ON FIXED POINTS OF A COMPACT AUTOMORPHISM GROUP
Dong Hoon Lee

In this note, we investigate the existence of nontrivial fixed points under a com-
pact, connected group of automorphisms of a Lie group. Although we cannot always
hope for the existence of such fixed points in connected groups, the situation for non-
connected groups seems to be more favorable. The following theorem, the proof of
which constitutes the main portion of this note, bears this out.

THEOREM 1. Let G be a Lie group such that the identity component Gy of G
contains no nontrivial compact subgroup. Then, for every compact, connected group
C of automorphisms of G, we have the relation G = Gy - F(C), where F(C) denotes
the collection of all fixed points of C in G.

As an easy consequence of this theorem, we prove that a compact, connected
group of automorphisms of G has a nontrivial fixed point, if G is a nonconnected
Lie group that contains no compact semisimple subgroup. We also present other
applications of the theorem, together with an example to supplement our result.

We note that the topology in the group of automorphisms of a Lie group is under-
stood to be the so-called generalized compact-open topology, under which the group
is a topological group. In the rest of this note, we use G to denote the identity
component of a Lie group G.

1. PROOF OF THEOREM 1

LEMMA 1. Let H be a connected semisimple Lie gvoup that contains no com-
pact, semisimple subgroup. Then every compact, connected gvoup of automorphisms
of H is a torus.

Proof. Let C be a compact, connected group of automorphisms of H, and let S
be the commutator subgroup of C. We claim that S is trivial. Since H is semi-
simple, every automorphism in C is an inner automorphism. Since the adjoint
group of H is isomorphic with H/Z, where Z denotes the center of H, we may iden-
tify S with a compact, connected subgroup of H/Z. With this identification, let L be
the complete inverse image of S under the projection map H — H/Z. Since Z is a
discrete subgroup of H, L is easily seen to be a covering group of S. Hence L is
a compact, connected semisimple subgroup of H. Because H contains no such sub-
group by our hypothesis, it follows that L, is trivial. Hence S is trivial, and C is a
torus.

LEMMA 2. If Gg is a semisimple group that contains no nontrivial compact
subgroup, then the conclusion of Theovem 1 holds.

Proof. Let m: Aut{(G) — Aut(Gg) be the restricting homomorphism, where, for
a Lie group L, Aut(L) denotes the group of automorphisms of L, and let C; = n(C).
Since 7 is continuous, C; is a compact subgroup of Aut(G ). Choose a maximal
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compact subgroup P of Aut(G() containing C;. Since G is semisimple, the iden-
tity component of Aut(Gg) is the adjoint group Int(Gg) of Gg, which is of finite in-
dex in Aut(Gy). By the well-known decomposition theorem (see [1, Theorem 3.1,

p. 180]), we have that Aut(Gg) = Int(Gy)-P. If M denotes the subgroup of G con-
sisting of elements X whose induced inner automorphisms p(x) (when restricted to
Gg) are in P, then we have that G = G- M.

Now consider the homomorphism p: M — P, It is easy to see that the kernel of
1t is discrete and that ,u(MO) = Pg. Thus Mg is a covering group of P,y. Since Pg
is a torus by Lemma 1, it follows that its covering group M is abelian. Note that
C leaves M invariant; hence C induces a connected group of automorphisms of the
discrete group M/M;. But Aut(M/M,) is totally disconnected, and thus, for each
p € C, we have that

p(m)m=! e My, forall me M.

Let A(m) = p(m)m~!, for m € M. Recalling that M is abelian and that C; is a
subgroup of the torus P, we see that C leaves M, pointwise fixed. It follows that

(m)) = p¥m)m™! (k=12 ).

The compactness of C implies that A(m) generates a cyclic group whose closure is
compact. However, G has no nontrivial compact subgroup by the assumption of our
lemma. Thus A(m) is trivial, and we see that C"leaves M pointwise fixed. There-
fore we have that G = G- F(C).

We are now ready to prove Theorem 1 by induction on the dimension of Gg. By
Lemma 2, we may assume that Gg is not semisimple. Let A be a closed, invariant
vector subgroup of G that is also invariant under C, and let C; be the compact,
connected group of automorphisms of G/A that is induced by C. Applying the in-
duction assumption on C;, we have that

G/A = (Gog/A)-F(C,).

