KAHLER MANIFOLDS OF CONSTANT NULLITY
Aaron Rosenthal

1. INTRODUCTION

The purpose of this paper is to derive curvature conditions that guarantee the
existence of a product structure for Kidhler manifolds of constant nullity and for
Kihler-immersed manifolds of constant relative nullity.

In the intrinsic-manifold case, we shall obtain the following results.

THEOREM A. Let M™ be a complete, connected, and simply connected C*
Kahler manifold of constant positive nullity |, and suppose that one of the following
conditions is salisfied.

(A1) p = 2.

(A2) The restriction of the complex curvature tensov to the space of symmeltric
bivectors genevated by vectors ovthogonal to the space of nullity vectors al each
point is a positive- ov negative-definite Heymitian form on this space.

Then MP is a metric product, M® = CH X MR- | wheve CH is complete and flat,
and MP-E s complete., Moreover, CL and M-I are Kahley manifolds.

COROLLARY. The conclusion of Theovem A continues to hold if Condition (A2)
is veplaced by the condition that the curvatures of all holomovphic sections genevated
by vectors orthogonal to the space of nullity vectors at each point ave 1/2-pinched.

A Kéhler immersion ¥: M4 - cdtk ig called n- cylindrical if M4 = md-n x cn
and ¥ =y X 1, where 1 is the identity on C», { is a Kihler immersion of Md-n
into Cdtk-n and C™ denotes complex m-space.

THEOREM B. Let MQ be a complete, connected, and simply connected C*®
Kihler manifold, Kihlev-immersed in CAtK with constant relative nullity v. Then
Y is v-cylindrvical if one of the following conditions holds.

(B1) v =d- 2.

(B2) The curvatures of all holomorphic sections orthogonal to the nullity spaces
ave strictly negative.

Nullity was defined by Chern and Kuiper [4]. Theorems A and B are Kihler
analogues of similar theorems for Riemannian manifolds [5], [7]. I would like to
thank Professor Yeaton H. Clifton for introducing me to the calculus of Kihler mani-
folds according to E. Cartan. Section (2) of this paper is a translation of this calcu-
lus into invariant language.

2. THE COMPLEX CURVATURE TENSOR

Let M be a Kihler manifold with almost-complex structure J [3]. We shall de-
note the tangent space to M at m by M,,, the Riemannian metric of M by s /s
the curvature transformation associated with the vectors x and y by R(x, y), the
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sectional curvature function by K( , ), and the holomorphic curvature function by
H( ), where H(x) = K(x, Jx). Then, for any x, y, z € M,,,, we have the relations

(2.1) R(x, y) Jz = JR(x, y)z,

(2.2) R(Jx, Jy)z = R(x, y)z,

(2.3) K(@x, Jy) = K(x, y),

(2.4) {R(x, Ix)y, Jy ) = K(x, y) |x Ay|? +K(x, 3y) | x A Jy|?.

A Kihler manifold carries a Hermitian metric defined by the formula
(x,y)c={xy) +i{x, Jy), where i denotes V1. In addition to being real-
linear, < , > c satisfies the relations

(2.5) (x,x)c = {xx),
(2-6) <X; Y>C = <y’ X>C ’

(2.7) <JX; Y>c = i<X, Y>c .

Definition 2.1. Let L be a real-linear operator on M,,. L is said to be com-
plex-linear (respectively, sesquilinear), if L(Jx) = JL(x) (respectively,
L(Jx) = -JL(x)) for all x € M,,.

Remarks. A similar definition holds for multilinear operators. It is easy to
show that any real-linear operator on a space with an almost-complex structure can
be written uniquely as the sum of a complex-linear operator and a sesquilinear
operator.

Definition 2.2. For any u, x € My,, the complex curvature tvansformation
Q(u, x) associated with u and x is the real-linear operator on M _, defined by the
relation

Q(u, x)y = R(u, x)y + R(Ju, x)Jy (y € M ).

THEOREM 2.3. For all u, X, y € My,, the complex curvature tvansformations
have the properties

(2.8) Qu, x)y = Q(u, y)x,

(2.9) Q(u, x)Jy = JQ(u, x)y,
(2.10) Qu, IJx)y = JQ(u, x)y,
(2.11) Qu, x)y = -IQ(u, Xy,
(2.12) 2R(u, x)y = Qu, x)y - Q(x, u)y.

