FUNCTIONS SATISFYING LIPSCHITZ CONDITIONS

James D. Stein, Jr.

In memory of Professor A. Robert Brodsky (1940-1968)

Let (X, d) be a metric space, and let @ > 0. A real-valued function f on X is
said to be of Lipschitz class a if

{ |£(x) - £(y)]
P d(x, y)&

x,yeX,x#y}

is finite. The purpose of this paper is to investigate metric spaces that support non-
constant functions of Lipschitz class «, with emphasis on the case o > 1. In addi-
tion to investigating the metric spaces themselves, we shall also investigate the
structure of various Banach algebras of functions satisfying Lipschitz conditions.

1. A PRELIMINARY PROPOSITION

Throughout the paper, we shall be concerned with real-valued functions on (X, d);
if f is of Lipschitz class a, we denote by ||f], the defining supremum. Let
Lipy (X, d) denote the set of all bounded functions on X of Lipschitz class «; if
f € Lipy (X, d), let ||l = supyxex [£(x)|. The following proposition is of 1nterest,
since the proof differs from the argument in [3].

PROPOSITION 1.1. For f € Lipy (X, d), let ||| = |[f]q + [£]e . With this
norm, Lipy (X, d) is a Banach algebra.

Proof. The verification that Lip, (X, d) is a normed algebra parallels the argu-
ment in [4]; it remains to show Lipy (X, d) is complete. Let
f, € Lipy (X, d) (n=1,2, --),

and suppose ||f, - f,] — 0; then |[f, - f,]|, — O, and therefore there exists a
function f € C(X) such that f, — f uniformly. Now

[£(x) - £(y)| < |fa(x) - £23)| + (£ - £) ®)] + | ¢ - £) (V)] ,

and hence, given € > 0 and x # y, we can choose N so that

"f - fN“oo < %d(X, y)%.

Then
[£(x) - £y)] < |inll o dx ¥ +edlx, Y = (Jinll o +€) A, ),
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and consequently |f|, < sup, ||fu]lq, < and f € Lip, (X, d). We now show that
|fn - £]] — O; it is clearly enough to show that if ||f, - f,.||o — 0 and £, — 0 uni-
formly, then |f,]|g — 0. Choose a subsequence {fnk}ff:l such that

I, -ty i lla < 27X . If we can show that || fny [l @ — 0, the proof will be complete,

because a Cauchy sequence with a convergent subsequence is convergent. Assume
there is an € > 0 such that [f, [|o >¢. For each x #y, the inequality

[y () ~ £, ) = iy O0) + £y, )] < 9k
d(x, y)*
implies that
| £y ) - £, )] gk ESRNCORE SURNC] o
d(x, y)¢ d(x, y)*
. . x)-f .
< 2—k+ +2—k-3+1 | nk+_](x) 1r1k+_](y)l
d(x, y)*
< gkl Ifnk+j(x) ) fnk+5(y)'
a(x, y)¢

for each j > 0. Choose xg, yo so that Ifnk(xo) - fnk(YO)l >ed(xp, yo)¥; then

e < lfnk(xo) - fnk(yo), < 2-k+l +
- d(xo, y0)% d(xg, v0)®*

(x9) - £, (v0)|

b

as j — oo, the last term goes to 0, since f,, — 0 uniformly. Therefore £ < g-ktl
for all k, a contradiction. Hence Lip, (X, d) is a Banach algebra. B

One might conceivably define Lip, (X, d) as
{f € Lip,y (X, d)] a > 0, sup, ”f”(JZ < o},

As in the previous proposition, this can be shown to give rise to a Banach algebra;
but the following is simpler. If x, y € X, define x ~ y if and only if there exist

Xy, v, X, € X suchthat x=x;, y=x,, and d(x;, x;4,;) <1 for i=1, ---, n- 1.

It is easily seen that ~ is an equivalence relation; call the equivalence classes
under ~ l-components. If f € Lipy (X, d) for all @ >0 and supy > ¢ ||f]] o is finite,
then f is constant on 1-components. If d(x, y) <1, then

[1(x) - £(y)] < (supgy o [[£] o) dlx, ¥)*

for all a > 0; as a — <, the right-hand side goes to zero.
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2. THE LIPSCHITZ INDEX OF (X, d)

Let 8> a > 0, and assume f € Lipg (X, d). Now

[1(x) - 1(y)] |1(x) - 1(y)]
It = maX<SUP {_W dx, y) < 1., sup W d(x, y) > 1
_{_max(sup{lfi}:)x—;)g)l- yp-e d(x, y) < } , 2 “f“oo)

< max(|tl g, 2 [1£])

therefore f € Lipy (X, d). This prompts the following definition.

