SMOOTH HOMOTOPY LENS SPACES

Peter Orlik

To R. L. Wilder, with warm appreciation
1. INTRODUCTION

In the following, all manifolds are assumed to be smooth (unless it is otherwise
stated) and all actions are differentiable. We are interested in free actions of finite
cyclic groups on homotopy spheres.

The existence of free involutions on homotopy spheres has been studied in some
detail. In particular, F. Hirzebruch [2] and Orlik and C. P. Rourke [8] proved that
every element of the group 64%t3(a7) (k > 1) of homotopy spheres that bound 7-
manifolds admits free involutions. It follows from a result of E. Brieskorn [1] that
the same is true of the (possibly) nontrivial element of 6#4kt1(37). Since
62k (97) = 0, we again have a free Z,-action.

If m > 2, then clearly only odd-dimensional spheres can admit free Z,,-actions.
In Section 2, we define free actions of Z,, and fixed-point-free actions of U(1) on
Brieskorn spheres. We use these in Section 3 to prove that for each prime p, every
element of 62kt1(gx) (k > 1) admits a free action of Zp. This contrasts with the
fact that not every element of 62ktl(37) admits a free circle action.

In Section 4 we compare our actions with those obtained by J. Milnor [4], by D.
Montgomery and C. T. Yang [5], and by C. N. Lee [3], and we show that some are
definitely distinct from those previously known. In Section 5, we describe the
Brieskorn spheres as branched finite cyclic coverings of the standard sphere,
branched along a Brieskorn variety of codimension 2. This is used in Section 6 to |
determine the homotopy types of the orbit spaces of the Z,,-actions of Section 2. In
Section 7 we determine their stable tangent bundle and characteristic classes, and
in Section 8 we consider some normal bundles. In the 3-dimensional analogue we ob-
tain free actions on homology spheres. A complete classification of the arising
homology lens spaces is given in Section 9.

I am indebted to F. Hirzebruch for pointing out Lemma 2 and showing how it com-
pletes the argument of Theorem 1, to F. Raymond for helpful suggestions, and to R.
Lee for stimulating conversations.

2. ACTIONS ON BRIESKORN SPHERES

Recall the variety

= {,. 1 .20 an _
Vi) = {z:ze €™ 2z °+ - 4+2 " = 0}

considered by E. Brieskorn [1]. Here a = {ag, **, an} is a set of integers (a;> 2
for each j). V(a) has an isolated singularity at the origin. Its intersection with the
unit sphere in €ntl
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>

n
a a
K(a) = 3 z: z € €L z00+----!-zn"1 =0, 27 27 =1
i=0

is a smooth (2n - 1)-manifold. Following [1], we let G, = G(a, ***, a,) denote the
graph with n+1 vertices with weights ay, -*-, a,,. Two vertices in G, with
weights a; and a; are connected if the greatest common divisor (a;, aj) is greater
than 1.

THEOREM [1]. For n> 2, K(a) is a homotopy sphere if and only if one of the
following conditions is satisfied:

(i) G, has at least two isolated vertices,

(ii) G, has one isolated vertex, and at least one of its components consists of an
odd number of vertices, each with even weight, and with (a;, aj) =2 for i #j.

For n = 2, the condition (i) is necessary and sufficient in order that K(a) be an
integral homology sphere.

Whenever we wish to emphasize that K(a) is a homotopy sphere (n > 2) or
homology sphere (n =2), we shall write >(a).

Let a = {ag, -*-, a,} be a set of positive integers such that K(a) is a homotopy
sphere. (This assumption is not necessary for defining the action below, but here we
are interested only in the case where K(a) is a sphere.)

Let m be a positive integer, relatively prime to each aj. Define q;j>1 (mod m)
by the equation

qjaj =1 (mod m) (] =0, .-, n).
Define an action of Z, on €™ by

d9 q
Ol(Zo, Y Zn) = (C! Zg, ***, & nzn)’

where ¢ is a primitive mth root of unity considered as the preferred generator of
Zm. Clearly, S2n+l V(a) and Z(a) are invariant under this action, which fixes the
origin and is free otherwise. Let

- 2n-1
sz'rll-l 1(3'0’ Ty an) =2 " (a'O’ ) a'n)/zm

be the orbit space of the action. Note that Qrzrrl"l(a) is a submanifold (of codimen-

sion 2) of the lens space err?H(aO , ***, a,), the latter being the orbit space of the
above action on S22l For notation, see Milnor [4].

The order of the aj is immaterial; hence, if (ag, **+, an) is a permutation of
(ag, -+, ap), then Q(ap, **, ay) is diffeomorphic to Qm(aog, -+, an).

