THE SECOND INITIAL-BOUNDARY-VALUE PROBLEM
FOR A LINEAR PARABOLIC EQUATION
WITH A SMALL PARAMETER

L. E. Bobisud

1. INTRODUCTION

Let ¢ denote a small positive parameter, and let a, b, ¢, and f be smooth func-
tions with a > 0, ¢ > 0. We shall study the dependence on & of the solution
u(x, t; £) of the second initial-boundary-value problem for the equation

(1) L [u] = galx, t)uyy, - b(x, t)u, - ug - c(x, thu = £(x, t)
in the domain

D = {(x, t): so(t) <x<sy(t), 0<t<L1}.
Here sy and s; are prescribed functions of class C% on [0, 1], with sg(t) < s;(t)
for 0 <t <1 and s,(0) =0, s;(0) =1. Since the change of variables (x, t) — (z, t)
with

_ X - So(t)
‘T 5,0 s,

leaves the form of equation (1) unchanged, we shall assume that D is the unit square
 (closed on top). We may thus specify the initial and boundary conditions as

(2) u(x, 0) = ¢(x) (0<x<1),
3) u, (0, t) - Bot)u(0, t) = Yot) (0<t <),
(4) ~u (1, t) - By (Hu(l, t) = y (1)  (0<t<1),

where By and B, are smooth nonnegative functions of t on [0, 1]. That a smooth
solution of problem (1)-(4) exists is well known [4].

The problem (1)-(4) discussed here was considered by Oleinik [6] in the case
where the two curves x = sg(t), x = s;(t) are characteristics of the first-order
degenerate equation L [u] = f. We shall be interested in the case where neither of
the lateral boundary curves is tangent to such a characteristic.

The first initial-boundary-value problem for a linear second-order parabolic
operator with a small parameter multiplying the highest-order derivative has been
considered in [1], [2], and [5]. The present study is an extension of the methods of
[2] to the second initial-boundary-value problem.

As in [2], several cases arise according to whether the characteristics (of the
degenerate equation) through the corners (0, 0) and (0, 1) enter ©. The situation is
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simplest if neither of these corner characteristics enters ; in this case a full
asymptotic expansion of u(x, t; €) can be obtained by a simplification and extension
of the procedure described below in Section 4. This is a straightforward adaption of
the method of [3] by means of the majorant-function theorem of Section 3 instead of
Lemma 1 of [3], and we shall not further describe it here.

A more interesting case arises if one or both of the corner characteristics en-
ters . The additional difficulties in this case stem from the fact that the solution
of the appropriate degenerate problem is not smooth enough near these characteris-
tics to admit the full operator Lg, and hence the usual methods for establishing an
asymptotic expansion for the solution of a singular perturbation problem can not be
applied. The problem with both corner characteristics entering  can be treated
by obvious modifications of the method that we use for the problem with only one
corner characteristic entering Q; hence we restrict ourselves to this latter situa-
tion. We shall assume, then, that the characteristic through (0, 0) enters , where-
as that through (0, 1) does not. This will be the case if the coefficient b of equalion
(1) satisfies b(0, t) > 0, b(1, t)> 0 for 0 <t <1, and this we shall henceforth
assume.

The following smoothness assumptions will be made throughout:
(S) a,b,c,feC*@®), ¢ecH[o,1]), vy, v, ec3[o,1]).
In addition, we shall assume that
$(0) - Bo(0) $(0) = y(0),
~6(1) - B1(0) (1) = ¢,(0);

(T)

these conditions, which are necessary to our treatment, mean that the prescription
of the linear combination of u and u, on the lateral boundaries x =0 and x=1 is
compatible with the value of u assigned at t = 0.

In the next section we discuss a particular problem (related to the full problem
given by equations (1)-(4)) for the degenerate equation. In Section 3 we establish a
majorant-function theorem (Theorem 3), which will be the primary tool in proving
that the asymptotic representation obtained in Section 4 is valid.

The main result is Theorem 4, stated at the beginning of Section 4; it asserts
that the expansion u(x, t; €) = U(x, t) + v(x, t; €) of the solution of the problem
(1)-(4) is valid in @, where U is the solution to the degenerate problem of Section 2,
and where v(x, t; £) = O(e1/2) uniformly in Q.

2. THE DEGENERATE PROBLEM
We obtain the degenerate equation from equation (1) by setting ¢ = 0:

(5) b(x, t) Uy + U + c(x, t)U = -f(x, t);

recall that b(0, t) > 0. For this equation in the square Q we wish to consider the
nonstandard problem composed of equation (5) and the boundary conditions

(6) U, - Bo(t)U = yplt) along x=0,

(x) along t=0.

