ZEROS OF PARTIAL SUMS OF POWER SERIES
J. D. Buckholtz

1. INTRODUCTION

Let & denote the family of functions that are analytic in the unit disk |z| <1
but not in any disk ]z] <1l+¢ (e>0). If £f(z) = 27 aj z¥ belongs to ?, we write

n
S, (z) = S,(z; f) = 27 ajz¥,
k=0

and we denote by p,(f) the largest of the moduli of the zeros of the polynomial S, .
We write

p(f) = lim inf p (f) and P = sup p(f).
n— o fe Fi

In 1906, M. B. Porter [3] proved that 1 < p(f) < 2 for all f € .#. Porter showed
that his lower bound for p(f) is best possible, but he made no similar claim for his
upper bound. Quite recently, it has been shown that the constant 2 is %of best possi-
ble. J. Clunie and P. Erdds [1] proved that P < 2. In the other direction, they con-
structed an example to show that P > v 2. Determination of the exact value of P
remains an open problem [2, Problem 7.7].

In the present paper, I prove that 1.7 < P < 121/4=1,861 --. The method used
to obtain the upper bound is essentially a refinement of the method used by Clunie
and Erdos. The lower bound is derived from the remarkably simple example

In Section 3, I prove that p(g) > 1.7 and indicate why the choice of g is not entirely
fortuitous.

2. THE UPPER BOUND

LEMMA. If 0 <x< 12'1/4, then

[+ e]

Z; Xk'l'l Ieikg _ ll <1
k=1

for all veal numbers 6.

Proof. From the Cauchy-Schwarz inequality we get the estimate
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o0 2 o0 [>o]
27 xktl|eikd _ 4| <92 2k dx2 2 (2x2)k|elkd - 1]2
k=1 k=1 k=1
o0
= x2 27 (2x%)%{2 - 2cos k6 }
k=1
4 2 .10
=_4_X_2_2X29;{_2x_§2_ﬁ}.
1-2x 1-2x"e

This expression is largest at 8 = 7; its value there is

4x* 4x% _ gx*
7 T 2 4
1-2x 1+ 2x 1-4x

<1,

since x < 12'1/4.

THEOREM 1. If {Ak}olz:l is a sequence of complex numbers such that
|Ak| < 1 for k> 2, then either

1+Az+Az°5+  or Aj+Ayz+Azz’+--

does not vanish in the disk |z| < 12-1/4,

Proof. Suppose max {|zy|, |z;|} =x<1 and

(o] (o]
k _ k-1 _
1+ 2 Az8 =0, 2 Azt =o.
k=1 k=1

If we multiply the second equation by z, and subtract it from the first, we obtain
the equation

o0
1+ 20 Ak(zlg— zozlf'l) = 0.
k=2
Therefore
o0 o0
1=|2 AkH(Z]SJrl - zozll‘) < max 2 Ay (szrl - zwX)
k=1 IZISX,IWISX k=1
[+0]
= max 2o Ay (szrl - zwk) ,
|Z|=IW|=X k=1

by a double application of the maximum modulus theorem. If we write z/w = el
and make use of the triangle inequality and the inequalities IAk+1 | <1, we obtain
the inequality

[+e)
1<max2xk+1|eik9-1|.
T 9 k=1
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In view of the preceding lemma, this implies that x > 12'1/ 4

proof.

COROLLARY. If ag +ajz+ -+ +a,z" is a polynomial of degree n and r is a
positive numbey such that

, which completes the

2] 1™ > ag| e &=0,1,,n-1),
then either ag+a;z+--+a,zm or ag+a;z+-+a,_ z™~! has all of its zevos in
the disk |z| <r-12174,
Proof. Write
n n-k k

n

A, kT
22 akzk= a,z” |1+ 2y 2=
k=0 k=1 a,r"

and apply Theorem 1 to the function

T(z) = 1+

k=1 a,r

THEOREM 2. P < 121/4,

Proof. Suppose that f(z) = Eakzk belongs to % and that r > 1. Then
{ lanl r} is unbounded, which implies that there exist infinitely many integers n
such that

k n
max a, {r < la_|r" .
0<k<n| el 7 < o

The preceding corollary guarantees that

min {p,(f), p,_; ®©} < r-121/*

1/4

for such integers n. Therefore p(f) <r-12°/~, and consequently P < 121/4, since

f and r are arbitrary.

3. AN EXAMPLE

For a fixed complex number o (|a| =1), let

cO

Fa(Z) - Z} ak(k+1)/ZZk
k=0

>

and let ry(e) denote the modulus of the zero (or zeros) of F, nearest to the origin;
in case Fy has no zero in the disk |z| < 1, take ry(a) to be 1.

Let S, denote the nth partial sum of the power series of F, . It is easily veri-
fied that
on(n+tl )/ 2

(3.1) i sn(an"’jrl ) - sn(%) m=1,2, ).

Z
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The moduli of the zeros of the left member of (3.1) are the same as the moduli of the
zeros of S, ; furthermore, the sequence of functions on the right of (3.1) converges
uniformly to Fy(1/z) on closed subsets of |z| > 1. The last observation, together
with Hurwitz’ theorem, determines the behavior of the zeros of (3.1) in |z| > 1 and
allows us to conclude that

p(F,) = lim p,(F,) = 1/ry(a).

n--oo

The problem of determining p(¥,) thus reduces to the problem of locating the
zeros of Fp . This in turn is facilitated by the observation that if @ is a root of
unity, then F, is a rational function. To see this, we first note the identity

Fa(Z) — Sk_l(Z)+ak(k+1)/ZZkFa(akZ).
If oK =1, then
F (z) = _S_k_‘lg_) where 8 = ak(ktl)/2
o 1- pzk’ ’

and in the special case where @ = i, we find (with k = 4) that

1+iz - iz2 - z3

1+z4

Fi(Z) =

Now 1+iz -iz2 - 23 =(1-2)1+Q +i)z+ zz), and an easy computation shows that

one zero of the quadratic factor has modulus less than (1.7)-1. Therefore
P > p(F;) > 1.7.

Since the above was written, considerably better numerical bounds for P have
been obtained. J. L. Frank has shown that 1.7818 < P < 1.82. The lower bound was
obtained by using an IBM 360 to compute values of rg(a); the upper bound was ob-
tained from a theorem which differs from Theorem 1 in that it involves zeros of
A, + Az z+ Ayz? + -+ as well as those of the two functions in Theorem 1.
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