ON ADDITIVE FUNCTIONS
C. Ryavec

Intvoduction. A number-theoretic function f is said to be additive if
f(mn) = f(m) + f(n) whenever (m, n) = 1; we denote the class of such functions by .
Because of the special nature of the subclass & of functions of the form
f(n) = ¢ log n, it is of interest to find conditions on functions f in . under which £
is also in %.

The first investigation in this direction was made by P. Erdds [1], who proved
that if f € & and f(n+ 1) - f(n) > 0 for each natural number n, then f € #. Erdos
conjectured that the same conclusion holds if the monotonicity condition is relaxed
to the requirement that f(n + 1) - f(n) > 0 for almost all n, and this conjecture was
subsequently proved by I. Kitai [2]. ErdSs also proved that if f € . and
limy, e Lf(n + 1) - f(n)] = 0, then f € &, and he conjectured that the condition on
f(n + 1) - f(n) can be replaced by the condition

lim }—1{ 27 |t +1) - fm)] = 0.

X —0C néx

The last conjecture was recently established by Kdtai (proof to appear). E. Wirsing
subsequently found an elegant proof of this result, and since the proof of Theorem 1
is based on some of the ideas in his proof, we shall give an outline of his method, at
the end of Lemma 3.

Finally, we mention a long-standing conjecture of Erdds, recently proved by
Wirsing [3]:

THEOREM (Wirsing). Suppose that f € A and that the set of diffevences
f(n + 1) - f(n) is bounded. Then f(n) = c log n + g(n), where g is a bounded, additive
Sunction.

Some time ago, I conjectured that the following is true:
CONJECTURE. If f € A and

(1) limint> 2 i+ 1) - f@)] = 0,

X— n<x

then f € &,

The conjecture is still open; but in this paper I prove the following weaker ver-
sion of it.

THEOREM 1. Let f € «, and let { satisfy condition (1) and
(2) f(n) = O(log n).

Then f € &RB.

I shall also prove the following result.
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THEOREM 2. Let f € A, and let £ satisfy the conditions

fn +1) ) f(n) _

(3) li{rii::f log x n< x n+1 n 0
and

(4) f(n) >0;

then f € &B.

In the course of the proof of Theorem 1, it will emerge (see Lemma 3) that if f
is additive and satisfies (1), then f is completely additive, that is, f(mn) = f(m) + f(n)
for all natural numbers m and n.

Notation. The symbols k, 1, m, n, nj, np will always denote natural numbers,
and p and q will denote prime numbers. The symbols € and x will denote a small,
positive number and a positive parameter that tends to +«~. The statement
f(n) = O(log n) will mean that lf(n)] < B log n for all natural numbers n, where B
is a nonnegative constant. For a positive function g(x), the expression f(x) = w(g(x))
will mean that there is an infinite set of values of x that tend to +e« and that the
ratio f/g tends to zero on this set.

LEMMA 1. Let f satisfy condition (1). Then, for each ¢ (0 <& < 1), there
exist infinitely many numbers x; = x;(€) (xi41 > 1+ x;) such that, for each i, there
are more than (1 - g)x; integers n < x; for which If(n +1) - f(n)| <.

Proof. Let f satisfy condition (1). Then, for each ¢ (0 < & < 1), there exist
infinitely many positive numbers x; = x;(€) with x;;; > 1 + x; such that

(5) L2 lta+1)-fw)] < €2,

X
'n<xj

For each such x;, if there were at least ¢x; integers n < x; for which

|f(n +1) - f(n)| > g, then the expression in (5) would be at least €2, a contradiction.
Thus, there are more than (1 - £)x; integers n < x; for which |f(n+1) - £(n)| <&,
and this proves the lemma.

LEMMA 2. Let £ satisfy condition (1), and let p™ denote a prime powevr. Then
for each ¢ for which

(6) g(m+1)pmtl < 1,

there exist natuval numbevs ig, Ay, **, Ay, Such that

(7) (Ao, pP) = 1,

(8) Aj=prjoap+l (1<) <m),
(9) [ty - fpr5-1)| <& (1<j<m),
(10) [f( ) - 2™ 20)| < €.

