RATIONAL EXPRESSIONS OF CERTAIN
AUTOMORPHIC FORMS

George W. Bright

1. Let G denote the group of fractional linear transformations of the upper half-
plane H" = {x +iy| x,y€ R and y > 0}. For I' C G, let f(z) be a I'-automorphic
form of weight k, and let (T, k) denote the vector space of all such forms. By con-
sidering generators of G, R. A. Rankin [1] and H. L. Resnikoff [3] have defined dif-
ferential operators D™ (m is an integer exceeding 1) such that for all subgroups
I C G, the relation

(1) D™: (T, k) — (T, m(k +2))
i

holds. Set f;(z) = -dg—; f(z). It has been shown that if f € (I', h) and if
z

P e C[fr fl) st Y frn] n(F; k)7

then P is a quotient of some Q in C[f, sz, --- . D™f] and an appropriate power of
1(z).

We shall show that D% and D3 are sufficient for a rational representation, if
operator composition is admitted. Let “o» denote composition. If we define

2) D%t = (D3 0)T o (D% 0)°F,

where r and s are integers, then it will be enough to show that D™{ is a rational
function of {D®'Sf}, for all pairs (r, s) such that

(3) re {0,1}, se{0,1,2, -, [m/2]}, and 3r+2s<m.

Here, [x] denotes the greatest integer not exceeding x. The denominator of our ex-
pression will assume a convenient form.

2. Let £(z) € (T, k) (k > 0), and denote d™/dz™ by L™. It is known [3] that
(4) L™ (I1-m) - (I,1+m) (m>1).

An easy calculation shows that

plllet 1)m-1)/k g mp(l-m)/ky RI[f, f,, -, f

ol
That is, regardless of the branches chosen for fl{(kt1)m-1)/k apq f(l'm)/k, the final

result is uniquely determined. Moreover, the resulting expression is in
(T, m(k +2)). Now define
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(5)

We give explicit expressions for D2 1, D3 f, and D*f in Table L.
TABLE I

2 k+1,2 1
D°f = —k—f1 -Effz,
3, 4k+1)k+2).3 2(k+2) 2
D4f = 9(k+1)(2k;—3)(k+3)fz11 3(2k+3)(k+3) ff £y +3 3(1«:+3)f fz
k x> k2

pa3t3) 2y o 251,

The basic theorem and lemma used to prove our result follow.

LEMMA 1. Let f e (T, k) (k #0) and B € (T, h) N C[f, £, -, £ | Let a typi-
cal monomial term of B be of the form

el e

ct) () e ()

wheve ¢ € € and the e; (0 <i < m) are nonnegative integers. Then

(6) u= 2 e;
j=0

and

(7) ut = 27 jley)
j=0

are constant, for all monomial teyms of B.

For a proof, see Rankin [1, p. 104].

THEOREM 1. Let f, B, u, anq’} u be as in Lemma 1. Then B is a polynomial in
C[f, D2f, .--, D™f| divided by f* .

Proof. Resnikoff [3] adapted the proof of Rankin [1], [2]. Note that in the state-
ment of this theorem in [3], the power of f(z) is given as u - ut. The proof clearly
shows this to be a printing error. The correct power is ut - u, as we have given it.

Our basic result is the following.
THEOREM 2. Letf e (I, k) (k> 0). For all m > 1, we have that
Dmf = ,B 1 /ﬁ 2

where B; € R[tf, D™°%f] (1 =1, 2). The function D*'°f is given by (2) and {(r, s)}
by (3).
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Proof. Writing D™ f as a polynomial in f,, we find that

m-1

(8) D™t =

1-m
T m + E(m),
where E(m) € RI[f, f;, -+, fin-1]; hence D™ is linear with respect to fy,. There-

fore, D" oD™f is linear as a polynomial in fy;,, for all n> 1. To see this, note
that D"oD™f is linear in (D'f),. But by (8),

1-m
(D™M1), = o

-1
()7 fyen + F,

where F isin RI[f, f), =, fmen-1]. Repeated application of this result implies that
the function D¥'Sf is linear in f3,.,25 . Now, there exists a pair of integers (rg, so),

rQa,Ss
satisfying (3), such that m = 3ry +2sy. I we set =D ° °f, then 8 € (T, h) (h #0)

and 8 € R[f, f;, ***, f,,,]. By Theorem 1,
+
9748 € R[f, D*f, ---, D™1].

o
Since B is linear in f3r0+250 =f.,,it follows that f© "7 is linear in f,. This, to-
gether with equation (8), implies that f ““8 is linear in D™ f. That is,

u+—u

Mg =G D I+Gy,

where G| and G, are in R[f, D*f, ---, D™ 1], Therefore,

b

(9) D™f = F, /F,,
where

+ rn,S
F, = 8- Gy € R[f, D°f, -, D', D " f]

and Fz =G]_ .

