C Pp be a meas-
urable set and X its chavacteristic function. Let ag = lim sup, _, o0 [X(t)agq(t)].
If 4y(E)> 0, then h(Q) > (1/a()dy(E).

COROLLARY 3.3. Let Q C € be a rvegion. Then h(Q)> dy(Pg)/2.
COROLLARY 3.4. Let Q < @ be a simply-connected region. Then h(Q)> 1/2.
(This is equivalent to a result of Cargo [2].)

We conclude this section with a theorem that is similar to the Denjoy-Carleman-
Ahlfors Theorem [1].

THEOREM 3.5. Let {Qx} be a collection of n (n > 2) unbounded disjoint sub-
regions of €. Let oy, Xy, and By be defined relative to Qi as in (1), (2), and (3).
If lim;—, 400 By(t) exists (finite ov infinite) for each k (k=1, 2, -, n), then
h(Qy,) > n/2 for some kg .

Proof. Let R (R> 1) be so large that Q1. N{ |z| <R} # @ for each k
(k =1, 2, -+, n). Then x,(t)=1 for t> R, and hence

t
T dr
lim By (t) = lim S k=1,2, >, n).
s oo k() ‘s 1o logt Rrak(r) ( 9 Ay

Therefore, since

n n -1
> 1( > p2 Z)ak(r)) >0

o1 k) = k=1
we have the inequalities

n n
L5 15 pm L (&
= h(Q)) > = 27 lim S
n, _, nk:l £ — 00 log t R ra(r)
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] = 1

t—oo M10BL Jp Ty %K
>Elim—g—L10tR=r—l.
—2,6_)+0° log t 2

Hence, h(Qy,) > n/2 for some kg.

We suspect that the theorem is true without the regularity hypothesis that each
lim;_, ;o By(t) exist. If so, in view of Theorem 7.2, Theorem 3.5 could be used to

give another proof of the Denjoy-Carleman-Ahlfors Theorem.

4. It follows from Corollary 3.2 that

(5) h(®) > lim inf - 75 (t) ,
t—+eo
if Q@ is unbounded and xq(t) =1 for t > ty. In this section, we prove the following
result.

THEOREM 4.1. Let Q (; € be an unbounded vegion that is stavlike with respect
to the point z = 0. Then

hQ) = lim —-.
>4 00 ag(t)
Proof. Since § is starlike with respect to z = 0, the function t — ag(t) is non-
increasing and positive, and therefore A =lim;_,; ., @q(t) exists. Thus inequality
(5) becomes

(6) h(Q) >

.’>|=‘

If A=0,then h() = 71/A =+,

Suppose that A > 0. For each t > 0, there are only finitely many subarcs E of
QnN {I I =t} with m(E) > aq(t)/2, where m(E) is the angular Lebesgue measure
of E. We let E; be some subarc of 2 N {|z | =t} satisfying the condition
m(E,) = aqn(t). For each t> 0, let k(t) have the following properties:

(i) k(t) € [0, 27);

(ii) if E; # {]z| = t}, the ray {xelk{t); x > 0} is the bisector of E,. Other-
wise, let k(t) =

Noting that {k(n)}n 1 is a bounded sequence, we conclude that there exists a sub-
sequence {k(n;)}j’; with k(n;) —ko. Thus, for each & (0 <6 < A/2), there exists
N so large that

{xei9:0<x<nj and k0—§+6<6<k0+—§—6} C Q

for all j > N. Since nj — « as j — <, we have the inclusion
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{xeigzx>0 andko—-§+6<9<ko+2é—6}gﬂ

for all & (0 < 6 < A/2). Letting 6 — 0, we conclude that
S = {X6191X>0 and k0-§‘<9 <k0+2é} c Q.

Since h(S) = 7/A (by observation 5 of Section 2) and S C ©, we have that

71'
h(2) < h(s) = %

This, together with inequality (6) above, completes the proof.

