MANIFOLDS ADMITTING A ONE-PARAMETER GROUP
OF CONFORMAL TRANSFORMATIONS

S. I. Goldberg

1. INTRODUCTION

Let M be an n-dimensional, compact, connected Riemannian manifold with metric
tensor g, and let C(M) be its group of conformal transformations, and I(M) its
group of isometries. We denote by D the operation of covariant differentiation with
respect to g, and by R the Ricci tensor. The manifold is said to be an Einstein
space if it carries an FEinstein metric, that is, if

R=2xg

for some scalar field A. Let r denote the scalar curvature of (M, g); that is, let

r = trace Q, where Q is the Ricci operator. Then, for n > 2, A is a constant equal
to r/n. If r is a nonpositive constant, it is easily shown that C(M) coincides with
I(M). It is an outstanding conjecture that if M is a compact Riemannian manifold of
dimension n > 2 with r = const., then either C(M) = I(M) or M is globally isometric
with a sphere. In the latter case, if X is a conformal vector field on M and § is its
covariant form, then by the duality defined by the metric, the Hessian of the function

divergence X, namely Hess 0§, is - —ﬁ—(nf_——ﬁ 0t -g. We shall prove the following re-
sulf.

THEOREM 1. Let M be a compact manifold, of dimension n > 2 and admitting
an infinitesimal, nonisometric conformal transformation field X. Then,if T is a
(positive) constant,
2
Hess 6§
2n(n - 1)2 ”—Hﬁ-EH?H-— 2 r2 (g = g(X’ . )),

equality holding if and only if M is globally isomelric with a spheve.

Thus, if r is a constant equal to some appropriate value (depending on n and X),
the conjecture is valid. In attempting to generalize by replacing the Einstein condi-
tion (Corollary 1.1) with constant scalar curvature, we apparently need to prescribe
the constant, for otherwise we may not obtain the constant curvature sphere (see for
example [2, Theorem 1]). It would be nice, however, if we could rid ourselves of the
dependence of r on X.

2. MISCELLANEOUS RESULTS

Let Cy(M) (respectively, Io(M)) denote the component of the identity of C(M) (of
I(M)), and let CH(M) be the dual space of Cy(M), that is, the set of all £ = g(X, - )
with X € Cy(M). Denote by d the exterior differential operator, and by & its adjoint
with respect to g. The following additional statements support the above conjecture.
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PROPOSITION 1. Let M be a compact manifold, of dimension n > 2, and admit-
ting a Riemannian metvic of constant scalar cuvvature for which Cqo(M) # 15(M). If

S {Tdog, d6E) dv > 0,
M

Y
t

that is, if T defines a positive semidefinite quadratic form on dﬁCﬁ(M), with respect
to the global scalar product, wherve T =R - %g, then M is globally isomelvic with a
Sphere.

T is viewed here as a tensor field of type (1, 1), that is, as a linear transforma-
tion field.

The restriction on r is not essential, since any Riemannian metric may be con-
formally deformed to a metric having constant scalar curvature, and this is the
metric given to M [6].

COROLLARY 1.1. A compact Einstein space of dimension n > 2 admilting an
infinitesimal, nonisometric conformal transformation is globally isometric with a
sphere [1]. .

COROLLARY 1.2. Let M be a compact Riemannian manifold, of dimension
n > 2, and admitting a metvic of constant scalar curvature such that trace Q2 = const.
If Co(M) #19(M), then M is globally isometvic with a spheve [5].

COROLLARY 1.3. A compact homogeneous Riemannian manifold M of dimension
n > 3 for which Co(M) # Io(M) is globally isometvic with a spheve [3].

3. CONFORMAL FIELDS ON MANIFOLDS OF
CONSTANT SCALAR CURVATURE

Let X € Co(M), and let £ € CH(M) be the covariant form of X. Then

(1) / A‘g’+(1-——2-)d6§=2Q£,

n
where A =dd + 6d is the Laplace-Beltrami operator. Conversely, since M is com-
pact, a solution of (1) is an element of CH(M).

Let t(A) and 6(A) denote the interior product and Lie derivative operators with
respect to the vector field A. If o is the 1-form dual to A, we shall occasionally
write t(a) for t(A) and 6(a) for 6(A).

Let {Xl , "ty Xn} be an orthonormal basis of M,,,, the tangent space to M at
m. Then the co-differential 6S at m of a symmetric tensor field S of order p is
defined by

68(Yy, =+, Y1) = - _Z(Dxis)(xi, Yy, o, Ypo1).
1

The Hessian of a C™-function f on M is the symmetric 2-form

Hess f = Ddf.
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LEMMA 1. If r = const., then

n
n-2

TASE = - 60(E)T (¢ e CH(M)),

wherve Ta = v (a)T.