DEFINITION 2.1. Let (X, d) be a metvic space, and let R denote the space of
real numbers. The Lipschitz index of (X, d) is L(X, d) = 1nf{a| Lipy (X, d) ER};
if Lipy (X, d) is never isomorphic to the reals, we say L(X, d) is infinite.

By [4, Proposition 1.4], it is clear that L(X, d) > 1 for each metric space (X, d).
We first show that there exist metric spaces with arbitrary Lipschitz indices. In the
following proposition, d® (0 < a@ < 1) denotes the metric d%(x, y) = d(x, y)% .

PROPOSITION 2.1. (a) If L(X,d)=B and 0 < a <1, then L(X, d%) = B/o (B is
finite).

(b) Let {(Xn, dn)} denote a sequence of metvic spaces such that

(o]
lim L(X_,d,) = and 2 diamX,< o,
n— oo n=1

(2]
and let X = H -1 X, and d((x,), (y) = En:l d(X,, ¥n). Thern L(X, d) is infinite.
Proof. (a) Let vy > B/a, and let

|£(x) - £(y)] K

. o
fe L1p.y(X, a“) > TR T

’

since ay > B, f is constant. If ay <, then there exists a nonconstant £ on X such
that

|#(x) - 1(y)] .
gy SE > ielin(X a%).

(b) The hypotheses imply that (X, d) is a metric space. Let @ > 1, and choose
N so that L(Xy;, dp) > @. Choose a nonconstant f € Lipy (Xyy, dy), and let 7 de-
note the projection of X onto Xp. Let g =10 7; then g is clearly nonconstant.
Also,

le((xy) - el )] = [fxp) - )] < [Ell o dnEns Y0 < 1]l g d(x0), T,
and therefore g € Lip, (X, d). ®

The simplest example of a metric space of infinite Lipschitz index is a two-point
space, but Proposition 2.1 (b) assures us of the existence of arcwise connected metric
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spaces of infinite Lipschitz index. It is also clear that if we can write X = A U B,
where d(A, B) > 0, then L(X, d) is infinite. (The class Lip, (X, d) contains char-
acteristic functions of A and B.) Pursuing this further, we define a relation =~
among subsets of a space X by the rule that A ~ B if and only if there exist subsets
Ay, -, A, of X suchthat A=A, B=A_, and d(A;, A;41)=0for 1 <i<n-1,
where d(C, D) is defined by the formula

d(C, D) = inf{d(x, y)| x € C, y € D}.

PROPOSITION 2.2. A =~ B is an equivalence velation. If X = Ua A, and
Aqg =~ Ag for each pair of indices o and B, and if L(Ag, d) < c for all a, then
L(X, d)<c.

Proof. I c is infinite, the conclusion is trivial. If f is of Lipschitz class y > ¢
on X, then £ | Ay is constant for each «. Given indices o and B, let C;, ---, C,
be subsets of X such that A =C;, Ag=Cy,, and d(C;, Ci41)=0 1 <i<n-1). I
f(C;) # £(Ci41), let M > 0, and choose x € C; and y € C;4) so that

< |£(C;) ~ #(C141)]

d(x, y)¥ A ;
then
[£(x) - (y)]
a, gy =

a contradiction. W

We now show that if X = A U B and d(A, B) = 0, then L(X, d) can be either the
minimum or the maximum of L(A, d) and L(B, d). First, let 0 <a <1, A=[0, 1],
B = (0, 1]; define

d(x, x') = lx— x'l (x, x' € A), d(y, y") = ly— y'la (y, y' € B),
d(x, y) = x+y% (x € A, y € B).