Proof. Let p™ be a prime power, and let ¢ satisfy condition (6). For x > p™,
define the sets S = S, (g, x) (0 <k < m) by
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{n<xp™™: (n, p) =1, |fnp™ +p™-L + .- +p+1) - fnp™)| <e},

wn
(=)
1

n
—
I

= {n <xp ™ |f(np + 1) - f(np)l <&},
Sk = {n_<_xp‘m: If(npk+pk‘l+---+p+1) - f(npk+pk'l+---+p)| <e}
(2 <k <m).

The idea of the proof is to show that we can choose x so that some natural number n
lies in the intersection of the Sy (0 <k < m). Then, if we put A¢ =n and define a
sequence {)\}rln of natural numbers inductively by (8), it is clear from the definition
of the sets Sy that the A; satisfy conditions (7) to (10). Therefore, the proof will be

m
complete if we can show that, for a suitable x, there is an n in nk:() Si -
From Lemma 1, we easily deduce that there are infinitely many numbers
x; > p™ (x4,1 > 1+ xy) for which
(11) IS, ] > p™x;-ex; (1<k<m),
(12) [Sgl > 1 -p)p™x; - £x5.

Using a simple counting argument, we obtain from (11) and (12) for each such x; the
inequality
m

> pT™Mx; - mex; - ™ +e)x; = Bx;,

Sy
k=0

where B > 0 by the choice of € in (5). This proves the lemma.
LEMMA 3. Let f € A and let t'satisfy (1). Then f is completely additive.

Proof. To show that f is completely additive, it is sufficient to prove that
(13) f(p™) = mi(p)

for each prime power p™, Let ¢ satisfy (6). By Lemma 2, there exist natural
numbers Ag, Ay, '+, A, Satisfying (7) to (10). Therefore, f(x() can be expressed
as follows:

t(rg) = f(pry) - £(p)

f(Ay) - £(p) +&; (Isll <g)

f(p)\ 1) - 2f(p) + €1

I

f(r5) - 2f(p) + €2 (|ez] < 2¢)

f(PAp-1) - mE(P) +€m-1  (|€Em-1] <(m - 1))

1

f(x,,) - mi(p) +€,, (Iaml < me)

f(p™Ay) - mi(p) + e, (Jer| <(m+1)),
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and since € can be chosen arbitrarily small, (13) holds. This proves the lemma.

Now suppose that f € & and that lim,_, En <x If(n +1) - f(n)] = 0. Then, by
Lemma 3, f is completely additive, and we can show (following Wirsing) that

f(n) = ¢ log n. To do this, let S(x) = En <x f(n). For each natural number m,
S(x) = xf(m) + mS(x/m) + o(x)

(the proof of the last equation is almost identical to the proof of (22)). Iterating the
above expression K = [log x/log m] times, we obtain the estimates

S(x)

]

xf(m) + mS(x/m) + o(x)

2xf(m) + m? S(x/m?) + o(2x)

Kxf(m) + m® S(x/m¥) + o(Kx)

11

(f(m)/log m)x log x + o(x log x),
and it follows that

f(m)/log m = lim S(x)/x log x = constant.

X —» 00

Now, if instead of lim__,, 27 .. |f(n+1) - f(n)| = 0, we assume condition (1),
then it is clear that the above procedure is too weak to show that f(n) = ¢ log n, be-
cause the iteration procedure is no longer valid. We can overcome this difficulty,
however, if we also assume that condition (2) holds.

Proof of Theorem 1. Let f € &, and let f satisfy (1) and (2). Then f is com-
pletely additive, by Lemma 3. The proof consists in showing that for natural num-
bers n; and n,, we can make |f(n;) - f(nz)l arbitrarily small by choosing the ratio
n,/n; sufficiently close to 1; or, equivalently, by choosing log n, - log n; suffi-
ciently close to 0. The result will follow from a theorem of Erdds (which says that
if f € & and f(n+ 1) - f(n) — 0, then f € &), or directly, as follows:

Let p be a prime for which f(p) # 0 (if there is no such prime, Theorem 1 is
true automatically), and let q be any other prime. Now suppose it can be shown that
there exists a constant C such that if { is a small, positive number, then

(14) Jat(p) - bf(q)| < CC |log |
whenever the natural numbers a and b satisfy the condition
(15) ]alogp—blogql < €.

