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Let

sik)(z) = (n;k) + (n+11:- 1)z+(n+11:—2)zz+-"+zn

k=1,2,--3n=0,1,2, =+ ).

The polynomials sgk)(z) are connected with the Cesiro sums of the geometric series,
and

sgkﬂ)(z) - Sgk)(z) + s(lk)(Z) Foeee + sflk)(z) .

E. Egerviry [1] showed that sflk)(z) is univalent in |z| <1 for n> 0 and

k=1, 2, and 3, and that sgll)(z) maps |z| < 1 onto a domain whose closure is star-
like with respect to the boundary point s,(n”(l). However, sﬁlz )z) is starlike with re-
spect to the interior point SLZ)(O) for |z| <1, and s,(n?’)(z) maps the unit disk onto a
convex domain. It follows that the functions s{¥)(z) are close-to-convex in |z| <1

for k=1, 2, 3 and n > 0. This implies the existence of regular and univalent func-

tions q&ﬁ‘)(z) that map the unit disk onto convex domains and for which

X { [s8))
RITOI

The question arises whether, for some values k, there exists a qb(k)(z) that is inde-
pendent of n. ’ .

}Z 0 (|z] <1).

For k=1, <;b§1k)(z) cannot be independent of n. This follows from an observation
of G. Szego [9], who constructed a function of the form

f(z) = psiiz) + qsii)(z),

where p and q are positive constants and m and n are integers, and where

p, 4, m, n are carefully chosen so that f'(z) vanishes at an interior point of the unit
disk, with the consequence that f(z) is not univalent for Iz[ < 1. On the other hand,
if ¢>£11 Wz) = ¢{1)(z) were independent of n, it would follow from the equation

(1) ' (1) 1
RN =pR{———>+qR{———— 7 > 0
{ [6{1)(z)]" [6{1)(z)]" [6(1z)]') =

that f(z) is univalent for |z| < 1, and we would be faced with a contradiction. We
conclude that q&fl”(z) cannot be independent of n.
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Nevertheless, we shall show that in the case k = 2, qbgk)(z) can be chosen inde-
pendent of n. In fact, we may take ¢£12)(z) =logl/(1-2z) (n=1,2, ).

This basic result allows us to sharpen the theorem due to G. Szegd [9], which in
turn is an extension of a theorem of L. Fejér [2], [3], for sequences {a,} that are

monotonic of order 4.
THEOREM (Szegd). Let the sequence {a,} be monotonic of ordev 3. Then the

power sevies f(z) = Z\/:zo anz™ is regular for |z| < 1, and if it is not a constant

Junction, it is univalent for |Z| <1.
Here a sequence {an} is called monotonic of order | if all the differences

A(V)an = én - (i/) ansl + (;}) Ant2 - f"('l)v ( Z)anﬂz

are nonnegative for v =0, 1,2, -, p and n=0, 1, 2, ---.
Our main results are contained in the following two theorems.

THEOREM 1. Let

slgz)(zjé (n-2|-2) + (n_zl_l)z;l- (g)zz+;--+zn.

Then 31(12)(2) is univalent and close-to-convex in |z| < 1 relative to the convex
Junction log 1/(1 - z), and

9:[(1 - z)%sl(ﬁ)(z)]z 0 (|z| <1).

THEOREM 2. Let the sequence {a,} be monotonic of order 3, and let

a=1lim,_,  a,. Then either the function f(z) = E:zo a,z® is.vegular, univalent,
and close-to-convex for |z| < 1, relative to the convex function log 1/(1 - z), and

w1 -2)f'@)] > a2 (|z] <1),

or else 1(z) is a constant.

The example f(z) =a/(1 - z) (a > 0) shows that the inequality in Theorem 2 is
sharp.

Proof of Theorem 1. We obtain successively the equations

w(z) = silz)(z) = -;— [(n+2)n+ 1) + (n + 1)nz + n(n - 1)z% + --- +227],

H

n+2)n+1) _nn+1)z - 2n(n + 2)z% + (n + 1)(n + 2)z3 - 2z03
w(z) - 5 = 3
2(1 - z)

(1-2z)w'(z) = %[(n +1n+nm - 3)z+@- )0 - 6)z% + -+« - 2nz?]