Remavk 1. We have determined the Hardy number of every starlike region: If
 is bounded, then h(Q) = +; if € is unbounded, an appropriate translation takes
into a region satisfying the hypotheses of Theorem 4.1, and this region has the same
Hardy number as §2.

Remark II. Let 2 satisfy the hypotheses of Theorem 4.1. Suppose that
A =lim; _, 10 20(t) > 0. We showed that for some kg,

S:{XGiB:X>0 andko-2é<9<ko+§}_c_ﬂ

and h(S) = h(Q) = n/A. Therefore, each region G with S C G C © has Hardy number
7/A also.

5. The object of this section is to develop a lower bound for h(f2) in the case
where the region @ C ¢ is simply-connected and has a regular boundary (satisfying
the hypotheses of Theorem 5.2). We derive this bound using the Ahlfors Distortion
Theorem [1], which may be stated as follows.

THEOREM 5.1. Let G be a simply-connected vegion in the s-plane (s = x +1iy).
Let T: (0, 1) — G be continuous, one-to-one, and suppose T satisfies the conditions

lim % It) = -« and lim RI{E) = +.
t—0 t—1
Suppose that on each line Rs = x theve exists a segment 0, satisfying the conditions
(1) 6, has finite length 6(x);
(2) 04 lies, except for its endpoints, in G;
(3) 6, separates T(t), for t mnear O, from T(t), for t near 1;and,

(4) whenever x; <x,, 0,  sepavates le from T(t), for tnear 1.

)

uppose F is one-to-one and maps G conformally onto T = {w: | 3 WI <w/2}
such that limg g RF[T({t)] = -« and limg _,; RF[T({)] = +o. Put

£,(x) = inf RN F(s) and £,(x) = sup 9% F(s).
s € QX S€ BX

Then
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%2
£10c) - E2lx) 2 7 § -,

X1

X2
dx
i — >
provided S ) 2.
*1

In Theorem 5.2, we follow Ahlfors by letting 924 denote the cross-cut lying on
{ % s = x}, which, among those cross-cuts satisfying condition (3) in Theorem 5.1,
is met first if the curve TI'j is described in the positive direction.

THEOREM 5.2. Let Q@ C € be a simply-connected vegion whose boundary con-
tains the point z = 0. Let g: Q& — @ be an analylic logarithm of the identity map on
Q, and let G = g(R). Suppose that G satisfies the following conditions:

1. There exist a finite collection of curves {I"j }?:1 , as in the Ahlfors theovem,
with respective cross-cuts {Gi}?:l , and a positive real number R so that if s € G
and Ns=x>R, then s € 8), for some j (j=1,2, -+, n).

2. For x > R, each component of G N { %is > x} intersects a unique curve T;
(1<j<n).

Let y; (x) denote the ovdinate of the loweyr endpoint of the cross-cut 92;. Then

2
1+
where
B = max {lim sup 9j(x)}
1Lj<n x—+eo
and
(x) - vilx
-t g |77 vi6)
X —+o00 X-X]
X >x1

for some fixed j (1 <j <n).

Proof. Let Fj denote a univalent analytic map of G onto the strip
T ={¢+in: |n| <n/2} such that

lim R F;[Ti(t)] = -« and  lim % F[Tjt)] = +e
t—0 t—1

(see [5, p. 19] for a theorem that can be used to establish the existence of such a
map). Let 3 (x) and &) (x) denote, respectively, the infimum and supremum of
% F; on the cross-cut 6} .

Following the method of Ahlfors in his proof of a sharpening of the Denjoy Con-
jecture [1, pp. 25-27 ], we put in the s-plane a new rectangular coordinate system
(u, v) whose axes make an acute angle o with the positive x- and y-axes, re-
spectively. That is, for a fixed real number a (|a| < 7/2), the positive u-axis is
the set {rel®: r > 0} and the positive v-axis is the set {rei{@tn/2): r > 0}. We
shall dispose of o shortly.
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Fix x; and xz (x) <x). Choose u; and u; as follows: If o > 0, let

u; = xjcos a +[y;(x;) +2n]sin @

and
up = xpcos @ +y;(x;)sin a;
if @ <0, let
u; = xjc08 @ +y;(x;)sin &
and

u, = X, cos a + [yj(xz) +27]sin @,
for some fixed j (1 <j<n). When u; and u, are chosen in this manner, we have
that

