ORDINAL INVARIANTS FOR TOPOLOGICAL SPACES
A. V. Arhangel’ski‘i and S. P. Franklin

0. INTRODUCTION

Cardinal invariants such as weight, density, and dimension have been widely used
in the classification of topological spaces. More rarely (see for example Maurice
[10] and Stone [13]), ordinal invariants have been employed. In this paper, we intro-
duce two related ordinal invariants, ¢ and k, first in the categories of sequential
and k-spaces (Section 1) and later in arbitrary spaces (Section 6). (For an informed
opinion of the importance of the category of k-spaces, see Steenrod [12]). Our main
result is the existence, for each @ < w;, of a countable, zero-dimensional Hausdorff
space X with o(X) = k(X) = @ (Theorems 4.1 and 5.1).

1. PRELIMINARIES

A topological space X is a k-space (see Arhangel’skil [2], Cohen [4], and Steen-
rod [12]) if a subset F of X is closed whenever its intersection with each bicom-
pact subset K of X is closed in K. For each subset A of X, we shall write X € A~
if and only if x € clk (A N K) for some bicompact subset K of X. Now let A0 = A,
and for each nonlimit ordinal a =8 +1, let AQ = (AB)~. If « is a limit ordinal, let

A% = U{AB | B < a}. For an arbitrary space X, let k(X) denote the infimum of
the ordinals @ such that A% = clx A for each subset A of X. A straightforward
argument, involving only cardinality in one direction and the fact that a single point
may be added to a bicompact set without destroying bicompactness, establishes the
following result.

1.1. PROPOSITION. X is a k-space if and only if k(X) exists.

Since the definition of k-spaces was given in terms of closure only, the following
proposition is obvious.

1.9. PROPOSITION. «k is a topological invariant in the category of k-spaces.

k(X) = 0 if and only if X is discrete, and k(X) <1 is precisely the criterion
that determines the k'-spaces (see Arhangel’skil [2]D).

We now restrict our attention to a special case. A subset U of a topological
space X is sequentially open if each sequence converging to a point in U is eventu-
ally in U. The space X is sequential if each sequentially open subset of X is open
(see Franklin [8], [9]). For each subset A of X, we shall denote by A" the set of
all limits of sequences in A. Now let A0 = A, and for each ordinal o = B+1, let

A% = (AP)*. If a is a limit ordinal, let A% = |J{aB| B < a}. (Whether A% refers
to the sequential closure “ or the k-closure ~ will always be clear from the con-
text.) Denote by o(X) the infimum of the ordinals o« with the property that

A% = cly A for all A C X. The following is a folk theorem.

1.3. PROPOSITION. X is sequential if and only if o(X) exists. In this case,
0(X) < wy (where w) is the first uncountable ordinal).
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For a proof of the second assertion, see, for example, Dolcher [5, equation (22)]
or Vaidyanathaswamy [14, p. 278].

1.4. PROPOSITION. o is a topological invariant in the category of sequential
Spaces.

Again, 0(X) = 0 if and only if X is discrete, and 0(X) < 1 is the criterion that
defines the Fréchet spaces (see [3], [8], [9]).

1.5. PROPOSITION. Every sequential space is a k-space. Conversely, every
countable Hausdovff k-space X is sequential and satisfies the condition o(X) = k(X).

Proof. The first assertion follows from the bicompactness of the union of a con-
vergent sequence and one of its limit points. For the first part of the converse, note
that if a subset A of X is not closed, there exist by [2, Section 10] a bicompact set
KCcX andapoint p€ c1(KNA)\ (KN A). Since K satisfies the first countability
axiom, some sequence in K N A converges to p ¢ A. Hence A is not sequentially
closed (that is, its complement is not sequentially open). Thus X is a sequential
space. To complete the proof, we note that the inequality #(X) < ¢(X) always holds,
and we again use the fact that countable bicompact Hausdorff spaces satisfy the first
countability axiom.