To put this in the form required for the theorem, we shall use induction. For
m =2 and m = 3, the result is trivially true, since (ro , 8g) is just (0, 1) or (1, 0).
Assume the result holds for D'f (1<i< m) Then, by the induction hypothesis, we
can substitute into equation (9) for each Df (1 <i < m). An algebraic manipulation
reducing the resulting expression to a simple fraction completes the proof.

Remark. We have required that if D3 appears in some term, then it must appear
as the final operator to be applied. The method of proof used above could easily be
adapted for any other reordering of the operators. Indeed, any set S = {(a b)} such
that {3a + 2b| (a, b) € S} Z could be used to define the form B, since under these
conditions there exists a pair (ag, bg) such that m = 3ag + 2bg. Thus there is no
“canonical” way to express D™ f as a rational function of f, DZo and D3o, Instead,
there are many ways, and different expressions may be useful to determme d1fferent
properties of the functions D™{.

3. Before we state explicitly the rational expression, let us develop more
machinery.

LEMMA 2. If r € {0, 1}, s > 0, and 3r + 2s = m, then
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s-1

(10) D"%f = ¢[DO%¢]?*| II D%t [™"2Dp™f 4 E(r, s),
j=1

where ¢ € R and E(r, s) € R[f, £, =, £, ;]

Remark. For convenience, we set a product over the empty set equal to 1, and
we define DY-0f =,

Proof. For r = 0, we can construct a straightforward induction argument on s,
using the results found in Table I. For s =1, we find that ¢ =1 and E(0, 1) = 0.

For r =1, we can again employ induction on s. For s > 0, we note that
p'°f = D’ oD% ¢;

therefore, we can apply the results of the case where r = 0 along with the results
of Table I. This completes the proof.

The weight of D™ f is m(k + 2). Therefore, for m = 3r + 2s, the weight of
D"'®f is given by the expression

s+l
2(2(-+ (k+2) - +2)+2) = 2°k+ 2 2 (r=0),
j=2
W =
s+1
0 .
3(2 +weight of D ") = 3(2°k)+3 22 20 (r=1),
j=1

where f € (T, k). Equation (10) becomes

s-1

Dr,sf _ c[DO,sf]Zr H DO,s-jf f—nr1+2Drnf
j=1
(11)

_ Z) by fwl (DZ f)wz (Dm-l f)wm-l ,
we

where

Q= {(wl , ", Wn-1)| w; is a nonnegative integer (1 <i < m - 1) satisfying
m-1
the condition W = w; k + 20 wj(j(k + 2))} .
j=2

We shall denote the elements of 2 by w. Note that j(k +2) is the weight of D f.

Equation (11) can be rewritten as
s-1 m-1

(12) C[DO,stZr II DO,S-jf f--rn+2Dmf - D5Sf+ E bwfwl H (Djf)wj.
j=1 weN j=2
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If we consider W and 4(k + 2) = (weight of D% f) as polynomials in k, then the in-

equalities
m-1
> w: < constant term of W
i=4 J = constant term of 4(k + 2)
(13) s+1 s-2
<322 =322
j=1 j=-2

hold for all w € .

133

s-2
Define M(m) = (3 EJ-:O 23) + 3, where m = 3r + 2s, and where a sum over the

empty set is taken to be zero. It follows that
m-1

(14) A wj < M(m).

J:

4. Now we can define inductively the denominator of the rational expression we

seek. That is, we wish to express the operator D™ as a rational function of the

DTS, where the r, s are pairs of integers satisfying (3). Denote the denominator

by 6,,. Clearly, it suffices to begin with m = 4, since for m =2 and m = 3 the

results of Theorem 2 are trivial. We shall show that

(15) 6D f = poly (f, D™'°f) (4 <j<m),

where r, s satisfy (3). Note that we no longer require that 3r + 2s = m, as in Sec-

tion 3. If equation (15) holds, then, in particular, the relation
6,,D " f = poly (f, D""°f)
holds, so that

r,Ss
D™t = poly(f, D" £)/5,,.