(i) the line u = u; passes through the point having (x, y)-coordinates
(x;, yj(xl) +27m) or (xp, yj(xl)), according as @ >0 or a <0, and

(ii) the line u =up passes through the point having (x, y)-coordinates
(xz, yj(x2)) or (x2, yj(xz) + 27), according as & >0 or o <O0.

With u; and uz chosen as above, we have the relation
(7) (uz - u;) = (x2 - x1)cos @ + [yj(xz) - yj(xl) T 2n)sin a,

where we use the upper or lower sign accordingas @ >0 or ¢ < 0. Now fix @ so
that

_yj(x2) - yj(x1)
T xp-x

tan a

With this value of @, we have that
211/2 .
(uz - u1) = {(xz - %)% + [yjx2) - yix)P}/2 - 208in | o]

(8) 2 21/2
> {(XZ - x1)° + [Yj(Xz) - Yj(xl)] } - 27

For each ug € [u;, uy], there exist a finite number of cross-cuts on the line
u = ug that separate 9;'{1 from 93‘{2. Let 6“0 be the cross-cut, among those satisfy-

ing this condition, that is first met if we describe the curve T'j in the positive direc-
tion. Let 6“0 have length 6(ug). For u € [u;, uz], we let £1(u) and £2(u) denote,

respectively, the infimum and supremum of % Fj on the cross-cut 6,,. Then, by
Theorem 5.1,

uz
(9) E1(up) - &x(up) > 7 S % - 47,
uj
provided
(10) {2
uj

An application of the Schwarz Inequality yields the inequality
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u, 5
S du S (up - 111)
(11) a, W = 2
6(u) du
u)
Combining inequalities (9) and (11), we see that
m(uy - up)?
(12) £1(uz) - £2(uy) > . 47,
o(u)du
uj

whenever condition (10) is satisfied.

Hypotheses 1 and 2 imply that

U 6, c GN{x; < As<x2} (x1>R).
[u1,u;]
Y2
Hence we must have that S 8(u)du < 27(x, - x1). Using this fact and inequalities
u]
(8) and (11), we find that (10) is satisfied if x; > R and (x, - x1) > 4n(1 + v 3/2).

As long as x; > R, we have the inclusion

6, c U o

X

[upup]  [xp.xp]
and thus
u2 %2
S 6(u)du < S\ 0i(x)dx < (xp - x))- sup 07(x).
1) Xy Xle

Therefore, if x; > R and (x, - x;) > 4n(1 + v 3/2), we get the inequality

7(uz - up)?

(13) gl(“Z) - gZ(ul) > (XZ _ Xl)' sup ej (x) )
X%
Z%)

We observe that §J1(x2) > &q1(uz) and Ejz(xl) < £(u1). Combining inequalities (8) and
(13) with this observation, we find that

2
j j m(x2 - X1) <yj<Xz) - yj<x1))2 o
(14) &(x,) - &3(xy) > __—sup Gj(x)[\/l + o— “G-x) | 47 |

xX>X]

as long as x; > R and (x, - x;) > 4n(1 + vV 3/2).

Hypotheses 1 and 2 imply that A is independent of (i) the choice of the analytic
logarithm g, (ii) the choice of xj, and (iii) the choice of j (1 <j < n).

Let € and A be fixed (€ > 0 and 0 <A < 1+2%). Fix x; (x; = x;(¢) > R) so
large that
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max [ sup 63 (x)] < B+e.
ISan x> X]

Then pick N (N > x; + 47(1 + v'3/2)) so large that when X, > N, we have that

2
l:\/l'l‘(yj(XZ) - Yj(Xl))z __2n :l S A
X2~ X1 (x5 - x1)

for each j (1 <j<n).