_ n(n+ 1) - (2n2 + 6n)z + (nZ + 5n + 6)z2 - (2n + 6)z™2 + 2nz*3

2(1 - z)3

’
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n(n + 1)z - (2n? + 6n)z> + (n2 + 5n + 6)z° - (2n + 6)z2015 4 2pz2nt7?
2(1 - z%)* '

zw'(z2) =

Let z = ei¢. Then

n{n +1)z=3 - (202 + 6n)z~! + (0% + 5n + 6)z - (2n + 6)z20t1 4 opzy2nt3
32 sin4¢

zw'(z2) = ,

and therefore

% [(1 - z2)w'(z2)] = 2 sin ¢ S [z2w'(22)]

1
= 16 sin3 ¢ S[nm+ 1)z73 - 2n2 4+ 6n)z"1 + (0% + 50+ 6)z - (2n + 6)z2"*1 4 2pz2nt3]
= 16 : 5— [-n(n + 1) sin 3¢ + (2n2 + 6n) sin ¢ + (n% + 5n + 6) sin ¢
sin” ¢
- (2n + 6) sin(2n + 1)¢ + 2n sin (2n + 3)¢]
=—L | an+3+@n%+2n)sin?¢- (n+3) S0t Ve, nsin@nt 3o
8 sin® ¢ Sin ¢ sin ,

Thus % [(1 - z)w'(z)] >0 for |z| <1 if and only if h(¢) > 0 for all ¢, where h(¢)
is defined by the equation

sin(2n+ 1)¢ . n sin(2n + 3)¢
N + - .
sin ¢ sin ¢

h(¢) = 4n + 3 + (2n2 + 2n)sin? ¢ - (n + 3)

In proving that h(¢) > 0 for all ¢, we can restrict ¢ to the interval [0, 7/2],
since h(¢) and h(¢ - 7/2) are even functions.

We show first that h(¢) > 0 for all 0 < ¢ < 7/(2n - 1). Since
zw'(z2) = -;— [(n+ 1)nz +2n(n - 1)z3 +3(n - 1)(n - 2)z° + -=- +n.2.1.z20-1],

we have for z = el® the relations

% [(1 - z2)w'(z2)] = 2 sin ¢ S [zw'(z2)]

= sin ¢ $[(m+ 1)nz + 2n(n - 1)z3 + 3(n - 1)(n - 2)z° + --- + 2nz22"1]

= sin ¢ [(n + 1)n sin ¢ + 2n(n - 1)sin 3¢+ 3(n - 1)(n - 2)sin 5¢ + --- + 2nsin (2n - 1)¢].

In the interval [0, 7/(2n - 1)], each term in the last expression is nonnegative. Hence
h(¢) >0 for 0 < ¢ <7/(2n - 1).

Next, let 7/(2n - 1) < ¢ < 7/2. From the identities
sin(2n + 3)¢ - sin(2n + 1)¢ = 2 cos(2n + 2)¢ sin ¢,

sin(2n + 1)¢ = sin(2n + 2)¢ cos ¢ - cos (2n + 2)¢ sin ¢,
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we obtain the equations

h(¢)sin ¢ = (4n + 3) sin ¢ + (2n2 + 2n) sin> ¢ + n sin(2n + 3)¢ - (n + 3)sin (2n + 1)¢
= (4n + 3) sin ¢ + (2n% + 2n) sin> ¢ + (2n + 3) cos (2n + 2)¢ sin ¢ - 3 sin (2n + 2)¢ cos ¢
> (4n + 3)sin ¢+ 0 - [(2n + 3)% sin% ¢ + 9 cosZ ¢}1/2 .

Thus, h(¢) > 0 for 7/(2n - 1) < ¢ < 7/2 provided

(4n + 3)% sin? ¢ > (2n+ 3)% sin® ¢ + 9 cos? é,

that is,
3
2 -
tan® ¢ > 4n(n +1) °
In (7/(2n - 1), 7/2],
T 2 3
2 2 L ~ —_ = ves )
tan®¢ > ¢ —>—(2n—1) >4n(n+1) n=1,2,-);

consequently, h(¢) > 0 for all ¢, and thus
[(1-2)w(z)] >0 on|z|=1.

Because % [(1 - z)w'(z)] is a harmonic function for |z| < 1, it assumes its mini-
mum value for Izl < 1 on the boundary |z| =1, This completes the proof of
Theorem 1.

Proof of Theorem 2. Since A(O)a,n >0 and A(l)an > 0, the sequence {a,} con-
verges to some nonnegative limit a. For |z| =r < 1, the representation

f(z) = 20 ABla . s{2z) + 2~ = Za zn
n=0 1-2z 0 n
shows that
V)] = (3), o _ad (2) 1
% [(1 - z)f'(z)] IE()) A anm[(l z) 35 Sn (z):|+asn(1 - Z)
a a
> O-I-l e > 9 > 0.

It follows that f(z) is univalent and close-to-convex for |z| < 1, relative to the con-
vex function ¢(z) = log 1/(1 - z). Since F(z) = z ¢'(z) = z(1 - z)~! is also convex and
starlike of order 1/2 (that is, since % z F'(z)/F(z) > 1/2 for Iz’ < 1), we see that

9 [(1 - 2)1'(z)] = ml:z}féz)) >a/2  (|z] <1).

Thus, using R. J. Libera’s definition of order and type of a close-to-convex function

(see [4]), we can say that the function ﬂ_z_)gj_q is close-to-convex of order i—; and

type % .
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