Proof. These properties follow directly from the first Bianchi identity, the
Kihler identities ((2.1) and (2.2)), and the fact that R(u, x) = -R(x, u).

Definition 2.4. For x,y,u, ve My, let S(u, X, y, v) = <Q(u, x)y, V>C .
THEOREM 2.5. Forx,y,u,veM S has the properties

m?
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(2.13) S(, %, 5, v) = §x, 4, v, ¥),

(2.14) S(u, Jx, y, v) = S(u, x, Jy, v) = iS(y, x, y, v},
(2.15) S(Ju, %, y, v) = S(u, x, y, Jv) = -iS(y, x, y, v),
(2.16) S(u, %, y, v) = S(u, y, x, v),

(2.17) S(u, %, y, v} = S(v, x, y, u),

(2.18) S(x, x,y,y) = (R(x, Jx)y, Jy> s

(2.19) S(x, %, x, x) = H(x) | x||*.

Proof. (2.13) follows from the symmetries (2.1) and (2.2) of the Riemannian
curvature tensor [2]. (2.14) follows from (2.7), (2.9), and (2.10). (2.13) and (2.14)
lead to (2.15). (2.16) follows from (2.8). (2.13) and (2.16) give (2.17). (2.18) and
(2.19) follow from the symmetries of the Riemannian curvature tensor.

Remavrk. Just as the Riemannian curvature tensor may be regarded as a sym-
metric bilinear form on bivectors [2], S may be viewed as a Hermitian form on
symmetric bivectors. If a=x®y and b =u v are separable symmetric bivec-
tors, we can set H(a, b) = S(u, %, y, v). Then (2.16) and (2.17) show that H(a, b) is
well-defined; (2.14) shows that H is complex-linear in its first argument; and (2.13)
shows that H is Hermitian with respect to permutations in its arguments. (2.19)
shows that S is closely related to the holomorphic curvature. For these reasons, S
is called the complex-curvature tensoy. In fact, S is the invariant formulation for
E. Cartan’s complex-valued curvature form €.

3. THE CONULLITY OPERATORS

Hereafter, we shall assume that M is a K&hler manifold of constant positive nul-
lity p. Let #,, and @,, denote the nullity and conullity space at m, respectively
[7]. If x is tangent to M, P(x) will denote the conullity component of x.

PROPOSITION 3.1. Let x € &, and suppose that U and V are differentiable
nullity vector fields on neighborhoods of m and that they agree at m. Then
P(V,U) = P(V4V).

Proof. Let F be a frame field on a neighborhood of m whose first u vector
fields are nullity vector fields. Then, on the intersection of the domains of U, V,
and F, we can write U=u®F, and V = vaFa , where the repeated index indicates
summation from 1 to u, and where u®(m) = v®(m) for each @. Thus,

VU = x(u®)F, +u* Vv, F,,
= a a
V, V = x(v:)F, + v~ V F,, and
P(V,U) = u¥(m)P(V, F,) = v¥(m)P(V, Fy) = P(V, V).
Definition 3.2. Let u € 4. The conullity operator T, associated with u is

the linear operator on &, defined by the equation T (x) = P(V,U), where x € &,
and U is any nullity field in a neighborhood of m such that U(m) = u.
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Remarks. T(x) is well-defined, by Proposition 3.1, and T, is linear because
Vax =aV,. Moreover, T, is complex-linear in u, because of the Kihler identity
Vyd =dVy,.

THEOREM 3.3. Let T be a conullity opevator at m. Then, for all
X, ¥,2 €€,

(3.1) 6 {Q(x, y)(T(z)) - Qly, x)(T(z))} =0,

wheve € denotes the cyclic sum over x,y, and z.

Proof. Suppose that T is the operator associated with u € .#,, . By (2.12) and
the second Bianchi identity,

(3.2) e{(V,Q)(x, y)(u) - (V,Q)(y, x)()} = 0.

Let X, Y, and U be differentiable extensions of x, y, and u to a neighborhood of
m, where U is a nullity field. By definition of V,Q, we have the relation

(V. Q) (X, Y)(U) = V,QEX, Y)U)) - QV,X, Y)(U) - QX, V,Y)(U) - QX, Y)(V,U).