1l

(7) U
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We introduce the characteristic x = X(t; £, 7) through (£, 7) € © as the solution

of
dX

(8)

rri b(X,t), X(r;¢& 7)=¢%

in Q; we assume that every point in Q can be joined to a point of t =0 or x =0 by

a chavactevistic lying wholly in Q. Let y(£,.7) be the solution of X(y(¢, 7); £, 7)=0
for (¢, 7)€ D,, where D is the set of points in Q lying on or above the curve
x=X(t; 0,0). Set D, =Q - D;.

In D,, the problem (5), (7) has the unique solution

UL, 7) = o(X(0; £, 7)) exp { SOT (X(t; &, T), t)dt}
(9)
T o
- S f(X(o; &, 7), 0)exp { S c(X(t; & 1), t)dt} do .
0 T

In D; we seek a solution of (5), (6). Eliminating Uy between these equations and
writing 6(t) for U(0, t), we see that 6 satisfies the equation

(10) ' (t) + [c(0, t) + Bo(t)b(0, t)] 6(t) = -£(0, t) - Ylt)b(O, t),

which, along with the obvious initial condition 6(0) = ¢(0), completely determines 6.
The solution of (5) with the boundary condition U(0, t) = 6(t) determines U in D;:

U, 7) = 0(y(&, 7))exp {S; ) c(X(t; &, 7), t)dt}
Y, T

(11)

T g
- S £(X(0; £, T), 0)exp {S c(X(t; &, 7), t)dt}do.
(&, 7) T

Equations (9) and (11) thus provide a formal solution of the problem posed by
(5)-(7). In general, this solution is purely formal, since the constructed function U,
although continuous in @, is not continuously differentiable across the corner char-
acteristic x = X(t; 0, 0), and thus the differential equation (5) cannot be satisfied on
this curve. However, we observe that U is a smooth solution of (5)-(7) in the special
case where

1M
)

$(x)

near x=0,

Wo(t)E_Bi%))—:% near t=0,

and, in particular, if ¢, ¥ g, and f vanish in some neighborhood of the origin. In
view of the smoothness assumptions (S), these latter conditions guarantee, in fact,
that U € C2(Q). The importance for our work of this simple observation will pres-
ently appear.
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3. MAJORANT FUNCTIONS

Throughout this section, we write L for L) and u(x, t) for u(x, t; 1). We denote
by C2.1(Q) the set of all functions that are continuous in € and continuously differ-
entiable twice in x and once in t throughout €.

THEOREM 1. If u € C% Q) has a positive maximum at (xq, to) € Q, then
L[u] _g 0 at (Xo, to).

Proof. If u is a (positive) constant in [0, 1] X [0, ty], then L [u]] (s t0) < 0,
since ¢ > 0. If u is not a constant, assume that L[u]| (. ;)> 0. Then there exists
a neighborhood V of (xq, ty) such that L[u] > 0 in V N ©; let w be a square

w=1{(x,t) |x-x0| <8, tg-20<t<tgy}

contained in V N Q. Then L[u] > 0 in w, and u assumes a positive maximum in @
at (xg, tg) € w. But the maximum principle for L in w implies that u = constant in
wW; since this constant must be positive, we conclude that L[u]l (xq»to) < 0, a contra-

diction.
The following result is proved in [4].

THEOREM 2. Lef u € Cz*l(ﬂ), and suppose L[u] > 0 in Q. Assume that u has
a positive maximum M in Q at a point Py: (xo, to) with 0 <ty <1, x9 =0 or
Xo= 1. Assume further that u <M throughout the intevsection of 2 and some
neighborhood V of Py. Then for each nontangential inward divection v,

du
8_17<0 at Py .

THEOREM 3. Let &, ¥ € C2:1(Q), and assume that

(12) ILle]] < -L[¥] in Q,

(13) o] < w ont=0, 0<x<1,
(14) |, - Bo®| < -V +B¥ omx=0,0<t<1,
(15) | +B1 @] < U +B, ¥ onx=10<t<1,

where By(t)> 0 and B1{t) >0 (0Lt <1). Then |<I>|$ ¥ throughout .

Proof. Since (12) implies that L[® - ¥]> 0 in 9, it follows from Theorem 1
that & - ¥ does not have a positive maximum in ©. Thus, if & - ¥ has a strictly
positive maximum at a point Py: (xg, tg) in €, then Py mustbeon I' =Q - Q; from
(13) we see that & - ¥ < 0 on t =0, whence tg > 0. Denoting the hypothetical posi-
tive maximum by M, we have the inequalities (® - ¥)(Pg) =M >0 and (& - ¥) <M
in VN Q, where V is some neighborhood of Pgy. Let us assume first that xg= 0.
Then, applying Theorem 2 with the direction v along the x-axis, we see that

o(® - )

—2 (Py) < 0.