Let X = A U B. We note earlier that L(A, d) =1 and L(B, d) = 1/¢; we now show
that L(X, d) = 1/a. By Proposition 2.2, L(X, d) < 1/a. Define f(x) =0 for x € A
and f(y) =y for y € B, and let 8 € [1, 1/a). Clearly,

X, X'€ A= [f(x) - f(x')| < d(x, x')B ,
and
v,y €B > |y-y'| < |y-y'|% = aly, y)P.
Now let x € A, y € B; we show that y < (x + y®)P. For fixed y, let

g(x) = (x+y¥)P - y; then g(0) = y*F - y > 0 and dg/dx = (x + y*)B-1 > 0, and
therefore g(x) > 0. Hence f € Lipg (X, d) and L(X, d) = 1/c.

Now let A=(0, 1), B=10,1}, X=A U B with d(x, y) = |x - y|. Clearly,
L(A,d)=1, L(B, d) =, and L(X, d) =1.

We now examine mappings of metric spaces, and their effect on the Lipschitz

index. We note in advance that since (X, d) and (X, d®) are uniformly homeo-
morphic but have different Lipschitz indices, we shall require stronger conditions.
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PROPOSITION 2.3. Let (X, d), (Y, d4') be metric spaces, let ¢ map Y into X,
and let L(Y, d') < oo,

(a) Assume that, for every paiv X,y € X, theve exists a map Y: Y — X such that
x, v € YY) and d{y(s), ¥(t)) < Kd'(s, t) for all s,t € Y. Then L(X, d) < L(Y, d).

(b) If ¢ is one-to-one and onto, and theve exist M, K > 0 such that

M < d(‘g(,s(i : fgt)) <K forall s te¥,

then L(X, d) = L(Y, d').

Proof. (a) Let a > L(Y, d'), and assume f € Lipy (X, d). If ¥ maps Y into X
so that d(¥(s), ¥(t)) < Kd'(s, t) for all s, t € Y, then

[Eew)(s) - Eop)®)] < [t oatwls), we)* < [,k d'(s, ),

and this implies that f o ¢ is constant. Fix x¢ € X, and choose ¥y so that
Xg, X € Y, (Y); then, if xg = ¢(s) and x = Y,(t), we have the relations

f(xg) = £y (s)) = f(Yx(t)) = i(x),

and therefore f is constant. Hence L(X, d) < L(Y, d').

(b) Since d(¢(s), ¢(t)) < Kd'(s, t) and ¢ is onto, it follows from (a) that
L(X, d) < L(Y, d'). Since

d'(s, t) < 3= d(@(s), 9(t))

and ¢ is one-to-one, this becomes

a8~ 1(4(s)), 6 1(6(t)) < oz A(6(s), B(t)) ;

therefore L(Y, d) < L(X,d). =

If in the proposition above, L(Y, d') is infinite, then (a) is trivial, and (b) fol-
lows immediately from (a) and the observation that if L(X, d) is finite, then L(Y, d")
is also finite. The proposition gains interest if Y =[0, 1] and d' is the absolute-
value metric. In this instance, for x, y € X, we define x ~ y if there exists a
y: [0, 1] — X such that ¥(0) = x, y(1) =y, and

s, t € [0, 1] = d(p(s), () <K |s - t].
We show that this is an equivalence relation. Reflexivity and symmetry are trivial;
now let x ~ y, with a map y and a constant K|, and let y ~ z with a map ¢ and
constant K,. If 0<s<1/2, let Y(s)=9(2s), and if 1/2 <s <1, let
Y(s) = ¢(2s - 1). Let K=2max(K;, K;,). If s, t e [0, 1/2], then
d(W(s), ¥(t)) = d(x(2s), ¥(2t)) < 2K, |s - t],
and if s, t € (1/2, 1], then

d(y(s), Y(t) = d(¢(2s - 1), (2t - 1)) < 2K, [s - t].
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Finally, if s € [0, 1/2] and t € (1/2, 1], then
d(y(s), () < d(¥(s), y) +d(y, ¥(t)) = d(y(2s), ¥(1)) +d(4(1), ¢(2t - 1))
< K1 - 28) + K2t - 1) < max(K;, Kp)(1 - 2s +2t - 1)
=K(t-s)=K|s-t].

Call the equivalence classes under ~ L-components. Since every L-component has
Lipschitz index 1, one might ask whether every arcwise connected set with Lipschitz
index 1 is an L-component. This question appears to be fairly difficult.