The right-hand side of this equation reduces to -Q(X, Y) (PV,U), because U is a
nullity field, and when we evaluate the resulting equation at m, we obtain the relation
(V,Q) (%, y)(u)= -Q(x, y)(T(z)). The theorem is established if we substitute this
value of (V,Q)(x, y)(u) into (3.2).

Definition 3.4. Let L and N denote the linear and sesquilinear parts of T, re-
spectively.

THEOREM 3.5. For any x,y, z € @m, L, N, and Q satisfy the relations
(3.3) Qx, y) (L(z)) = Qx, z)(L(y)),
(3.4) Qx, y)(N(z)) = Q(z, y)(N(x)).
Proof. When we write T = L + N, (3.1) becomes
(3.5) ©{Qx, y) (L(z)) - Q, %) (L(z) + Qlx, y) (N(z)) - Q(y, x)(N(z))} = 0.
When x, y, and z are replaced by Jx, Jy, and Jz, respectively, (3.5) becomes
(3.6) ©{Qx, y)(L(z)) - Qfy, x) (L(2)) - [Qx, y)(N(z)) - Q(y, x)(N(z))]} = 0.

Equations (3.5) and (3.6) lead to the relations

(3.7) s{Q(x, y) (L(z)) - Qy, x) (L(z)) }
(3.8) e{Q(x, y) (N(z)) - Q(y, x) (N(z))}

0,

]

0.

We obtain (3.3) when we replace x by Jx in (3.7) and add the resulting equation
to (3.7). Similarly, (3.4) is obtained when we replace y by Jy in (3.8) and add the
resulting equation to (3.8).

COROLLARY 3.6. Forany v,X,y,2 € € L, N, and S satisfy the velations

m?

(3.9) S(x, L(y), z, v) = 8(x, L(z), y, v),
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(3.10) S(x, y, N(z), v) = S(z, y, N(x), v),
(3.11) S(x, y, N%(z), v) = S(N4x), v, z, v).

Proof. (3.9) and (3.10) follow from (2.16) and the previous theorem. (3.11) fol-
lows from (3.10), (2.13), (2.16), and (2.17).

4, THE PRODUCT STRUCTURE

To prove Theorem A, it is sufficient to show that each conullity operator vanishes
[7]. With the exception of the following theorem, information about a conullity opera-
tor T will come from the properties of its linear and sesquilinear parts L and N.

THEOREM 4.1. Let M bea complete Kahler manifold of constant positive
nullity, and let T, be a conullity opevator. Then the eigenvalues of T, are zero.

Proof. Let T,(x)=(a+bi)x =ax+bJx. Then J(Ty(x)) = -bx + aJx, and by the
remarks following Definition 3.2, T (x) = (a2 + b2)x, where v = au - bJu. However,
the real eigenvalue a2+ b2 of T, must vanish, by Theorem 3.1 of [7]. Thus,
a=b=0.

THEOREM 4.2. (a) If H(x) # 0 for all nonzero x € €,,, then the eigenspaces of
L are simple.

(o) If S(x, x, y, y) # 0 for all nonzevo x,y € €,,,then L is a dilation.

Proof. (a) Suppose that L has a multiple eigenspace with the eigenvalue «.
Then there exist complex independent vectors x and y with L(y) = oy + x and
L(x) = ax. By (2.16) and (3.9),

H(x) x| *

S(x, %, X, x) = S(x, ay - L(y), x, x) = aS(x, ¥, %, X) - S(x, L(x), vy, x)

]

a{S(x, y, X, X) - S(%, %, ¥y, x)} =0.

(b) By part (a), it is sufficient to show that the eigenvalues of L are equal. If
L(x) = ax and L(y) = By, then, by (2.14), (2.16), and (3.9),

aS(x, X, ¥, y) = S(x, L(x), v, y) = S(x, x, L(y), y) = B8(%, x, 5, ¥) .

To get information about N, we first look at the complex-linear operator NZ,

THEOREM 4.3. (a) If H(x) # 0 for all nonzero x € €., the eigenvalues of N2
are real.

() If S(x, %, y, y) #0 for all nonzevo x,y € €., the eigenvalues of N% are
nonnegative.