But (14) implies that
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?@% (Py) > Bolto) (@ - ¥)(Pg) > 0,

and this is a contradiction. Suppose then that x; = 1. By Theorem 2,

(e - ¥)

ox (PO) < 07

whereas (15) yields

_@ég_)(po) > Bi(to) (@ - ¥)(Pg) > 0,

again a contradiction. Hence & - ¥ <0 in Q.
The other inequality in the conclusion of the theorem is proved similarly.

The function ¥ of Theorem 3 has been called a barrier function for & [3], but
since this term has another meaning in potential theory, we shall use the term
majovant function.

4. ASYMPTOTIC REPRESENTATION

THEOREM 4. Assume that the conditions (S) and (T) hold, that Bo, B1 > 0, and
that the characteristics of the degenevate equation (5) cover . Then the expansion

(16) u(x, t; £) = Ux, t) +v(x, t; €)

of the solution of (1)-(4) is valid in Q, wheve U is the function given by (9) and (11),
and where v(x, t; ) = O(e!/2) uniformly in .

We may assume that the initial datum ¢ of equation (2) is in fact identically zero.
For, introducing v =u - ¢, we see that v satisfies

(17) EVyyx - bVx = Vi - eV = £ - £¢yx,

where f' =1 + b¢, + c¢, and

(18) vx(0, t) - Bo(t)v(0, t) = Yolt) = Yolt) - $x(0) + Bolt) $(0),
(19) -v (1, t) - B1()v(L, t) = Pi(t) = Y () + ¢, (1) + B8 (1) 6(1),
(20) v(x, 0) = 0.

This problem is again of the form (1)-(4) except for the e-term on the right of equa-
tion (17). To treat this, we write v = v0 + ev!, where v0 satisfies (18)-(20) and

sv?(x - bvg - vg -ev? =1,
and where v! satisfies the equation
s;v}cX - bv}l{ - vt1 -evl = - Oyx

and homogeneous boundary conditions of the form (18)-(20). If we set
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p=1+sup |¢_]|,

[0,1]

then Theorem 3 implies that Ivl | < ut <L p. It is now clear that the term vl can be
absorbed by the function v of Theorem 4; thus we may assume that our problem is
of the form (1)-(4) with ¢ =0.

Let z(y) bea C —functlon vanishing for y > 2, 1dent1(:a11y 1 for y <1, and with
0 < z(y) < 1. For any positive number 6 we set U(x t) = Ul(x, t; 6) + Uz(x t; 9),
where Ul and U? satisfy the conditions

Lo[U'] = (1 - 2(t/6))(x, 1),
(21) UL(0, t) - By UL(0, 1) = (1 - 2(t/8)yolt) (0<t<1),
Ul(x,0) = 0 (0 < x<1),
and -
L, [U%] = z(t/0)1(x, t),
UZ(0, t) - Bo(t) U(0, t) = =(t/8) Yy (t) (0<t<1),
U%(x, 0) = 0 (0<x<1),

respectively. Then, as we noted at the end of Section 2, Ul(x, t; 6) is twice differ-
entiable in Q.

Similarly, we set u(x, t; €) = ul(x, t; £, 8) + v2(x, t; &, 6), where u! and u? are
solutions of the problems

(22) Le [u'] = (1 - 2(t/0)f(x, t),

(23) ul(0, t) - Bot)ul(0, t) = (1 - z(t/8))yelt) (0<t<1),

(24) ~ug(1, t) - B )ul(L, t) = P (t) (0<t<1),
ul(x, 0) = 0 (0<x<1);

Lg [u?] = z(t/6)1(x, t),

uZ(0, t) - Bo(t)u(0, t) = =(t/5)w(t) 0<t<1),
-uZ(1, t) - B,()u(1, 1) = 0 (0<t<1),
u?(x, 0) = 0 (0<x<1),

We show that both u? and U? are O(6) uniformly with regard to € and with re-
gard to (x, t) € Q. For UZ, this is an elementary consequence of the explicit repre-
sentation (9), (11); for u? we proceed as follows. We define ¥(x, t) by

2
T(x, t) = Ptet/6+Q(x -%) tet/®

where P and Q are positive constants to be determined. Provided (say) 0 <& <1
and & is sufficiently small (independent of €), we have the inequalities



THE SECOND INITIAL-BOUNDARY-VALUE PROBLEM 501

L{-¥] > -2¢aQ0-L et/5+2bQ(x-%)a-ie“/5+Pe“/522£et/5_>_—13 (0 <t < 20),

o 2
since xe* is bounded for 0 < x < 2. If we choose

P =2sup |f| +1,
Q

then inequality (12) of Theorem 3 is satisfied for 0 <t <26, On x=0, 0 <t <26,
we have the relations

Wy +Bo¥ = -2Q (x-3) tet/ O+ po¥ > Qtet/® > qt.