An alternative approach is to let ¢ denote the least common multiple of
{ ag, °°°, an} and to define the integers c;j by the equations

ajcj=c¢  (j=0, -, n).

We can then define an action of U(1) on €1 by letting each g € U(1) act according
to the formula

[
g(Zo, Tt Zn) = (g OZO, Ty gcnzn)-
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This action also leaves S%™1 V(a), and Z(a) invariant. Its only fixed point is the
origin; but it has orbits with nontrivial stability groups.

Now, if m is relatively prime to the integers ag, -*-, a,,, then we can let B
equal a primitive mth root of unity and define an action of Z,, C U(1) by

o €n
B(ZO} Tty Zn) = (B ZO’ ."; B Zn)-
Clearly,
cj = cqj (modm) (j=0, -, n);

thus the only difference between the actions of @ and B is the choice of preferred
generator. If we choose S so that B° = @, then the actions are clearly the same.

3. FREE Z,-ACTIONS ON 6°"~1(37)

Recall that 6%%*1(37) is a subgroup of Z,, while, except for a possible factor 2,
the order of 94k-1(37) equals

4
22k-2(92k-1 _ 4).pymerator (—EE) s

where By is the kth Bernoulli number. The order of 64k‘1(817) is never divisible
by 3 (see [2]).

THEOREM 1. Every odd-dimensional homotopy spherve = (n > 2) that
bounds a parallelizable manifold admits a free Zp-action for each prime p.

LEMMA 1. If m is velatively prime to the ovder of 627-1 , then there is a free
Z m-action on each element of §™-1

2n-1

The lemma is essentially due to Lee [3]. To prove it, let S22-1 pe the standard
sphere with a standard linear free Z,-action T. For any homotopy sphere z2n-1
let [Z] denote the element it represents in 622-1. The universal cover of
(s2n-1 /1) # 2n-1 represents m[=]. Since m is relatively prime to the order of
02n-1 " every element is obtained this way.

By Brieskorn [1], the (possibly) nontrivial element of 84ktl(37) is diffeomorphic
to

E4k+1(2, ==+, 2,3).
The involution

T(Zo, o0, Zowy1) = (2, ***, -2, Zok+1)

is free on Z. Since the order of 04k*1(37) is at most 2, the theorem is established
in this dimension.

Now let us turn to the (4k - 1)-spheres. Let E‘fk'l denote the Milnor sphere,
that is, let Z7%~! bound a 7-manifold with index 8.

LEMMA 2. Ir %! € 9%%-1Go1) and [Z] = j[2;], then

pHel = el - 2, 3,65 - 1)

and
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k-l o gak-lig ... 2 3 6j+1).

The lemma follows from direct computations according to [1, Section 7).

In order to complete the proof of the theorem, note that for (4k - 1)-spheres and
p = 2, the theorem was established in [2] and [8]. For p = 3, Lemma 1 is applicable.
If p+#2, 3, then p is prime either to 6j - 1 or to 6j + 1, and we can use the con-
struction of Section 2.

COROLLARY 1. Every odd-dimensional homotopy sphere yén-1 (n> 2) that
bounds a parvallelizable manifold admits a free 7 r-actz’on, for each odd prime p

eps L P
and each positive integer r.

Furthermore, if there exists an orthogonal representation
h: Zp — Ofn)
such that the induced homomorphism
h,: Wh(z_) — R"
*° P

is nontrivial, then every odd-dimensional homotopy spheve that bounds a parallel-
izable manifold admits infinitely many distinct free Zp-actions (see Milnor [4]).

It was pointed out by C. N. Lee [3] that Lemma 1 can be used to obtain free Z -
actions on homotopy spheres that do not bound parallelizable manifolds.

Examples. Since 09 has order 8, there is a free Z,),-action for each k > 1,
on every element of 7. The same is true for 617, since it is a group of order 16.

For 615 = Z, +7Zg)28, every 15-sphere admits a free action of Z, for all odd
primes p. Also, by an example of Bredon, at least half of the spheres not in bP 16
admit free involutions.

Montgomery and Yang [5] have shown that there are elements of 67 = 6 "(9x) that
admit no free circle actions. Thus our theorem yields the following result.

COROLLARY 2. A manifold may admit free actions of finite groups of arbi-
travily high ovder withoul admitting a free action by a compact connected Lie group.

Note that we get free Z,,-actions for many integers m that are not powers of
primes. A more detailed study of the different possible Brieskorn varieties dif-
feomorphic to the same sphere in the spirit of Lemma 2 may suffice to prove the
following conjecture.