3. EXTENSION THEOREMS

Suppose (X, d) is a metric space, and Y C X. Assume f € Lipy (Y, d); the ex-
tension problem is to discover whether there exists an F € Lipg (X, d) such that
F | Y =f. If a <1, the extension problem is totally solved by [4, Proposition 1.4],
which states that, for each Y c X and each f € Lipq (Y, d), there is an
F € Lipy (X, d) such that F|Y =f. If @ > 1, the problem is vastly more complex,
and three possibilities occur. There are cases where f cannot be extended at all,
cases where f can be extended but || F” o * ”f” a » and cases where f can be ex-
tended so that | F|la = ||£[ o ; this last situation is clearly the most desirable, and
by [4] it occurs whenever a < 1.

The simplest example of the first case is X = [0, 1], with the absolute-value
metric, and Y = {0, 1}. Let f(0) =0, £(1) =1; if @ > 1, we clearly cannot extend f.
This is a rather trivial example; much more indicative of the complexity of the situ-
ation is the following proposition.

PROPOSITION 3.1. Let X={1/n| n=1, 2, ---} U {0}, with the absolute-value
metvic. If @ > 1, then Lipy (X, d) is regular, and theve exist a Y C X and an
f € Lipy (Y, d) that cannot be extended to F € Lip, (X, d).

Proof. f a <1, then clearly Lipy (X, d) is regular, because the only closed
sets in X are finite sets and the union of {0} and sequences converging to 0. I
@ > 1, choose an integer N such that N®-1 > 2, For k=1, 2, ---, let x = N-k and
let Y={x|k=1,2, -}. Let £(x]) = 1, and define f on Y recursively by

f(Xk) - f(Xk-l) _ o-k

|Xk‘ Xk-lla

Then, if k > j,
f(x,) - £(x.) Ko f(x;) - £(x;_1) =
b A L < i 1;522‘n<1,
IXj - Xkl i=jt+l IXi - Xi—ll n=2

and therefore f € Lip, (Y, d).

To extend f, we must define it on all points between x, and x;,;, say

f(xgq 1) - £xy)
ntl :
Ei=1 |Yi - yi—lla

Ay =
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For 1 <j < n, define
J

fy;) = ) + A 27 |y; - v;4|*
i=1
We shall show that this choice of f(yj) minimizes
f(Yi) - f(Yi_l)
max >
1<i<n+l |yi - ¥i-1]
Clearly, for 1 <j<n,
#yy) - #y5.1) _ §
IYj - Yj-lla
and
n
H(Yne1) - £5y) = 1) - £x10) - A 27 |y; - 51|
i=1
n+l n

1]

i=1 i=1
Consequently, the definition of f(y,), ---, f(y,) minimizes

f(yi) - f(yi—l)
max 5
1<i<ntl |¥i- ¥i-1]

Now
R (o R "

| %31 = %o @ E:rll lyi - yio1]® ’

k

ka+1 - Xkla
E?;Lll lyi' Yi-lla

Let n = NX, m = NX¥*1_ Then our quotient is

(1__1_ “

and it remains to examine

n m N (m - n)% > (m - n)%
m-n-1 1 1 a - m-n-1 m& n% = m a

o

= (’rl) (m - n)@-! = (L)Q(Nk(N D) St (N- D77 —NBOZ—I N -1k

m N

Consequently,

AW -1 e (- )P (Na-l) ,

391

AkE lvi - vio € - AkE lyi- vio1]% = Ak |Vne1 - val % -
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by the choice of N, lim, _, ., A, is infinite, and therefore f cannot be extended to
Lipy (X, d). =

It is clearly hopeless to seek an extension theorem for Lip, (X, d), if this alge-
bra is not regular; for let F be closed, x ¢ F; then, letting f(x) =1 and f(F) = 0, we
see that f € Lipy (F U {x}, d). Even when we can extend functions, we may not be
able to preserve the norm. Let X = {0, 1/2, 1}, let £(0) = 0, £(1) = 1; then
[£ll, = 1. If £(1/2) = x, then to preserve the norm in Lip, (X, d) we must have
|x| <1/4 and |1 - x| < 1/4, which is clearly impossible.

The following proposition shows that we need concern ourselves only with the
extension of functions defined on closed sets.