By (14), we thus have, for x; as fixed above and for x, > N, the inequality

£ (x,) - £h(x)) > (x, - xl)[B%:l— ar (G=1,2, -, n).

Hence for x > N,

N R P

(KJ- is hereby defined). Therefore, if 9%is > N and s € B}J{ , we have the inequalities

TA
B+¢

:I Ns S Kj+€j1(5)ts) S Kj+ E)iFj(S).

Recall that g is an analytic logarithm of the identity map on . We conclude
that if z € ©, log |z| > N, and g(z) € 6%, then, for q > 0, we have the relation

B"j_‘a}og |z| < qiKj+ aF;le@)]},
and hence
mA
7 |
| z] < exp{q[K;+ 2 F;[g@)]]} = |exp {K;+ F;[a@)] }|*.

Note that exp {Kj+ F;[g(z)]} is an analytic function on @ with positive real
part. Therefore, by Smirnov’s Theorem [7, p. 64], it follows that

|exp {K; + Fj o g} |*

has a harmonic majorant Uj for fixed q (0 <q<1). It is clear that U; >0 on L.
Consequently, we see that

ﬂA:I n
o) LP* < 2 Uj(a),
J:

if |z| > eN and 0 <q < 1. Therefore,
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7] L5 ]
|Z| B+8 Bte n E U (Z)

for all z € Q, as long as q is fixed (0 < q < 1). Hence h(Q)>q ;—é Letting
q—1, e—0,and A -1+ A2, we conclude that

(1 +)\2) .

(15) h(@) >

By way of interpretation of this conclusion, we remark that 8 is the upper limit
of the angular measures of the components of £ N { |z| = r} as r — +«©. The
presence of the rotational factor A in the lower bound (15) seems to indicate that
h(f) increases as “the complement of 2 is wrapped more tightly about the origin.”

Example 1. Let @ = @ - {eF{cos atisina). 1 req1}  where |a| <n/2 is fixed.
Then  satisfies the hypotheses of Theorem 5.2 with g =27 and A = Itan az]. Hence

1 +tan®a _ 1

h{(©2) > = .
@) > 2 92 cos? a

This is the exact value of h(2), as can be seen by considering the function mapping
{|z| < 1} conformally onto . Theorem 3.1 gives only that h(Q) > 1/2.

Example II. Let Y be an increasing continuous function on [1, +) with
Y(1)=0 and limy _ 4+ Y(r)/r =+, Let

Q=% - ([0, e]u {ertivir). r>1}).
Then, in the notation of Theorem 5.2, A=+%. Thus h(®) = +«, whereas Theorem
3.1 again gives only h(Q) > 1/2.
IV. FUNCTIONS ANALYTIC ON THE UNIT DISK
6. Let f be analytic on A (A= {]z| < 1}). Let £f(A) € Q, where h(Q) > 0. Then,

since f € Hy(A) (0 <p < h(2)), we get the following results from known theorems
about H (A)

THEOREM 6.1. If M(r, f) = max|, |-, |t(z)|, then

lim [(1-r)Y/PM(r, )] =0 (0<p <h(Q)).

r—l

(See Hardy and Littlewood [3].)

27
THEOREM 6.2. Let I,(r, f) =ﬁ S lf(rei9)|d9. Then if 0 < h(Q) <1, we
0

have the relation
I,(r, ) = O[(1 - r)' "}P] (0 <p < h(®).

(See Privalov [7, p. 108].)
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THEOREM 6.3. Let f(z) = E::() anz” (Izl <1).
(1) If h(R) > 1, then ]anl = o(1).
@) If 0 <h(Q) < 1, then

lan] = o!’P) (0 <p <n(@).

(See Privalov [7, pp. 110-114].)

" Theorems 6.2 and 6.3 answer in part the questions raised by W. K. Hayman [4,
pp. 28-30] concerning conditions on f(A) that give information on the growth of
Iy(r, f) and |a,].