Since the match conditions (T) imply that ¥o(0) = 0, and since Yo is continuous at
0, we can choose Q so large that Qt > Izpo(t)l (0 < t < 1); then (14) of Theorem 3 is
sat1sf1ed for 0 <t < 26. Inequalities (13) and (15) are trivially satisfied by ¥; con-
sequently, ¥ is a majorant function for u2on 0<t < 26. (Theorem 3 obviously
holds for t in an arbitrary interval.) Thus

|u?] < 5{P+Q(X-—) }t t70 < Mo

for some M, for 0 <t < 2. That M6 is a majorant function for u? on 26 <tL1lis
now an easy consequence of Theorem 3. Thus [uzl = O(6) uniformly in € and e.
Since

u(x, t; &) = ul(x, t;, 6) +0(6) and Ulx, t) = Ulx, t; 6) +O(5)

uniformly in @ and ¢, it remains only to consider the degeneration of ul to Ul as
g, 0 = 0.

Using the explicit representation of Sectlon 2, we easily derive the following es-
timates for the 6-dependence (as 6 — 0) of u!l and its x-derivatives:

@5)  Ulx, t;0) = O(1), Uk(x, t; 0) = O(1),  Ujylx, t; 0) = O(671),

uniformly in . Since the full operator Lg can be applied to the smooth function
Ul, we immediately obtain the result

(26) Le (U] = eUL, + Lo[UY] = e0(671) + (1 - z(t/0))i(x, t),

uniformly in €.

Since Ul(x, t; 6) and ul(x, t; €, 6) have in general different values along the por-
tion of the boundary x =1, 0 <t <1, we shall construct a compensating boundary-
layer term. We shall see that this boundary-layer term has the form &g, where g is
a bounded function; consequently, the boundary-layer term can ultimately be absorbed
by the error term v of the theorem. Insignificant boundary-layer terms of this type
appear to be unavoidable in the boundary-layer method of Visik and Lyusternik [7]
(see also [3]).

We shall seek this boundary layer in the form w = w(x, t; ¢, 6); since 0 is pres-
ently to be related to &, we shall ultimately write w(x, t; ¢) where convenient. We
introduce the local coordinate p by ¢p = x - 1; in terms of p, the homogeneous dif-
ferential equation for W(p, t; ¢, 6) = w(ep + 1, t; &, 6) corresponding to equation (1) is
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We shall not require that W satisfy this equation, but only that it satisfy

1 . ~ 1. ~
(27) s AWpp - W - = bW, - W = £0(g)

for negative values of p. Moreover, we require that w tend to zero with ¢ for
p <0 and satisfy the boundary condition

28) —gw (0, t; €, 8) - B,(t)W(O, t; €, 6)
28

= ¥ )+ Uk, t; 0)+8,0) UL, t; 6) + £0(e).

Thus % + U! satisfies the boundary condition (24) imposed on u!,

except for a term
£ O(g). Taylor’s theorem with remainder implies that ‘

a(x, t) = a(l, t) + epa)(t) +e2p®az(ep + 1, 1),
b(x, t) = b(1, t) + epb;(t) + 2 pZby(ep + 1, t),
c(x, t) = c(1, t) +epcy(ep+1,t).

Substituting these expressions and the expansmn % =w0+ew! 1nto equation (27),
and equating to zero the coefficients of £-! and £9, we get for %0 and w! the dif-
ferential equations

a(l, )W, - b(1, )W) = 0,
all, )W, - b1, £) Wp = -pa ()W), + WP +pby () ¥y +c(1, HFO.
Similarly, we have the boundary conditions

Wp =0 (p = 0),

(29)  W+B W = -y (D) - Uy(L, £ 0) - BV, £ 0) = Q5 0)  (p=0).

Clearly, we can meet all the conditions on w0 by taking wo=0 (moreover, zero is
the unique solution); for %! we now have the problem

a(l1, t)wpp - b(1, t)wp =0,

(30) | Wy = Qt;6)  (p=0,0<t<1).

1

Requiring that Wl tend to zero with € for p < 0 determines W' uniquely as

~ 1
Wi, t; &, 0) = 3 Qlt; 6)&™P,

where

b(1, t)

a(l t) > 0.