Proof. (a) Let N%(x) = ax. Then, by (2.14), (2.15), and (3.11),
oS(x, x, x, X) = S(x, x, %, x) = S(x, x, N%(x), x) = S(N%(x), x, X, x) = @S(x, X, X, X).

Thus, (o - @)H(x) = 0.
(b) Let N2(x) = rx, with r real, and let y = N(x). By part (a), (2.17), and (3.11),

S(x, x, ¥, y) = S(x, x, N(x), N(x)) = S(N(x), x, N(x), x) = S(x, x, N?(x), x) = rH(x) "x“4 .
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By a continuity argument, S(x, x, y, y) and H(x) have the same sign, and r is
nonnegative.

THEOREM 4.4. If S(x, x,y, y) #0 for all nonzero x,y € € ,,, then
(a) N has an eigenvector, and
(b) N =0 if N(x) = 0. for one nonzero Xx.

Proof. (a) Since N2 is complex-linear, N2 has an eigenvector x. By Theorem
4.3 (b), we can write N2(x) = r2x, where ¥ is real. ¥ r = 0, either the vector x or
the vector N(x) is an eigenvector of N. If r # 0, let y = rx + N(x). Then either
y = 0, in which case x is an eigenvector of N with eigenvalue -r, or y is an eigen-
vector of N with eigenvalue r.

(b) Let y € ®m. Then by (3.10), S(x, x, N(y), N(y)) = 8(N(x), %, y, N(y)) = 0.
Thus, N(y) = 0.

Proof of Theorem A. Let T = L + N be a conullity operator at m. First sup-
pose that condition (A1) holds. Then every nonzero conullity vector x at m is nec-

essarily an eigenvector of T, because. €., is spanned by x and Jx. Thus, T = 0, by
Theorem 4.1.

If condition (A2) holds, then L is a dilation, by Théorem 4.2 (b), and N has an
eigenvector x, by Theorem 4.4 (a). Thus we can write L(x) = ax and N(x) = 8x.
Since T(x) = (o + B)x and T(Jx) = (o - 8)Jx, Theorem 4.1 implies that
a+pB=a-p=0. Simple algebra gives @ = =0, so that L. and N have zero for
an eigenvalue. Thus L = 0 by Theorem 4.2 (b), and N = 0 by Theorem 4.4 (b).

Example. The purpose of this example is to show that the curvature conditions
of Theorem A are different fro;n the curvature conditions of Theorem (*) of [7]. Let
x, JX, y, and Jy be orthonormal vectors, and let 0 <A <1. Set

R(x, Jx, X, Jx) = R(y, Jy, y,Jy) =1, R, y,xy) =0,
R(x, Jy, %, Jy) = R(x, Jx, y, Jy) = X.

Determine the remaining curvature components by the symmetries of the Riemannian
curvature tensor and the Kahler identities. Then lengthy but straightforward calcu-
lations show that S(u, v, u, v) > 0 for all nonzero u and v. However, R is neither a
positive- nor a negative-definite bilinear form on bivectors, because

R(X’ Yy, %, Y) = 0.

Corollary to Theorem A. We shall assume that the holomorphic curvatures are
positive; the negative case is similar. We shall show that the pinching conditions in
the statement of the covollary lead to the conclusion that S(x, x, y, y) > 0 for all
X, Y € ©m. To simplify the notation, we write s(x, y) = S(x, %, y, y), and we let
o (x) denote the holomorphic section determined by x.

We can assume that x and y are unit vectors. If y € 0(x), we can write y = ax,
where « is complex and Iozl = 1. By (2.14), (2.15), and (2.19),

s(x,y)=H(x)>-;—>0. ‘

If x, y, Jx, and Jy are orthonormal, the result follows from (2.4), (2.18), and (4.5) of
[1]. The only remaining case occurs when y ¢ o(x), but y has a component z in
o(x). In this case, z = Bx, where B is complex, and s(z, y) = |8]% s(x, y). Thus, it
suffices to show that s(z, y) > 0. Let u=1z/]z|, and let v =-Ju, so that y and v
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are orthonormal. We can write <y, Jv> = sin 0 and apply (4.2) and (4.3) of [1].
Then

s(v,y)=%(4-%-2+2sin29)>0 and

sz, y) = s(|z]u, v) = ||z]|? s(v, y) > 0.