Conjecture. Every odd-dimensional homotopy sphere Z22-! (n > 2) that
bounds a parallelizable manifold admits a free Z,,-action for each integer m > 2.

4. COMPARISON WITH KNOWN FREE Z,-ACTIONS

Some of the Zp-actions constructed above are new. Recall that the definition of
a lens space is that of the quotient of S20t! py a standard orthogonal Zp-action.
Milnor [4] proved that if two lens spaces are h-cobordant, then they are s-
cobordant. He used this to obtain new free Zpy-actions as follows. Let M be a
manifold that is h-cobordant to a lens space in such a way that the Reidemeister
torsion of the h-cobordism is nonzero (in particular, this is possible for every
prime p greater than 3). Then the universal cover of M is S2ntl and the action
of Zp is not equivalent to a standard action.



SMOOTH HOMOTOPY LENS SPACES 249
Of course, all our Z,-actions on =%°t1 2 §28*! are differentiably distinct from
the examples of Milnor. Even if we consider all translates of the Milnor actions in
the sense of Lemma 1, we can choose a prime p that divides the order of 94k-1(37),
and our Z-actions on Tfk-1, - 24 i1 are not of this type.

In dimension 7, Montgomery and Yang [5] obtamed free Z.,-actions different from
the Milnor examples by considering the restrictions of a free Sl-action on =7 # 87.
If we let p =7 and apply Lemma 1 to the standard actions, to the Milnor examples,
and to the Montgomery-Yang examples, we see that they give no Z7-action on Z;
and 25 , for example. Thus some of our actions are still different.

In fact, it is easy to see that the orbit spaces of these examples are not even PL
h- cobordant to a Milnor homotopy lens space. Indeed, suppose Q' is the orbit space
of one of the above actions, and there is a PL h- cobord1sm W with a Milnor ho-
motopy lens space M7 . Let 7 be the torsion of this h-cobordism. Construct W', a
smooth h-cobordism

from M to M' with torsion -7. Then W U W' is a trivial PL h-cobordism between
the smooth manifolds Q and M'. Note that M' is again a Milnor homotopy lens
space. Hence M' is a different smoothing of Q, and in dimension 7 this means that
Q~ M'#Z for some T € 67 = 67(dxn). This leads to the contradiction that the ac-
tion is a “translate” of a Milnor example.

5. BRANCHED CYCLIC COVERINGS
The foilowing construction may be of some interest on its own right. Let

2n-1 %0 *n ;
K" Ya) = < (2g, 2y, ©*» 2,01 g + -tz =0, 27 z.%

Define a map

&- KZn—l(a) - SZn-l
b <I>( ) ( .. ) h I ] d — (1 _ 2)-1/2
y ZO s s po Zl 5 po ZZ s , po Z where ZO r an po I .

Clearly, ® is an ag-fold branched cyclic covering of S¢n-1_. The branching occurs
along the Brieskorn variety

K2 Ya)n {zy,=0} = K** (@, -, a,).
Of course, K21-1(a) is similarly the a;-fold branched covering over S27-1,
branched along K@) n {z;=0}.

As an example, we may obtain the 11- d1mens1onal Milnor sphere
11(2 2,2, 2,2, 3,5) as a 5-fold cyclic cover of S!! branched along the 9-
d1mens1ona1 Kervau'e sphere 29(2 2,2, 2,2, 3).
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Note that this is a straightforward generalization of the 3-dimensional case; for

example, the well-known Poincaré space Z3(2, 3, 5) is a cyclic 5-fold covering of
S3, pranched along the torus knot Z1(2, 3).

6. HOMOTOPY TYPE OF Q2"-l(3)

We can define an action of U(1) (not necessarily effective) on C® by

Cc Cc

1
g(zl, %y Zn) = (g zls T, g nzn)a

where the c; are defined as in Section 2. With respect to this action, & is equivari-
ant.

Similarly, if we define an action of Z,, on C" by

a(zy, =, 2,) = (@ "z, =, a "z)),

then & commutes with the action.

Now suppose K(a) is a homotopy sphere, and n > 2. Then we have the commuta-
tive diagram

Zn l(a) S
7] \Lw B
zn la) —2> L2n 1(9-1: e, a)

where deg ¢ =deg & =a.
Following P. Olum [6], we define a map

- SZn--I R S2n-1

by ¥(z;) =z; (j =2, -**, n), and if zl=r1e19 , we let

\Il(r1)=r1, \P(91)=q091.