Proof. This is a consequence of the formula

(2) 8(X)T = 2= 2(Hess Y +—lﬁA5§ -g)'
and the fact that A0¢ =—— £ (see [5]), since
n‘_l 5 06(5)T = 0Ddo¢ -n—m‘i_——l—)dag = -Qd6E + db dd & -n—(rTi_—l—)dag
= -I—I%Tdag -m{—l—)dag -Qd6E = -Edég - Qd6¢.

Let ( , > (respectively, (, )) denote the local (global) scalar product of sym-
metric or skew-symmetric tensor fields; that is, if @ and B8 are both symmetric or
skew-symmetric of order p, let

(a,ﬁ)=%aJBJ and (a,B)=S {a,p)av,
* M

where oJ and By (J =jj +-+jp) are the contravariant and covariant components of &
and B, respectively, with respect to a given system of local coordinates, and where

dV is the volume element. The norm of o, denoted by ||, is defined by
lef = (e, &)t/2.

Observe that since
Af = -2 <Hess f, g> ,

n-2

(2") 6(X)T = (Hess o0& —1—21<Hess 6£,g>g) .

LEMMA 2. If r = const., then

n-2 2
()T, 6(0)T) = - (2=2) (T, dos).

Proof. By (2), the relation <6(X) T, g> = 0 implies

n

=2 (9(X)T, Dd6E ) .

(3) (O(X)T, 6(X)T) ==

Integrating, we obtain the equation

1 - 2 (6o(xX)T, d6¢).

(6(X)T, 6(X)T)
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The result now follows from Lemma 1.
Observe that if 8(X) T lies in the kernel of 62, then 6(X)T vanishes, so that
QdoE = Zddk.
n
We shall now show that Proposition 1 is a consequence of Lemmas 1 and 2.
Since T is positive semidefinite on d6Cg(M), it follows from Lemma 2 that
6(X)T =0, and from Lemma 1 we conclude that Qdé ¢ = %db&. Applying (1), we see

that d6£ € C{(M); since
_r
ASE = —T= 5,

we conclude that
r
dé§ = n_-ig +g(Y, - ),
where Y is a Killing vector field. That this can only hold if M has constant curva-

ture follows from the proof of Theorem 2 of [1]. The result is now a consequence of
Proposition 4 of [1].

Proaof of Corollary 1.3. Since trace Q2 is constant, the same is true of
trace T2. The evaluation of 6(X){T, T) gives

{(ox)T, T) = -I—?;ag'('r, T).

Applying (2), we get the relation

2

_n-2
n

(Dasg, T) = - 5

Consequently,
(4) (n - 2)(6Td6E, 6&) = 4 S (6£)2(T, T) av,
. M
which implies that
(Td6, d6g) > 0.

Corollary 1.2 is now a consequence of Proposition 1.

Note that by Lemma 2, formula (4) may be written in the form

leo|? = - 2828 { (56%(, ) av.

It is interesting to note the similarity in the proofs of Corollary 1.3 and Theorem
1 in[4]. The tensor fields are symmetric in the first case and skew-symmaetric in
the other case; indeed, T is a symmetric tensor of order 2, whereas in the latter
case we treat harmonic tensors @. Both T and « depend on the metric, and they
are both assumed to have constant length, which is essential to the proof The fact
that trace Q = r = constant does not imply by itself that trace Q2 = constant.
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PROPOSITION 2. Let M be a compact manifold, of dimension n > 2 and admit-
ting a Riemannian metvic g of constant scalar curvaturve. If X € Co(M) is an in-"
finitesimal, nonisomelvic conformal transformation field, then

, |Hess 5> 2% S (Hess 6&, g)%av (¢ =g(X, - )),
M

equality holding if and only if M is globally isometric with a sphere.
Proof. From (2') and (3) it follows that

lox)T|?

(nI—IZ)Z (Hess 0&, Hess 6¢& -%(Hess 5%, g) g)

2
- 2) ["Hess st ]? ——12; ‘S.M (Hess 6&, g)zdy] )

Theorem 1 is now an immediate consequence of Proposition 2 andn\the relation
AGE =-2 <Hess o&, g>. For if

|| Hess 6¢& ”2
= 2n(n - 1)2 41— >
loc)> °
then 6(X)T vanishes.
The same conclusion prevails if
<Hess 6¢&, Hess 6§>

r? = 2n(n - 1)? (0£)2

for some & € C3(M) - I¥(M).

Note, By applying the operator A to the length function [TI2 , or, what is the
same (since r is constant), to |R|?, we may ask whether

® = g"*RYD,D,Ry; > 0,

or under what conditions this is so. The conjecture is true if & is nonnegative, by
virtue of Corollary 1.2, since it turns out that |R|2 is constant. In the special
cases where (M, g) is locally symmetric, or, more generally, Ricci symmetric
(DR = 0), the scalar & vanishes. Even more generally, if (M, g) is a recurrent
space, or DR = a®@ R, then & > 0 provided |a|2 > 6a for some vector field a.

¢
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