5. KAHLER IMMERSIONS OF CONSTANT RELATIVE NULLITY

Let J and < J denote the almost-complex structures belonging to the Kihler mani-
folds M and M, respectively. We say that ¥: M — M is a Kdahley immersion of M
into M if ¥ is an isometric immersion, and if moreover dy(Jx) = J(dy(x)) for all
vectors x tangent to M. If M is K#hler-immersed in M, we may view M as con-
tained in M, and we may regard J as the restriction of J to M. We shall denote
both by J.

LEMMA 5.1. Let M be Kihlev-immersed in M, and let Dy be a difference
opervator of the immersion., Then Dy is a complex-linear opevator,

Proof. The Kihler condition for M and M states that V, and V., commute with
J. Since D, =V, - V_, D_ also commutes with J.

Definition 5.2. A vector y € M,, is called a 7relative nullity vector if D,y =0
for all x € M,,,. The space of nullity vectors at m will be denoted by #,,, and the
subspace of M,, orthogonal to .#,, will be denoted by €,,.

Definition 5.3. Let u € . The relative conullity operator T, associated
with u is the linear operator on #,, defined by the equation T, (x) = P(V,U), where
P is the projection into €,,, and where U is any relative nullity extension of u.

Remavks, Hereafter, we assume that M is complete and flat. If the relative
nullity is constant, the distribution of relative nullity spaces is involutive, and the
resulting integral manifolds are flat, totally geodesic, and complete. To establish
Theorem B, it suffices to show that the relative conullity operators vanish.

LEMMA 5.4. Let T be a relative conullity operator at m. Then, for all
X’ y € %m’

(5.1) D, (T(y)) = Dy(T(x)).
Proof. Let T be the conullity operator associated with u. Let X, Y, and U be

extensions of x, y, and u to a neighborhood of m, where U is a nullity field. By the
Codazzi-Mainardi equation [6],

Nor (Ryy U) = Nor {Vy(Dyx U) - Vx(Dy U)} + D[y y]U + Dy(Vx U) - Dx(Vy U).

Since U is relatively null and M is flat, this equation reduces to
Dv(P Vx U) = Dx(P Vv U). At the point m, this equation reduces to (5.1).

LEMMA 5.5. Let T be a relative conullity operatov, and let L. and N denote the
linear and sesquilinear parts of T. Then, for all X,y € &,

(5.2) D (L(y)) = Dy(L(x)),

(5.3) D,(N(y)) = Dy(N(x)).
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Proof. By (5.1), D (L(y)) + Dy(N(y)) = DY(L(X)) + Dy(N(x)). This equation holds
for all x, y € #,,. Hence, if we replace y by Jy and use the linearity properties of
D, , L, and N, we obtain the equation Dy(L(y)) - Dy (N(y)) = DY(L(x)) - Dy(N(x)).

LEMMA 5.6. (a) D.(N(y)) =0 forall x,y € €,,.
(b) If H{x) <0 for all x € &,,, then N =0,

Proof. (a) The operator G(x, y) = Dx(N(y)) is sesquilinear in y, because N is
sesquilinear and D, is complex-linear. G is complex-linear in x because Dz is
symmetric in x and z, and D, is complex-linear. G is symmetric in x and y, by
(5.3). Hence G =0.

(b) The curvature equation of Gauss states that

<Dxx’ Dyy> - "nyuz

K(X, Y) = R-(X, Y) +

Ix Ayl
When y =Jx and M is flat, this equation reduces to
-2 “ DxX" 2
H
% = s Aax]2

If x =N(y) #0, then D_x = 0, by part (a), and therefore H(x) = 0.
LEMMA 5.7. If H(x) <0 for all x € &y,, lthe eigenspaces of L arve simple,

Proof. Suppose that L has a multiple eigenspace with eigenvalue «. Then there
exist vectors x and y with L(y) = ay +x and L(x) = ax. By (5.2),
D x= aDYx -aD,y=0.

Proof of Theorem B. If H(x) <0 for all x € #,,,, Lemmas 5.7 and 5.6 (b) show
that T = L + N is a dilation. However, the eigenvalues of T must be zero when M
is complete [5]. Thus T = 0. If condition (B1) holds, then every vector is an eigen-
vector of T, so that each operator T again vanishes.
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