POWER SERIES WITH MULTIPLY MONOTONIC COEFFICIENTS

M. S. Robertson

Let

$$s_{n}^{(k)}(z) = {n+k \choose k} + {n+k-1 \choose k} z + {n+k-2 \choose k} z^{2} + \dots + z^{n}$$

$$(k = 1, 2, \dots; n = 0, 1, 2, \dots).$$

The polynomials $s_n^{(k)}(z)$ are connected with the Cesaro sums of the geometric series, and

$$s_n^{(k+1)}(z) = s_0^{(k)}(z) + s_1^{(k)}(z) + \cdots + s_n^{(k)}(z)$$
.

E. Egerváry [1] showed that $s_n^{(k)}(z)$ is univalent in $|z| \le 1$ for n > 0 and k = 1, 2, and 3, and that $s_n^{(1)}(z)$ maps |z| < 1 onto a domain whose closure is starlike with respect to the boundary point $s_n^{(1)}(1)$. However, $s_n^{(2)}(z)$ is starlike with respect to the interior point $s_n^{(2)}(0)$ for $|z| \le 1$, and $s_n^{(3)}(z)$ maps the unit disk onto a convex domain. It follows that the functions $s_n^{(k)}(z)$ are close-to-convex in |z| < 1 for k = 1, 2, 3 and n > 0. This implies the existence of regular and univalent functions $\phi_n^{(k)}(z)$ that map the unit disk onto convex domains and for which

$$\Re\left\{rac{\left[\mathbf{s}_{\mathrm{n}}^{(\mathrm{k})}(\mathbf{z})
ight]^{\prime}}{\left[\phi_{\mathrm{n}}^{(\mathrm{k})}(\mathbf{z})
ight]^{\prime}}
ight\}\geq0\quad\left(\left|\,\mathbf{z}\,
ight|<1
ight).$$

The question arises whether, for some values k, there exists a $\phi^{(k)}(z)$ that is independent of n.

For k = 1, $\phi_n^{(k)}(z)$ cannot be independent of n. This follows from an observation of G. Szegö [9], who constructed a function of the form

$$f(z) = p s_m^{(1)}(z) + q s_n^{(1)}(z),$$

where p and q are positive constants and m and n are integers, and where p, q, m, n are carefully chosen so that f'(z) vanishes at an interior point of the unit disk, with the consequence that f(z) is not univalent for |z| < 1. On the other hand, if $\phi_n^{(1)}(z) = \phi^{(1)}(z)$ were independent of n, it would follow from the equation

$$\Re\left\{\frac{f'(z)}{[\phi^{(1)}(z)]'}\right\} = p \Re\left\{\frac{[s_{m}^{(1)}(z)]'}{[\phi^{(1)}(z)]'}\right\} + q \Re\left\{\frac{[s_{n}^{(1)}(z)]'}{[\phi^{(1)}(z)]'}\right\} \geq 0$$

that f(z) is univalent for |z| < 1, and we would be faced with a contradiction. We conclude that $\phi_n^{(1)}(z)$ cannot be independent of n.

Received August 2, 1968.

The author acknowledges support from the National Science Foundation (Contract NSF-GP-7439).

Nevertheless, we shall show that in the case k=2, $\phi_n^{(k)}(z)$ can be chosen independent of n. In fact, we may take $\phi_n^{(2)}(z)=\log 1/(1-z)$ (n = 1, 2, \cdots).

This basic result allows us to sharpen the theorem due to G. Szegö [9], which in turn is an extension of a theorem of L. Fejér [2], [3], for sequences $\{a_n\}$ that are monotonic of order 4.

THEOREM (Szegö). Let the sequence $\{a_n\}$ be monotonic of order 3. Then the power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is regular for |z| < 1, and if it is not a constant function, it is univalent for |z| < 1.

Here a sequence $\{a_n\}$ is called *monotonic of order* μ if all the differences

$$\Delta^{(\nu)}a_n = a_n - \begin{pmatrix} \nu \\ 1 \end{pmatrix} a_{n+1} + \begin{pmatrix} \nu \\ 2 \end{pmatrix} a_{n+2} - \cdots + (-1)^{\nu} \begin{pmatrix} \nu \\ \nu \end{pmatrix} a_{n+\nu}$$

are nonnegative for $\nu = 0, 1, 2, \dots, \mu$ and $n = 0, 1, 2, \dots$

Our main results are contained in the following two theorems.

THEOREM 1. Let.

$$s_n^{(2)}(z) = {n+2 \choose 2} + {n+1 \choose 2} z + {n \choose 2} z^2 + \cdots + z^n.$$

Then $s_n^{(2)}(z)$ is univalent and close-to-convex in |z|<1 relative to the convex function $\log 1/(1-z)$, and

$$\Re\left[(1-z)\frac{\mathrm{d}}{\mathrm{d}z}\,\mathrm{s}_{\mathrm{n}}^{(2)}\!(z)\right] \geq 0 \qquad (|z|\leq 1).$$

THEOREM 2. Let the sequence $\{a_n\}$ be monotonic of order 3, and let $a = \lim_{n \to \infty} a_n$. Then either the function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is regular, univalent, and close-to-convex for |z| < 1, relative to the convex function $\log 1/(1-z)$, and

$$\Re[(1-z)f'(z)] > a/2 \quad (|z| < 1),$$

or else f(z) is a constant.

