A COUNTEREXAMPLE TO A CONJECTURE IN
SECOND-ORDER LINEAR EQUATIONS

Herbert Arthur DeKleine

Consider the differential equation
(1) u"+alt)u =0,

where af(t) is a positive, nondecreasing, unbounded function in C'[T, «). It is well
known that the hypotheses on a(t) do not imply that every solution of (1) satisfies the
condition

(2) ut) - 0 ast — .

L. A. Gusarov [3] has shown that under the additional hypothesis that a'(t) is of
bounded variation on [T, «), the solutions of (1) satisfy condition (2). Under these
assumptions, a'(t) has a finite, nonnegative limit as t — «., A. Meir, D. Willett, and
J. S. W. Wong [4] have proved the following result. ~

THEOREM 1. If theve exists a positive function p(t) € C'[0, «) such that

dt L p'(t) .. ca'(t)plt)
5;) p(t) > B p(t)al/2 (t) =9, ond Y O B

then the solutions of (1) satisfy condition (2).

From this result it follows that if a'(t) is ultimately bounded and bounded away
from zero, then all solutions of (1) satisfy (2). The following question presents it-
self: does the condition that a'(t) = 0 as t — « (or that lim sup a'(t) < «) imply
that condition (2) holds for all solutions of (1)? Meir, Willett, and Wong [4] conjec-
tured that if in Theorem 1 the last condition is replaced by the condition

lim a'(t)p(t)/a(t) = 0,

t— o0

then the conclusion remains valid. If this conjecture were true, we could answer our
question in the affirmative (simply set p(t) =1). However, the following theorem
shows that the conjecture is false.

THEOREM 2. For each B > 0, there exists a positive function aft) € C°[0, =)
such that a(t) — «, a'(t) >0, a'(t) = o(log‘B t), and such that at least one solution
u(t) of (1) satisfies the condition lim sup, _, |u(t)| > 0.

Without loss of generality, we replace the condition a'(t) = o(log=B t) by
a'(t) = O(log~™ t), where m is an integer (m > 8). The proof is based on a method
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used by A. S. Galbraith, E. J. McShane, G. B. Parrish [2], and D. Willett [6]. The
following lemma, which was established by Willett [6], will be used in the proof of
Theorem 2.

LEMMA 1. Let u(t) be a solution of (1), and let | be a positive number such
that a(t) > u2 for all t € [0, ©). Then u'(t) has at least one zevo in each intevval of

length 2n/..
Proof of Theorem 2. Consider the functions y(t) and p(t) defined by

exp(1 - t'z) for t >0,
Ylt) =
0 for t <O,

p(t) = Y[l - ¥(1-1)].

Clearly, p(t) is a nondecreasing C*-function with values in [0, 1], and it satisfies
the conditions p(t) =0 (t <0) and pt)=1 (t>1).

Let t; =0, s, =1/2, ap = 167%, and @] = 1672 + 1. Define a(t) by the condi-
tion a;(t) = ag + (o] - ag)p(2t). Let u;(t) denote the unique solution of the initial-
value problem uj + aj(t)u; =0, u;(0) =1, and u}(0) = 0. By Lemma 1, there exists
a point t, (1/2 <t, < 1) such that u)(t,) = 0. The following construction is induc-
tive. We choose a sequence {ozn}, a sequence 0 =t; <s; <tz <sp <---, and a set
of functions u,(t) (n=1, 2, ---) such that

n

@, = a,_;+n-! = 1672+ 20 k!,
k=1

(2]
o]
1
-+
=
]

1/2 ifn=1,
min[1/2, n-llog™ n] if n>2,

n-3/2<t,<n-1,

t-tn
an(t) = 0nh_1 +(Oln - Oln_l)P(s 1 ) ’

n n
u; + an(t) u, = 0 ’ un(tn) = un-l(tn) ’ u;l(tn) = ull.’l-].(tn) =0.

Letting Xx[t,, tn+1) denote the characteristic function of the half-open interval,
we set

alt) = 2 an(t) X [tn; tn+1) and u(t) = El u,(t) x [tn; the1)-
n=1 n=

It is clear that a(t) is a positive, nondecreasing function belonging to C~ [0, «), and
that u(t) satisfies the differential equation (1). Since a,— © as n — «, it follows
that a(t) > © as t — «,

We now establish a bound on a'(t). Differentiating a(t), we obtain the equation
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t-t, 1
(an—an-l)p'(s —t)s — for ta <t<sp,
a'(t) = n n n n

0 for s, <t <tpsp.

Since p(t) is a C®-function having compact support, p'(t) is bounded by some posi-
tive number K. Hence, for t, <t <t,+; and n> 2,

(3) a'(t) < K(ap, - @p_1) (s, - ty)™! < 2Klog™ n.
For t, <t <t,;; and n > 5, it follows from the condition n - 3/2 <t, <n- 1 that
logn > logt,;; > logt > 1.
Combining this with (3), we obtain the estimate a'(t) = O(log™™ t).
To show that lim sup; _, o |u(t)| > 0, we choose numbers

tn = 271 (sy - tw)Palsy) (0> 2).

Since limy _, o £/ 210gk t = 0 for each positive integer k, there exists an integer N
such that

1672n-1/210g%2™ n <1 and 2n~1/210g2m+1 5 <1,
whenever n > N. Since each £, (n> N) satisfies the inequalities
n
€y =271 1672+ 2J k! {n-%10g®™n < 27! [n~3/2 4 (1 + log n)n"210g%™ n]
k=1

o0

we see that 2 n=1 Sn <.

We now show that
(4) lu(tn+1)| Z [1 - c,n] Iu(tn),
for each of the points t,,. By Taylor’s theorem,

u(s,) = ulty) + (s, - tn)zu“(c)/z tha<c<sy).

We note that |u"(c)| = a(c) |u(c)| and that a(c) < a(s,). It is well known [5, Part

2, p. 28] that the values |u(§i)| determined by the points &; (i=1, 2, --+) where

u'(¢;) = 0 form a decreasing sequence. Therefore, Iu(c)l < Iu(tn)[ . From these ob-
servations we obtain the relations
(5) lu(sp)| = |utty) + (s, - to)%ur(e)/2]
5
> [1-27Ys, - t)?als)] lulty)] = [1- ¢, ] utt,y)].

To estimate Iu(i:n+ 1)| , we integrate the expression u'u" + auu' = 0 by parts and ob-
tain the equation
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tn+1
alty, ) vty ) = ('(sy))? +als,)u?(s,) +S a'(t)ul(t)dt .

Sn
From this we deduce that

uz(tn+1) > a(Sn)a'l(tnﬂ)uz(Sn) = uz(sn)_
Combining (5) with this inequality, we obtain (4).

o]
Since En:l €, < =, there exists a positive integer N such that 0 <, <1 for
n > N. From inequality (4), we see that

[utt,)] > futty| I (1-¢).
k=N

[+ o]
Since the product Hk:N (1 - Ck) converges to some positive number, we deduce that
lim sup; _, lu(t)l > 0, and this completes the proof.
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