This means that by our choice of 6,,, we shall have generated D™{ as a rational

function of D% and D3 by using operator composition.
Set 64 = D%f. By Lemma 2,

1
-4+2 .4

(16) D%2oD%t = ¢| II D%279t |t *"2p%* + K(0, 2),

j=1

where E(0, 2) € R[f, f,, f,, f3] and ¢ € R. Then

(17) D?oD?%f = ¢(D* 1) (£72) (D*) + E(0, 2).

An easy calculation shows that one term of D?2 oD%t is Ef2f2f4; hence by Lemma 1,

£2E(0, 2) is in R[f, D? £, D° f]. Therefore, equation (17) becomes

(18) (D% 1) (D* ) = £2[D?oD?%t] - £2E(0, 2).
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Hence 64D*f ¢ R[f, D*f, D’ f, D%%f]. Rt follows that 04 satisfies the requirements
of equation (15), since DZf —D%1f and D3f = DL.OF,
Assume we know that 6, (4 <@ <m - 1) satisfies (15). Set
sg-1
0,s¢q 2r( 0,sg-i M
(19) 6m = [D " °1] II © 70 |[(6m)™™,
i=1

where m = 3r; +2s,. We need to verify (15). For j <m, we have the equation
0,sqg .2T0 0,sg-1 M(m) - j
6,,Df = [D " °1] II © ) [(Om-1) H(6.m-1D1).

By the induction hypothesis, 6m_1 D) f = poly (f, D'’ f), and since 6, = poly (D°*f)
for all n > 4, we have that 6, D' f = poly (f, D**° f), where r, s are as in (3).

Equations (12) and (19) imply that

rn,S

(20)
m-1
+%—fm'2(6m_1)e 27 b, 1?0233 Il (6., DD |,
we j=4

m-1 .
where e = M(m) - 2J; j=4 wj. Equation (14) says that e is positive. By the induction

hypothesis again, we have that 6,,. 1DJf = poly (f, D*"°f) (4 <j <m - 1). Therefore,
equation (20) says that 6,,D™f = poly (f, D™*°f). Equivalently,

(21) D™f = poly(f, D"'°£)/6,,

The polynomial in (21) assumes a particularly convenient form. For notational
ease, let W(f) denote the weight of f, if f € (T, k). Then

S0
(22) 6,DVf = 2 chfhl II ®%if)2; I (plige! ,
AEA j=1 1<i<sg

3+2j<m

where

A= {()\1 , Am)l the nonnegative integers A; (1 <i < m) satisfy the
50

I,j
condition W(6,,D™f) = kxj + 27 25 W(D P+ D a1 WD Jf)} .
j=1 1<i<sy
3+2j§m

We shall denote the elements of A by A.

It only remains to find a method of determining the coefficients {cy} ep - To
develop such a procedure, we shall no longer restrict the domain of the differential
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operators D™ to I'-automorphic forms. This is permissible, because by equation
(5), for each fixed k and for each differentiable function £(z), the expression D™{ is
calculated through formal manipulation. That is, the proof that

D™f e RI[f, £f;, -, f]

requires no properties unique to I'—automorphic forms. The rules of differentiation
are sufficient, since for each fixed k, (5) is a formal identity, valid for every differ-
entiable function f(z).

To calculate {c)freA, we shall choose N (N = card(A)) functions, substitute
them into (22), and then apply Cramer’s rule to the resulting system. The only con-
dition we must satisfy is that the determinant of the coefficients for {cy }yep is
nonzero. For notational convenience, let

50
(23) ot = det| 1] II (0Oig)2i I (liphaitt ,
=1 1<i<so

3t+2j<m

where X ranges over A and f(z) belongs to the set of functions we shall determine.
The determinant & is a polynomial in these functions and their first m derivatives.
We shall denote both the determinant and the underlying matrix by /.

In order to show that .« is nonzero, we need the following facts.

Definition. A finite set of functions {gl , ***, 8ot is called P-product inde-
pendent over C if

{(gl)VI (gz)vz o (gn)vn}v=(vl,--- ,Vn)

is a linearly independent set for all choices of the v; (0 <v; < P).

Clearly, for m > 4, there exists P = P(m) > 0 such that P is an upper bound for
the largest exponent of f(z) or each of its derivatives in (22).