V. HARDY NUMBERS AND ORDERS OF FUNCTIONS

7. It follows from the classical Phragmén-Lindel6f Theorem that if u is sub-
harmonic on {%z >0} and if lim sup, _,¢ u(z) <0 for each purely imaginary ¢,
then either u < 0 or else

11m1nf——gT:1\:—(r£qu> 1,

r —+ o0
where M(r, u) = supl 0 |<ﬂ/2 u(reie). Since the Hardy number of {%z >0} is 1,
this is a special case of the following theorem.

THEOREM 7.1. Let Q C € be an unbounded vegion. Let u be subhaymonic on

Q, and suppose that lim supz_,§ w(z) < 0 for each finite boundary point € of Q.
Tken either u < 0 or else

(16) Kk = k(u) = lim inf —jl—lg(—r’-ﬂz > h(9),
r — too

where, whenever @ N {|z| =1} # @, we define M(r, u) =sup {u(z): z € @, |z| =r}.

Proof. (The proof arose during a conversation with Mr. John Lewis.) Since in-
equality (16) clearly holds when h(R2) = 0, we shall assume that h(2) > 0. Suppose
that ¥ <h(Q), and choose £ such that k¥ < ¥ +& <h(R). Then there exists a se-

quence {rn}‘:d c [1, +) such that r,— +%° and

log® M(rp, u)

log rp (=123 ).

_<_K+

Moo

That is, M(rp, u) < rkK+€/2 (n=1 2 3 ---). Let w, denote the harmonic measure

of 2 N {,zl =r,} with respect to €, —Qﬂ {|z| <r } (see [10, p. 111]). We let
I, and Iy denote the identity map on Q and 2, respectlvely Then if z € S‘&no, we

have for n > n, the inequalities
+e/2 +
u(z) < M(r,, Ww,(z) < rk &/ w,(z) < vk ey (z)

< LHM(|I,|¥*€)(z) < LHM(|Ig|**€)(z) < +=,
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since k +¢& < h(R2). Here, LHM stands for “least harmonic ma]orant » Letting
n — «, we see that {r"’fsw (2)}%_, is bounded, and hence r¥*€/2w (z) - 0.
Therefore u<o0.

Let u be a nonconstant, continuous, subharmonic function on ¢. Let c be a
fixed positive real number, and let & = {z € ©: u(z) >c}. Let

he = sup {h(R):  is a component of &} .
If ¢c; <cy, then o, S <I)Cl , and hence he, < he, - Thus the limit

lim h, = h(u)
Cc— + o0
exists. As a corollary to Theorem 7.1, we get the following result.

THEOREM 17.2. Let u be a nonconstant, continuous, subharmonic function on
€. Then

(17) k(u) = lim inf —%%‘Jﬁ > h(u).
r— +o00

Proof. Let c be a fixed positive real number, and let £ be a component of & .
We apply Theorem 7.1 to (u - c)|Q to get the relauons

k() > k[(u-c)|e] > he).

Taking the supremum over the components £ of &: , we find that k(u) > h.. The
theorem follows by letting ¢ — -+,

Equality may hold in (17), as the example u(z) = % z shows. It would be of in-
terest tQ know if equality always holds when u is harmonic.

In general, equality need not hold in (17), as the following example illustrates.
Define

1 (nz <1),

u(z) = )
n“+@n+1)(%z-n @(A<n<< Rz<(n+1)).

Then u is subharmonic on ¥, and M(r, u) = u(r) > r2. Thus, if I1<n<r<n+1,
we have the inequalities

log M(r, u) < log M(n+1, u) < logun+1) _ I: logn +1)

2 < logn

- log r = log r - logn

Therefore k(u)=2. However, he =1 for each ¢ > 1, and hence h(u) =1 < k(u).

We see from Corollary 3.3 that if & C € is a region with {lz| =r}-2=29
for each r > 0, then h(R2) > 1/2. Thus a special case of Theorem 7.2 is the Wiman
Theorem that the lower order of an entire function with bounded minimum modulus
must be at least 1/2.
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