The example f(z) = a/(1 - z) (a > 0) shows that the inequality in Theorem 2 is sharp.

Proof of Theorem 1. We obtain successively the equations

$$\begin{split} w(z) &= s_n^{(2)}(z) = \frac{1}{2} \left[(n+2)(n+1) + (n+1)nz + n(n-1)z^2 + \dots + 2z^n \right], \\ w(z) &- \frac{(n+2)(n+1)}{2} = \frac{n(n+1)z - 2n(n+2)z^2 + (n+1)(n+2)z^3 - 2z^{n+3}}{2(1-z)^3}, \\ (1-z)w'(z) &= \frac{1}{2} \left[(n+1)n + n(n-3)z + (n-1)(n-6)z^2 + \dots - 2nz^n \right] \\ &= \frac{n(n+1) - (2n^2 + 6n)z + (n^2 + 5n + 6)z^2 - (2n+6)z^{n+2} + 2nz^{n+3}}{2(1-z)^3}, \end{split}$$

$$z w'(z^2) = \frac{n(n+1)z - (2n^2 + 6n)z^3 + (n^2 + 5n + 6)z^5 - (2n+6)z^{2n+5} + 2nz^{2n+7}}{2(1-z^2)^4}.$$

Let $z = e^{i\phi}$. Then

$$z\,w'(z^2)\,=\,\frac{n(n+1)z^{-3}\,-\,(2n^2+6n)z^{-1}\,+\,(n^2+5n+6)z\,-\,(2n+6)z^{2n+1}\,+\,2nz^{2n+3}}{32\,\sin^4\phi}\;,$$

and therefore

$$\begin{split} \Re\left[(1-z^2) w'(z^2) \right] &= 2 \sin \phi \, \Im\left[z \, w'(z^2) \right] \\ &= \frac{1}{16 \, \sin^3 \phi} \, \Im\left[n(n+1) z^{-3} - (2n^2+6n) z^{-1} + (n^2+5n+6) z - (2n+6) z^{2n+1} + 2n z^{2n+3} \right] \\ &= \frac{1}{16 \, \sin^3 \phi} \left[-n(n+1) \sin 3\phi + (2n^2+6n) \sin \phi + (n^2+5n+6) \sin \phi \right. \\ &\qquad \qquad \left. - (2n+6) \sin (2n+1) \phi + 2n \sin (2n+3) \phi \right] \\ &= \frac{1}{8 \, \sin^2 \phi} \left[4n + 3 + (2n^2+2n) \sin^2 \phi - (n+3) \frac{\sin (2n+1) \phi}{\sin \phi} + \frac{n \, \sin (2n+3) \phi}{\sin \phi} \right]. \end{split}$$

Thus $\Re \left[(1-z)w'(z) \right] \ge 0$ for $|z| \le 1$ if and only if $h(\phi) \ge 0$ for all ϕ , where $h(\phi)$ is defined by the equation

$$h(\phi) = 4n + 3 + (2n^2 + 2n)\sin^2\phi - (n+3)\frac{\sin(2n+1)\phi}{\sin\phi} + \frac{n\sin(2n+3)\phi}{\sin\phi}.$$

In proving that $h(\phi) \ge 0$ for all ϕ , we can restrict ϕ to the interval $[0, \pi/2]$, since $h(\phi)$ and $h(\phi - \pi/2)$ are even functions.

We show first that $h(\phi) \ge 0$ for all $0 \le \phi \le \pi/(2n - 1)$. Since

$$z w'(z^2) = \frac{1}{2} [(n+1)nz + 2n(n-1)z^3 + 3(n-1)(n-2)z^5 + \cdots + n \cdot 2 \cdot 1 \cdot z^{2n-1}],$$

we have for $z = e^{i\phi}$ the relations

$$\Re\left[(1-z^2)\mathrm{w}'(z^2)\right]=2\,\sin\,\phi\,\Im\left[z\,\mathrm{w}'(z^2)\right]$$

=
$$\sin \phi \Im [(n+1)nz + 2n(n-1)z^3 + 3(n-1)(n-2)z^5 + \dots + 2nz^{2n-1}]$$

$$= \sin \phi \left[(n+1)n \sin \phi + 2n(n-1)\sin 3\phi + 3(n-1)(n-2)\sin 5\phi + \cdots + 2n\sin (2n-1)\phi \right].$$

In the interval $[0, \pi/(2n-1)]$, each term in the last expression is nonnegative. Hence $h(\phi) \ge 0$ for $0 \le \phi \le \pi/(2n-1)$.