A S
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Since we need the boundary-layer term w only near x = 1, we shall take for our
boundary layer

1

X0 Q(t; 8)exp {A(t) (x - 1)/e},

W(x, t; e, 6) = z(n(1 - x))w(x, t; &, 8) = ez(n(1l - x))

where n is some (fixed) large integer. Lg can obviously be applied to w, and we see
that

Lg [W] = z(n(1 - x)) L [w] + O(e),
since z"(n(1 - x)) and z'(n(1 - x)) are nonzero only for 1/2n <1 - x < 1/n, and in
this interval the exponential factor of w tends to zero more rapidly than any power

of €. In view of the estimates in (25) and the fact that w satisfies Lg [w] = O(e) for
each 6> 0, we have the relation

(31) L, [#] = Oe).

From equations (22), (26), and (31) we see that the function & = wl-vul-w
satisfies
(32) L [®] = O(e67})
uniformly for (x, t) € . Since Q(0; 8) = 0 by assumption (T) of Section 1, we see
that
(ul +w)(x, 0; ¢, ) = ul(x, 0;g, 06) =0,

whence &(x, 0; &, 6) =0 (0 < x < 1). By equations (21) and (23) and the fact that w
vanishes near x =0,

3,(0, t; €, 0) - Bo(t)2(0, t; &, 0) =0 (0<t<1);
equations (24), (28), (29), and (30) imply that
(33) -a,(1, t; 8, 6) - B1()®(1, t; &, 0) = eB1(H)Wi(L, t; ¢, 8) = Oe) (0<t<1)

uniformly in 6 (since %! depends on 6 only through U! and UL, which are O(1) as
6 — 0). For convenience, we rewrite (32) as
|Lg[®]] < Mes™!  in @,
and (33) as
(34) |2.(1, t; &, 0) +B1E)B(L, t5 ¢, O)] <Me  (0<t<1),

where M is some constant; (34) holds uniformly in 6 and t.
For & we shall seek a majorant function ¥ of the form

2
¥(x, t; €, 6) = P%t+sQ(‘x—%) ;

as in an earlier calculation, it is easy to see that ¥ satisfies (12)-(15) of Theorem 3,
provided ¢ and & are sufficiently small and Q > M, P > 2M. It follows from Theo-
rem 3 that
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uw -ul-%| = 8| < |¥| = O(e/5)

holds uniformly in Q.

2

Combining this estimate with our earlier estimates for u? and UZ, we finally

conclude that
u(x, t; €) = U(x, t) + w(x, t; £, 6) + O(e/6) + O(8) = U(x, t) + O(e) + O(c/6) + O(d)

uniformly in Q. The best possible choice of 6 is clearly & = gl/2 , whence Theorem
4 follows.

Remarks., 1. The restriction to two independent variables has led to some
simplifications; but the methods employed extend readily to several independent
variables, as well as to the third initial-boundary-value problem.

2. As in [2], it is possible to treat the case of characteristic lateral boundaries
by a nonconstructive boundary-layer technique.

3. Our methods can easily be adapted to treat the second boundary-value prob-
lem for elliptic equations in domains with corners.

REFERENCES

1. D. G. Aronson, Linear pavabolic equations containing a small parameter. J.
Rational Mech. Anal. 5 (1956), 1003-1014.

2. L. Bobisud, Second-order lineay pavabolic equations with a small parameter.
Arch. Rational Mech. Anal. 27 (1968), 385-397.

3. W. Eckhaus and E. M. de Jager, Asymptotic solutions of singular pertuvbation
problems for linear differential equations of elliptic type. Arch. Rational Mech.
Anal, 23 (1966), 26-86.

4. A. Friedman, Partial differential equations of parabolic type. Prentice-Hall,
Englewood Cliffs, N.J., 1964.

5. S. L. Kamenomostskaya, On equations of elliptic and pavabolic type with a small
parameter in the highest devivatives (in Russian). Mat. Sb. 31 (73) (1952), 703-
708.

6. O. A. Oleinik, On boundary problems for equations with a small parametey in the
highest devivatives (in Russian). Dokl. Akad. Nauk SSSR 85 (1952), 493-495.

7. M. 1. Visik and L. A. Lyusternik, Regular degenevation and boundary layeyr for
linear diffevential equations with small pavameter. Uspehi Mat. Nauk (N.S.) 12
(1957), 3-122; Amer. Math. Soc. Transl. (2) 20 (1962), 239-364..

New York University
New York, N.Y. 10012
and
The University of Idaho
Moscow, Idaho 83843