Let H be the complete inverse image of F(C;) under the projection map G — G/A.
Then clearly G = Go-H. Since C; =1 on F(C,), it follows that p(h)h~! € A, for all
p € C and all h € H. Hence, for each h € H, we may define a mapping u;,: C — A
by 4n(p) =ph)h-1 (p € C). Then, for p; € C (i =1, 2), we have the equalities

(P p2) = proa()h™L = pr(pa(m))h™t = pi(unlp2)h™ = pu(e1) o1 (kn(p2)) -

Regarding the vector group A as a continuous C-module, we find that pn is a con-
tinuous 1-cocycle of C with values in A. Since the cohomology group HI(C, A) is
trivial by the compactness of C (see, for example, [2, Theorem 2.8, p. 18]), there
exists an element a € A such that py(p) = p(a)a~!, for all p € C. This readily im-
plies that a~!h € F(C). Thus h € A-F(C), and since h € H is arbitrary, H is con-
tained in A - F(C). It follows that G = Gg-H = Gg - F(C).
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2. SOME APPLICATIONS OF THEOREM 1

In order to present the announced result on the existence of fixed points, we
first prove the following lemma.

LEMMA 3. Let C be a compact group of automorphisms of a connected Lie
group H. Then there exists a maximal compact subgrvoup K of H that is invariant
under C.

Proof. Let L be the semidirect product of H and C with respect to the action
of C on H, and let M be a maximal compact subgroup of L that contains C. Since
M N H is an invariant subgroup of M, it is, in particular, invariant under C. Thus
it suffices to show that K =M N H is a maximal compact subgroup of H. Suppose
that K; is a maximal compact subgroup of H that contains K. By the well-known
conjugacy theorem of compact subgroups of L (see, for example, [1, Theorem 3.1,
p. 180]), there exists an element x € H such that xK;x~! ¢ M. Thus

K, x" ' CHNM = K,

and comparison of dimensions of K and K; gives the result that K = K;, which
proves the maximality of K in H.

THEOREM 2. Let G be a nonconnected Lie group such that Gy contains no
compact semisimple subgroup. Then every connected, compact group of automor-
phisms of G has a nontrivial fixed point,

Proof. By Lemma 3, C leaves a maximal compact subgroup of Gg invariant.
Since such a maximal compact subgroup is a torus by our assumption, the connected-
ness of C implies that C leaves every element of this torus fixed. Hence we may
assume that Gg contains no compact subgroups. Since G is not connected, F(C) is
not trivial by Theorem 1, and the assertion is established.

Using Theorem 2, we prove the following result.

PROPOSITION. Let G be a connected Lie group, and let N be an invariant
closed subgroup of G such that G/N is compact. If the centers of G and N meet
each other trivially, then the center of N is connected.

Proof. Let Z denote the center of N, and define A: G/N — Aut(Z) by
A(gN) (x) = gxg-! (gN € G/N and x € Z). Clearly, A(G/N) is a compact, connected
group of automorphisms of Z. Thus we see that if A(G/N) has no nontrivial fixed
points, then Z is connected (Theorem 2). However, the subgroup consisting of all
fixed points of AM(G/N) in Z is easily seen to coincide with the intersection of Z
with the center of G, which is assumed to be trivial. Hence Z is connected.

Example. Let H be some compact semisimple connected Lie group such that
Aut (H) is not connected (for example, SU(n) is such a group). Let G = Aut (H), and
consider the homomorphism ¥: H — Aut (G) defined by y(h)(8) =I-g-I;! (he H
and B € G), where I, is the inner automorphism of H induced by h. The compact,
connected group Y(H) of automorphisms of G has no nontrivial fixed point in the
nonconnected group G. In fact, if 8 is fixed under Y(H), then I, -8 -Igl = g, for all
h € H. Hence, for each x € H, we have the relation

Bx) = I,,-B-I;1(x) = hp(h)™ Bx)BM)n!,
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which implies that B(h)h~! is in the center Z of H. But Z is discrete and H is
connected. Hence the continuity of the map h — B(h)h-! from H into Z implies that
B(h) = h; hence B =1.

This example shows that the restriction imposed in the hypotheses of Theorems
1 and 2 is inevitable.
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