Here ¥ covers a map of lens spaces

g2n-1 ¥ g2n-l
‘] |» ,
Zn-l( ) Yy 1,20- 1( e a)
a;, ", 2, > L, (@ga;,a;, """,a,

and deg Y =deg ¥ =(qg.
Thus the composition h=y o ¢

2n-1 2n-1
h: Qn;l (aO, aj, "**, a ) - L - (aoal, az, °°°, an)
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is a map of degree agqg =1 (mod m). Using a theorem of Olum [6], we now obtain
the following result.

THEOREM 2. Lef n > 2.
(i) There exists a homotopy equivalence

- 2n-1
Q2 ag, -, ay) — LI by, =, by)

preserving ovientation and preferred generator if and only if
ag ' ay = by --- b, (mod m).
(ii) There exists a homotopy equivalence
QIZT‘?—I(ab, cee ar'l) — Qfx?_l(ao: e an)

preserving orientation and preferred genevator if and only if

)

ag - a, =ag- - a, (mod m).

(iii) There exists a homotopy equivalence
Qrzrrll—l(a'()’ e an) - err?_l(bl’ e bn)
if and only if for some integer k with (k, m) =1,
ag-ca, =tk by = by.

(iv) There exists a homotopy equivalence

2n-1 2n-1
Qnrll (a('), Tty 3-1"1) - Qn? (aOa ) a'n)

if and only if for some integer k with (k, m) =1,

!
ao . an

]

n
ik a.o e a.n.

7. THE STABLE TANGENT BUNDLE

The imbedding =27-1(a) c ¢2t! = R20*2 jg5 equivariant with respect to the action
of Z,, (with generator a) defined in Section 2. The representation

:Z, — O(2n+2)
is the sum of the representations
¢(a;): Zm — SO(2),
cos y sin y
() = ’

-sin y cos ¥

where y = 2mq j /m, and where the q; are relatively prime to m.
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The action of Z,, on R272 jg precisely the action defined by

£(ap) @D @ ¢ay) -

This action defines a principal Z,_,-bundle £ with total space E £= »2n-1(3) and
orbit space Bg = Q2% 1(a).
Let f: Q — B(Z,,) classify £. We denote by &; the 2-plane bundle over Q asso-

ciated with the representation {(q;), that is, the pullback of the universal 2-plane
bundle by the composite Aj 0 f,

Q = Bz, 3 B(5O0()),

where 1; is induced by ¢(q;).

The normal bundle of Z%"-1(3) in R22+2 jg trivial, since »2n-1(3) is already in
R2n+1 and its normal 2-plane bundle there is clearly trivial. Moreover, the bundle
has an equivariant cross-section.

Denote by 7(M) the tangent bundle of M, and by 6™ the trivial n-plane bundle.
The following proposition now follows from a theorem of R. H. Szczarba [10].

THEOREM 3. 7(Q%*" 1)@ 03 = (0@, @ @D¢&,.

The preferred generator @ of H,(Q; Z) = Z,, determines a preferred generator
v for the dual group H2(Q; Z), and if u is its reduction (mod 2), we obtain the fol-
lowing total Pontrjagin and Stiefel- Whitney classes.

THEOREM 4.
p@22-1) = II (1 +4qfv?),
j=0
w(QZ 1) = II (1+q5u) (mod 2).
j=0

8. SOME NORMAL BUNDLES
Recall that we have the codimension-2 imbedding
. - 2n+1l
i Qf:ll 1(::10, eyay) & Ln:Jr (ag, "5 ay).

We claim that if 5 is the normal 2-plane bundle of this imbedding, then 7 is trivial.

Indeed, by [10],
L@ el =t , @@ D E;

hence

Q@63 =*7(L)D 6l = 1(Q@Dn DL,

and therefore 7 is stably trivial and hence trivial.

Note also that this implies that if v, is the stable normal bundle of M, then
<k
V=L vy,
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This relation never holds for an imbedded lens space of codimension 2,

2
L n-1 CL2n+1

m m

There is another natural imbedding of codimension 2,

Zn 1 2nt1
(aO’ "t an) C Qm (aO’ ", An, an+1):

for any integer a,;; that is relatively prime to m and for which a = {ao , an+1}
again sat1sf1es the Brleskorn condltlons These conditions are satisfied, for example,
in the case Qm - (2 ,2,3)C Qm '1(2 , 2, 3, 5). The normal bundle of this im-
bedding has Euler class (f1rst Chern class) equal to qp+1, where On+13n+] = 1

(mod m).