It follows from (14) and (15) that

’f_(g_) _logq ql

a logq|  |fa) a| _ Ctllog ] g
f(p) ~ Tog p l I bl< *

b logp f(p) b £(p) b log p’

and since ¢ can be taken arbitrarily small, we obtain the relation
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f(q)

= constant
log q

for all primes q. The proof of Theorem 1 will be complete, then, if it is shown that
(14) is true whenever (15) holds. (Note that the left-hand side of (15) can be made
arbitrarily small, by Dirichlet’s theorem on the approximation of real numbers).
This will be deduced from (23), with the assumption that |f(n)| < B log n for all
natural numbers n, where B is a nonnegative constant. For x> 1, we define

(16) S(x) = 2 f(n),

ngx
and we choose two natural numbers nj; and n, such that

where ¢ is a small, positive number. For n; (i =1, 2), we have the equation

nj
S(x) = 24 2 f(n)
k=1 n<x
nZk (mod ni)
(18) n;-1
= 2 f(n) + 27 { 22 f(n) - 22 f(n) }
n<x k=1 n<x n<x
n=nj (mod ny) n=k (mod nj) n=nj (mod njy)

= [x/n;]n; f(n;) + n; S(x/n;) + E(x, n;),

where
ni—l
E(x, n;) = { 27 f(n) - 23 f(n)}
k=1 nSx n_<_x
n=k (mod n;) n=n; (mod nj)
nj-1 ¢ nj-1
DR ( > tw- 2 f)
k=1 j=k n<x n<x
n =j (mod nj) n=j+1 (mod nj)
nj-1¢ nj-1
=23 2 ( 22 (fn) - fa+ 1)+ 27 f(n))
k=1 j=k n<x-1 x-1<n<x
n=j (mod nj) n=j (mod ny)
Therefore

|E(x, ni)l < n;L( 22 |f(n+1) - f(n)| + [f([x])]),

nSx—l
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and since f(1) = 0, this does not exceed

2n:

1

27 |t +1) - f(n)] .

n~<_x-1

Given € > 0, choose x = x(¢, nj, ny) so that

(19) -}1; 2 |t +1) - f(n)] < &/4n; n,
nSX

and

(20) |n; f(n;)| <ex/2  (i=1,2).

With this choice of x, we have the inequality

(21) |E(x, n;)| < ex/2,

and from (18) and (21) we deduce that

(22) S(x) = xf(n;) +n;S(x/n;) +w(x) (=1, 2).

Subtracting equation (22) with i = 2 from equation (22) with i = 1, we obtain the
relation

(23) nj S(x/n) - nz8(x/nz) = x(f(nz) - f(n1)) + w(x).

Since f is completely additive, we can write (for y > 0)

Sy) = 2 fn)= 2 2 f(p°) = 2 i(p°) 2 1
n<y n<y p®n pe <y n<y
(24) pefn

27 ef(p) {[y/p®] - [y/pe*i]} = 22 to)[y/p°],

pe<y p°<y

where the sums are taken over prime powers p®. By virtue of (24), we can rewrite
the left member of (23) in the form

]

2> £(p) {n;[x/p°n,] - np[x/pn;]}

X
Pe<w;

n; S(x/nl? - n, 8(x/n,)

23 #(p) {n; [x/pn;] - np[x/pn,]} + O(VXlog> x)

T(x, ny, ny) + w(x);

here we have used, at the penultimate step, the facts that the number of prime
powers p® <x (e >2) is O(vVx log x), that f(p) = O(log x), and that
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|n, [y/n;] - n,[y/n,l| < max(n;, n,) = n, = O(log x).