PROPOSITION 3.2. Let Y be dense in X, and let € Lipy (Y, d). Then there
exists F e Lipy (X, d) such that F|Y =1, |F|q = ”f”a-

Proof. Since f is uniformly continuous on Y, there exists a continuous extension
Fof ftoX. Let X,y € X, and let ¢ > 0. Choose 6 > 0 so that

d(x, z) < 6 = |F(x) - F(z)| <e/3, d(y, w) <6 => |F(y) - Fw)| <e/3.

Choose x5, Yo € Y so that d(x, xq) < 8, d(y, yq) < 6, and

d(xg, o < dlx, y)% + = .
0270 3],

Then
|F(x) - F(y)| < |F(x) - Flxo)| + |F(xo) - Fyp)| + |F(yp) - F(y)|
< e/3+ ||f] dlxg, YO% +8/3 < & + ||£]] , dlx, Y)Y,
and consequently |F(x) - F(y)| < ||f]| o d(x, )¢ = [|[Fllo=lfla- =

The next proposition relates the extension of a function in X to the extension of a
function in X X X ~ A, where A is the diagonal in X X X.

PROPOSITION 3.3. Let f € Lip,y (Y, d), and define g on Y XY ~ A by
(x) - £(y)
d(x, y)¢

Then f admits an extension to X if and only if g admits a bounded extension G on
X X X ~ A satisfying, for any X, y, z € X, the equation

glx, y) =

G(x, z)d(x, z)* = G(x, y)d(x, y)* + G(y, z)d(y, z)* .
The extension ¥ of t is norm-presevving if and only if
sup { |e(x, Y)ll (x,y) e YXY ~ A} = sup{|Glx, y)|| (x,y) €e XXX~ A} .
Proof. If f has an extension F € Lip, (X, d), let

y = E&) - Fy)

for (x,y) e XXX ~A.
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Clearly, G is an extension of g, and it is bounded. Since
F(x) - F(y) = G(x, y)d(x, y)* and F(y) - F(z) = G(y, z)d(y, z)%,
we see (by adding these equations) that
F(x) - F(z) = G(x, z)d(x, 2)* = G(x, y)d(x, y)* + G(y, z)d(y, 2)% .

If g admits such a bounded extension G, fix yg € Y, for x # yo define
F(x) = f(yg) + G(%, yo)d(x, yo)%, and let F(yg) = f(yp). Now, if x € Y, x #yq, then

F(x) = f(yq) + g(x, yo)d(x, yo)¥ = f(yg) + £(x) - £(yq) = f(x) .
If (x,y) e XXX~ A, then
F(x) - F(y) = G(x, yo)d(x, y0)* - G(y, yo)d(y, yo)¥ = Glx, y)d(x, )¢,
and since G is bounded, F € Lipy (X, d). Since
17l &

I£]

the theorem is proved. ®m

sup { | G(x, y)]l (x,y) e XXX~ A},

sup { |g(x, y)ll (x,y) e YXY ~ A} .

We note in passing that we have been concerned only with extending a function so
that the extension has a finite @-norm; we can maintain the bound on the function by
truncating the extended function at the original bound, by [4, Proposition 1.3]. This
will not increase the a-norm of the extended function.

As we have seen, we may not be able to obtain an extension theorem, even if
Lip,, (X, d) is regular. The standard proof of Tietze’s extension theorem from
Urysohn’s lemma [2, p. 61] requires the existence of a uniformly norm-bounded
family of functions f K, sz such that, for each pair of disjoint closed sets K; and
K5, le’KZ(Ki) =i-1 (i=1,2). Clearly, however, in Lipy (X, d) such a family of

functions cannot be uniformly bounded, because
1

f > —,
” K]_,Kz”a = d(Kl, Kz)a

Under certain circumstances, we can extend a function by making it constant on

certain sets. The next proposition concerns these trivial extensions for a > 1.

PROPOSITION 3.4. (a) Let A and B be subsets of X such that d(A, B) = 6 > 0,
and let £ € Lipg (A, d). Then theve exist F € Lipy (AU B, d) such that F| A =1,

and if ||f]lo < 6% [£] o, then [Flla = [f]q-

(b) Suppose A is a subset of X,and BC X ~ A. Let f € Lipy (A, d), and assume
there exists x € A such that d(z, y) > d(y, x) for all y € A and z € B. Then there
exists F ¢ Lipy (A U B, d) such that F|A=f£, |F|o = |f]la-

Proof. (a) Define F(B)=c. If x € A and y € B, then
|F(x) - Fiy)|  [i(x) - c] . Il + |e]
dix, y)* — 8@ = 8% '
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1f 6% |f]q > [, choose |c| < 6% [[f]q - [£]lw-
(b) Define F(B) = f(x); then, for z € B and y € A, we have the inequalities

| F(z) - F(y)| < |F(z) - 1x)] + |£x) - £()] < [£]l,dx )% < |l 4y, 2)° .