Thus the branched coverings constructed in Section 5 give rise to a commutative
diagram

%2nt1 2n+l

2n+1 cee
errll (a-(), s Ap s a'n+l) (a‘la *tt, Ap, a‘n+1)
TiQ TiL s
7
2n-1 n-1 2 1
Q2 ag, v, ay) ——> L (ag, v, ay)

where iy, is the natural imbedding.

Remavk. It would be interesting to know whether a homotopy equivalence
h: Q%2 !(a) — L22"!
may be chosen so that h is a langential equivalence. Of course, even this would not

suffice to determine the normal invariants of er{l‘l(a).

Added in proof. QE(Z, 2, 2, 3, 13) is not tangentially equivalent to any lens space.

9. THE 3-DIMENSIONAL HOMOLOGY LENS SPACES
For n = 2, the Brieskorn variety

2
a a a
3 _ .20 1 2 _
Ka,, a,,a,) = {(z,,2,,2,):2, +2z; +2, =0, ? Z: Z

is a closed 3-manifold, which according to Section 2 admits an effective circle ac-
tion. In [7], the actions of SO(2) = U(1) on 3-manifolds are classified equivariantly
and topologically. The question of fitting an arbitrary K3(a) into this classification
will be treated in a subsequent paper. Since in the present case K3(a) is a homology
sphere (Poincaré space), this is not difficult.

According to Brieskorn, K3(a) is a homology sphere =3(a) if and only if
ag, aj, a, are relatively prime. Thus the U(1)-action on Z3(a) is

_ a) a—z ag az ag a.l
g(ZO,Zlazz)" (g 20, 8 2,8 ZZ)-

This action is fixed-point free. Since the homology sphere 23(3.) is orientable, the
U(1)-action has no orbits reversing the local orientation, and the orbit space is
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orientable. By [7], it is a weighted 2-manifold. A simple homology argument shows
that it must be a weighted 2-sphere.

There are 3-orbits with finite stability groups. For z; = 0, the torus knot
Kl(ai+ 1> 3312) has stability group Z, (i =0, 1, 2) (mod 3). Thus our 3-manifold is
1

described equivariantly (see [7]) as
23(3.0, a'l ’ 3'2) = {b; (0’ 0) 0, 0); (aO, B())y (a-]_ ’ B]_)’ (a-Z; BZ)} .

The integers b, 8y, B, B2 (0 <B; <a;, (a;, B;) =1, i=0, 1, 2) describe the circle
action in the neighborhoods of a principal orbit and of the three nonprincipal orbits.
In our case, they may be determined from purely algebraic facts. The order of
H,(Z(a); Z) equals

P = |ba0a1a2+aoa162+a031a2+60a1a2| R

and since »3(a) is a homology sphere, p = +1. It turns out that there are exactly
two sets of solutions, corresponding to the two orientations of Z3(a). Moreover,
b=-1or b=-2,and if {-2, By, B, B2} is one solution, then the other is

{-1, (ag - Bo), (a1 - By), (az - B2)}.

It can be shown that the usual orientation inherited from €3 yields b = -2, but
we shall be satisfied with a classification up to orientation.

The Poincaré spaces in question were first treated by Seifert [9], who also de-
termined the orbit space of a free Z,-action (Z, € U(1)) on Z3(a).

Specifically, let m be relatively prime to ag, a;, ap . The orbit space of the
free Z,,-action generated by B in Section 2 is
Q2 (a) = {mbj; (o, 0, 0, 0), (ag, mBy), (a1, mBy), (az, mB)} .
In order to normalize this description (see [9], [7]), let
mB; =r;a; +6; (0<%;<a;, i=0,1, 2),
andlet d=mb+ry+r; +r,. Then
Qa(ag, a1, 32) = {d; (0, 0, 0, 0), (a0, 8o), (a1, 6D, (a2, 52)} .

We apply [9, Satz 12] and [7, Theorem 4] to obtain the following result.

THEOREM 5. Let Q =Q3 (ag, a1, 2,) and Q' = Q2.(a), a}, ay) be homology
lens spaces as above. Then the following statements ave equivalent:

(i) Q and Q' are equivariantly diffeomorphic.
(ii) Q and Q' are diffeomorphic.
(iii) Q and Q' are homeomovrphic.
(iv) {a}, a}, ab} is a permutation of {ag, a1, az} .
By [7], we may add the following assertions.

3 1) The induced U(1)-action on Q?n(a) is the only circle action admitted by
Q. ().
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2) Q3.(2, 3, 5), the orbit space of a free Z,,-action on the well-known Poincaré
space =3(2, 3, 5), is the only one of our homology lens spaces with finite fundamental
group. Its universal cover is s3.

3) All other Q;’n(a) are K(7, 1)’s with infinite fundamental group.
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