We now obtain an upper bound for the sum T(x, n;, ny). First, we divide the
sum into two parts:

T(x, nj, np) = 2+ 2 = T(x, ny, np) + Ty(x, n;, ny),
& B X
P>h, n, ~P=nm)

where ¢ is defined in (17). For T;, we have the estimate

(25) T, <n,B 2 logp <2BEx
p<CX
-1

n

for all sufficiently large x. We now estimate T, . For each prime p

(§x/n; < p < x/n;), we distinguish two cases depending on whether there is an
integer between x/pn, and x/pn;. If there is no such integer for the prime p, then,
by (17),

|n; [x/pn;] - ny [x/pn]| = (n; - ny)[x/pn;] < ny¢x/pn; = $x/p,

and therefore the contribution of these primes to the sum T, does not exceed

(26) Btx L 1—°Ig)—p < 2Bxt |log €],

{x X
n <Py

for all sufficiently large x. We now count the number N = N(x, £, n;) of primes p
(¢x/n; < p < x/n;) for which there is an integer j between x/pny and x/pn;. Let
the integer j satisfy the condition

27) x/pnp < j < x/pn,

in which case we have the relations

(28) x/jn, < p < x/jn;.

Thus the number of primes p that satisfy (27) for a particular integer j is equal to
(29) 7(x/jny) - 7(x/inz).

Moreover, from the range of summation for p it is clear that 1 <j < ¢-1. Conse-
quently, from (28) and (29) we obtain the inequality

N < 27 0 {m(x/jny) - 7(x/inx)} .
1<5<E

Having chosen n; and n,, choose x so that, in addition to (19) and (20), it also
satisfies the condition

(30) log™! (x/in,) < 2 log~! x.



328 C. RYAVEC

Then, by the prime number theorem, N does not exceed the quantity

’

8 1
tixé’ > 1. xﬁllogﬁl
np ogx1<j<§-1] ny log x

so that the contribution of these primes to the sum T, does not exceed the quantity

8x¢ |log ¢ |

n, Tog x (B log x) - max(|n; [x/pn;] - n, [x/pny]|) < 8BxC |log ] .

(31)

From (25), (26), and (31) we see that
T < Cx¢ |log ¢|

when x is chosen sufficiently large; here C is a constant independent of x, €, {, n;,
and n, . Therefore, taking absolute values in (23), we obtain the estimate

(32) X If(nz) - f(nl)I < C¢ ]1og §| X+ w(x),

provided x is sufficiently large and satisfies the conditions (19), (20), and (30). It is
then clear from (32) with n, = g and n; = p? that (14) must be true whenever (15)
holds, for some constant C. This proves Theorem 1.

Proof of Theorem 2. From condition (3) we can deduce that f is completely ad-
ditive, by a sequence of lemmas similar to Lemmas 1, 2, and 3. The proofs of these
lemmas will not be given; we simply quote the following result.

LEMMA 4. Let f € A, and let { satisfy (3). Thenf is completely additive.
Now for x > 1, define

Ux) = 2o —f-(iﬁ
n_<_x

Choose any two natural numbers n; and n; . By an argument similar to the one used
to deduce equation (23), we can show that

(33) U(x) = f(n;)log x + U(x/n;) + w(log x) i=1,2),
provided x is chosen large compared with n; and ny and x is a number for which

1 > fn+1) f@)
logxn<X n-+1

<e

and
|£(n;)log n;| < € log x.
Subtracting equation (33) with i = 2 from equation (33) with i = 1, we find that
(34) (f(n;) - £(np))log x = U(x/ny) - U(x/n;) + w(log x) .
Since f(n) > 0 by condition (4), we see from (34) that f(n;) - f(np) is nonnegative if
and only if U(x/ny) - U(x/n;) is nonnegative, which is true if and only if n; - n; is

nonnegative. Thus, f is a nondecreasing, additive function, and so f(n) = ¢ log n, by
a result of ErdSs [1]. This proves Theorem 2.



ON ADDITIVE FUNCTIONS 329

It is clear from the proof of Theorem 2 that the same result will hold if condition
(4) is replaced by the condition f(n) < 0. In fact, the result holds if we assume either
(i) f(n) > -K log n, or (ii) f(n) < K log n, where K is a constant. This can be de-
duced immediately from the fact that if f(n) satisfies the hypotheses of Theorem 2,
then the same is true of the additive functions f(n) + K log n.
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