Next, let $\pi/(2n-1) < \phi \le \pi/2$. From the identities

$$\sin{(2n+3)}\phi - \sin{(2n+1)}\phi = 2\cos{(2n+2)}\phi \sin{\phi}$$

$$\sin(2n+1)\phi = \sin(2n+2)\phi\cos\phi - \cos(2n+2)\phi\sin\phi,$$

we obtain the equations

 $\begin{aligned} & h(\phi)\sin\phi = (4n+3)\sin\phi + (2n^2+2n)\sin^3\phi + n\sin(2n+3)\phi - (n+3)\sin(2n+1)\phi \\ & = (4n+3)\sin\phi + (2n^2+2n)\sin^3\phi + (2n+3)\cos(2n+2)\phi\sin\phi - 3\sin(2n+2)\phi\cos\phi \\ & > (4n+3)\sin\phi + 0 - [(2n+3)^2\sin^2\phi + 9\cos^2\phi]^{1/2} \,. \end{aligned}$

Thus, $h(\phi) > 0$ for $\pi/(2n - 1) < \phi \le \pi/2$ provided

$$(4n+3)^2 \sin^2 \phi > (2n+3)^2 \sin^2 \phi + 9 \cos^2 \phi$$

that is,

$$\tan^2\phi\geq\frac{3}{4n(n+1)}.$$

In $(\pi/(2n-1), \pi/2)$,

$$\tan^2 \phi > \phi^2 \ge \left(\frac{\pi}{2n-1}\right)^2 > \frac{3}{4n(n+1)} \quad (n = 1, 2, \cdots);$$

consequently, $h(\phi) \ge 0$ for all ϕ , and thus

$$\Re [(1-z)w'(z)] \ge 0$$
 on $|z| = 1$.

Because $\Re \left[(1-z) w'(z) \right]$ is a harmonic function for $|z| \le 1$, it assumes its minimum value for $|z| \le 1$ on the boundary |z| = 1. This completes the proof of Theorem 1.

Proof of Theorem 2. Since $\Delta^{(0)}a_n \geq 0$ and $\Delta^{(1)}a_n \geq 0$, the sequence $\{a_n\}$ converges to some nonnegative limit a. For |z| = r < 1, the representation

$$f(z) = \sum_{n=0}^{\infty} \Delta^{(3)} a_n \cdot s_n^{(2)}(z) + \frac{a}{1-z} = \sum_{n=0}^{\infty} a_n z^n$$

shows that

$$\Re \left[(1 - z) f'(z) \right] = \sum_{n=0}^{\infty} \Delta^{(3)} a_n \Re \left[(1 - z) \frac{d}{dz} s_n^{(2)}(z) \right] + a \Re \left(\frac{1}{1 - z} \right)$$

$$\geq 0 + \frac{a}{1 + r} > \frac{a}{2} \geq 0.$$

It follows that f(z) is univalent and close-to-convex for |z| < 1, relative to the convex function $\phi(z) = \log 1/(1-z)$. Since $F(z) = z \phi'(z) = z(1-z)^{-1}$ is also convex and starlike of order 1/2 (that is, since $\Re z F'(z)/F(z) > 1/2$ for |z| < 1), we see that

$$\Re \left[(1 - z) f'(z) \right] = \Re \left[\frac{z f'(z)}{F(z)} \right] > a/2 \quad (|z| < 1).$$

Thus, using R. J. Libera's definition of order and type of a close-to-convex function (see [4]), we can say that the function $\frac{f(z)-a_0}{a_1}$ is close-to-convex of order $\frac{a}{2a_1}$ and type $\frac{1}{2}$.

REFERENCES

- 1. E. Egerváry, Abbildungseigenschaften der arithmetischen Mittel der geometrischen Reihe. Math. Z. 42 (1937), 221-230.
- 2. L. Fejér, Trigonometrische Reihen und Potenzreihen mit mehrfach monotoner Koeffizientenfolge. Trans. Amer. Math. Soc. 39 (1936), 18-59.
- 3. ——, Untersuchungen über Potenzreihen mit mehrfach monotoner Koeffizientenfolge. Acta Litt. Sci. Szeged 8 (1936), 89-115.
- 4. R. J. Libera, Some radius of convexity problems. Duke Math. J. 31 (1964), 143-158.
- 5. M. S. Robertson, On the univalency of Cesaro sums of univalent functions. Bull. Amer. Math. Soc. 42 (1936), 241-243.
- 6. ——, Univalent power series with multiply monotonic sequences of coefficients. Ann. of Math. (2) 46 (1945), 533-555.
- 7. M. Schweitzer, The partial sums of second order of the geometric series. Duke Math. J. 18 (1951), 527-533.
- 8. S. Sidon, Über Potenzreihen mit monotoner Koeffizientenfolge. Acta Litt. Sci. Szeged 9 (1940), 244-246.
- 9. G. Szegö, Power series with multiply monotonic sequences of coefficients. Duke Math. J. 8 (1941), 559-564.

University of Delaware Newark, Delaware 19711