LEMMA 3. For m > 4, P(m) as above, and n > 0, there exists a differentiable,
complex-valuedfuncti%n F(z) such that {F, Fy, =+, F,} is P(m)-product inde-
d*F
dzd

Remark. This result is intuitively possible, since the condition that the product
set

pendent, where Fq1 =

{(F)"L(F )72 - (F )'nHL]}

be linearly dependent determines a subset of C[z] whose dimension is less than the
dimension of C[z]. Thus, a function yielding a linearly independent set surely
exists.

o0
Proof. Let F(z) = Etzo ot z' denote a formal power series on an open subset of

C. We shall determine the o; so that F(z) will be a polynomial. Each derivative of
F(z) is a formal power series over the same open subset of C. Let

v = {v, -, Vn+1)| OSViSP(m)}-



136 GEORGE W. BRIGHT

We shall denote the elements of V by v. Suppose there exist elements of IR, say
{7}, such that

(24) 2 oy @ LE)E e F) " =0,
veEV

This is a strictly finite sum, since card (V) < . The left-hand side of (24) is a
power series in z; hence the coefficient of each z' must be zero. Each choice of
the a¢ such that a¢ # 0 for all t imposes infinitely many linear conditions on the
7Yv . This is possible only if y, is zero for each v € V, since there exist only
finitely many v, . In fact for this same reason, there exists a choice of the at such
that ay = 0 for all t greater than some integer M and such that the conditions im-
posed on the vy, require that y, = 0 for all v € V. (Since the set of linear equations
satisfied by the 7, is homogeneous, we know that the trivial solution always exists.)
Such a choice of the a; with these two properties makes F(z) a polynomial. Hence,
F(z) converges in the entire finite complex plane. This completes the proof.

Let N = card(A), where A is as in equation (22). Then Lemma 3 says that for
each m > 4, there exists a complex polynomial F(z) such that {F, Fp, .-, Fn} is
P(m)-product independent, for n = N2 . This gives rise to the N functions we need
to evaluate (23). For 1 < j < N, set the Nth function equal to

(25) F(j-l)N(z)

((25) denotes the ((j - 1)N)th derivative of F(z)). We need to show that for these
choices, «# does not vanish.

LEMMA 4. Every square submatrix of -« has nonzevo determinant, as a poly-
nomial in the devivatives of F(z).

Proof. We shall use induction. The result is true for single entries of « since
for each j, each of the expressions F(;_ )y, Do’l(F(j_l)N), and D11 (F(j.1)n) is
nonzero.

Suppose the result holds for all p X p submatrices of #, where p < card(A).
Consider a (p + 1) X (p + 1) submatrix, and consider its determinant, evaluated by
expansion by minors along its first row. The first row is generated by F(jO'l N>

for some j,. Let g denote F(jo—l)N, and let u denote the order of the highest

derivative of g(z) appearing in any entry of this first row. We shall show that in the
determinant of the (p + 1) X (p + 1) minor, the coefficient of (g,)? is nonzero, where
Q is the largest exponent of g, appearing in the first row of the (p +1) X (p + 1)
minor.

Consider all entries of the first row that contain a factor (gu)Q. The coefficient
of (g,)% in each of these terms is a nonzero polynomial in g, g1, """, &,.1- More-
over, none of these polynomials is a constant multiple of any other polynomial. This
follows from the form of the general term in equation (23), since X changes for each
entry in every row of . By the induction hypothesis, the minor of each term con-
taining (gu)Q is a nonzero polynomial in the F(j_1)n, for some values of j different
from jg. Further, neither g(z) nor any of its first N - 1 derivatives appears in the
determinants of these minors, since by the definition of our set of N (N = card (A))
functions, we have that u < N. Therefore, the coefficient of (g,)® is of the form

(26) 27 d; Py,
i€l
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where card(I) <=, P, =poly(g, g1, ***, 8u-1), and none of the functions
g, 21, """, 8, appears in any d;. By the remarks following Lemma 3, the set
g, 81, "', 8ut is P(m)-product independent. Therefore, the sum in (26) cannot be
zero, because of the P(m)-independence and the form of the d;. Hence the
(p+1)X (p+1) submatrix has a nonzero determinant, and the proof is complete.

COROLLARY. If « is defined by (23) and the functions used to evaluate A are
defined by (25), then & # 0,

The corollary follows immediately, since the matrix .« is a square submatrix of
itself.

We have shown that there exists a set of polynomials that can be substituted into
(23) to yield a system from which the c¢) can be calculated by Cramer’s rule. There
is no guarantee that the set generated from the function F(z) of Lemma 3 is the
simplest. Any P(m)-product independent set will suffice to prove Lemma 4. The
pleasing feature of the computational method outlined here is its mechanical nature.
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