Therefore |Fllgy = ||f]lq. ™

4, BANACH ALGEBRA STRUCTURE OF Lipg (X, d)

The purpose of this section is to extend some of the results of [4] concerning the
structure of Lipy (X, d) as a Banach algebra. Since some of the proofs are quite
similar to those given in [4], we shall omit them and cite instead the appropriate
passages in [4].

DEFINITION 4.1.

f(x) -
lip,, (X, d) = {f € Lip, (X, d)l lim l—(—)——gﬂ = 0}.
X—Yy d(X, Y)
PROPOSITION 4.1. (a) lipy (X, d) is a closed subalgebra of Lip, (X, d).
(c) Lipy (X, d) and lip, (X, d) arve inverse-closed.

Proof. (a) The usual techniques show that lip,, (X, d) is a subalgebra. Suppose
{t,| n=1,2, ..} clipy (X, d) and f, —» f. Let € >0, y € X, and choose N and 6

so that ||f - fy]lg <e/2 and

I fN(X) - fN(Y) l

A e

ax, y) < 6 >

Then

|£(x) - £(y)] < |fn(x) - (V)| . | (£ - 1) (%) - (F - ) ()]
dix, y)* — d(x, y)¢ d(x, y)*

d(x, y) < 6 =>

<e/2+|[f-inlla <€

(b) f e Lipg (X, d) implies that

1) - 1) |) - 1) B-a .
dix, y)¢  d(x, y)B abx, v

therefore
If(x) - f(Y)I B-a
lim —— f 1i d =0
2 e < ot o P =,
and [ty < max([|f]lg, 2]f]lw)-
(c) See [4, Proposition 1.7]. =
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If Lipg(X, d) is regular and B8 > «, then Lipg (X, d) C lipy (X, d), and therefore
lipy (X, d) is regular.

PROPOSITION 4.2. Lef B> a, and assume Lipg (X, d) is regular. If 1 is a
closed ideal of lip, (X, d) with hull K C X, then 1 consists of all functions in
lipy (X, @) that vanish on K. If (X, d) is compact, every closed ideal is of this
form.

Proof. See [4, Theorem 4.2 and Corollary 4.3]. =

Sherbert notes that for 0 < ¢ <1 it is much more difficult to obtain the ideal
structure of Lip; (X, d) than of lip, (X, d); it is even more difficult to obtain the
ideal structure of Lip, (X, d) for a > 1, because the lack of extension theorems is a
definite handicap. As in [4], M(K) is the set of functions vanishing on K, and J(K) is
the closure in Lipy (X, d) of all functions that vanish in a neighborhood of K.

PROPOSITION 4.3. If K is a compact subset of X, then J(K) = M(K)2 in
Lip, (X, d).

Proof. See [4, Theorem 5.2]. =

PROPOSITION 4.4. Let K be a compact subset of X, and assume we can extend
Sfunctions in Lipgy (Y, d) (Y C X) in a norm-preserving fashion, Then f € Lip, (X, d)
belongs to J(K) if and only if £(x) =0 for all x € K and

|£(x) - £(y)] _

a a 0 as (x, y)— KXK.
X, ¥

Proof. See [4, Theorem 5.1]. ®

For algebras such as we described in the previous proposition, it is still true, if
(X, d) is compact, that J(K) is the intersection of the primary components contain-
ing it. If a > 1, however, it is an open question whether every closed ideal is the
intersection of every primary component containing it. Waelbroeck’s proof in [5] is
not extendable to this case.

The ideal structure of arbitrary lipy (X, d) or Lipy (X, d) is quite a difficult
problem. By factoring out the common zero-set, if necessary, we can assume that
these algebras are point-separating; but regularity is another matter. Similarly,
the lack of extension theorems for Lip, (X, d) constitutes a major block to the
discovery of its ideal structure.
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