The one-point compactification of M \ N, where M is the space of Example 5.1
of [9], is a countable T);-k-space that is not sequential. (This is in fact the one- }
point compactification of S, without the level-one points, as described in Section 3.) |
There exists a sequential bicompact Hausdorff space ¥* that is not a Fréchet space
[9, Example 7.1]. Hence «(¥*)=1< o(¥*) (=2, as it happens). Also, there exist
countable, bicompact, sequential T)-spaces that are not Fréchet spaces [9, Example '
5.3]. Hence the cardinality and separation hypotheses of Proposition 1.5 are actually
needed. We state the following for future reference.

1.6. PROPOSITION. If X is the disjoint topological sum of a family {Xy} of
k-spaces (ov sequential spaces), then k(X) = sup k(Xy) (0(X) = sup 0(Xy)).

2. THE SEQUENTIAL SUM

Let S= {0} U {l/n} ne N} C R have the relative topology; that is, let S be a
convergent sequence with its limit point. For each i (0 < i < wg), let <Xi , Oi> be

a T;-space with a base point. We define the sequential sum 27 (X1 , Oi> as fol- r

lows. Let X be the disjoint topological sum of the Xj, and let A = {Oil i<wol.
Then A is a closed subspace of X, and the function f: A — S defined by £(0;) = 1/i

is continuous. Let 2J (Xl , Oi> be the adjunction space X Uy S. The pertinent facts|
about the sequential sum are as follows.

2.1. PROPOSITION. If each X; is a k-space (or a sequential space), then so is |

27 <Xi, Oi> , Jor each choice of 0;. If ki = k(X3) (01 = 0(X3)) is a nonlimit ovdinal .
Sfor each X;, then there exist 0; such that k(X) = (sup ki) + 1 (0(X) = (sup 0;) + 1).

Proof. In the sequential case, the first assertion follows from [8, Propositions
1.2 and 1.6], and in the case of k-spaces it can be proved similarly. Since X\ {0} .
is the disjoint topological sum of the X;, k(X \ {0}) = sup k; by Proposition 1.6.
From the fact that {0} U {0;} is bicompact, it follows immediately that
k(X) < (sup k;) + 1. We shall construct a subset M of X\ {0} such that

)+1 ;
0e MR K3 \ M°"P*i  Choose a subsequence {r;} of the {x;} that
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converges upwards to sup k; in the order topology. For each j, let 65+ 1 = kj.
Then there exist 0; € X and M;C X such that 0; € (MJ-)K~i \ (Mj)ej (the remaining

0; may be chosen arbitrarily). Let M = U M;. Let B be the least ordinal such that
0 € MP*1\ MP. Then 0 € cly (B N MP) for some bicompact B. Letting K = {Oj},

we see that K n Bn M8 = U n B n (M) is infinite. But K 0 (M) # ¢ only if
B > k;. Hence B> sup k;j, and thus 0 ¢ M°"P ¥i | Hence k(X) = (sup ;) + 1.

An even simpler proof may be given in the sequential case. In addition, one may
easily verify the following assertion.

2.2. PROPOSITION. If each X; is zevo-dimensional, then the sequential sum of
the X; is zevo-dimensional.

3. CONSTRUCTION OF THE S,

In this section we shall construct (in two distinct ways) a countable space S, that
satisfies the condition «(S,) = 0(S,) =n for each n < wg, and has all ‘nice’ topologi-
cal properties except local bicompactness. Moreover, the space S, will be minimal
in a sense to be made explicit in Proposition 3.1.

Let Sg = {0}, and, having already defined S,_; with base point 0, let S, be the
sequential sum of countably many copies of <Sn_1 , 0 >, choosing 0 again as base

point. S, is then defined recursively for each n < wg. Clearly, S; =85, and S, is
the space of Arens (see [1] and [9, Example 5.1]).

We now define the level ¢,(x) for points x € S,. For n=0, let £¢o{(0) = 0. Hav-
ing defined the level of each point in S,_}, choose x € S,. If x=0, let £,(x)=0. If
not, then x € S,_1, and we let £,(x) = 0,_1(x) + 1.

Now, for each point x of level n in S,, take a copy S, of S, and let X be the
disjoint topological sum of the sets S,. Let A = {0, € S| £,(x) =n}, and define
f: A— 8, by £(0,) = x. Then the adjunction space X U, §,, is homeomorphic to
Sh+1, and we have the second construction.

Suppose that for each k <n we have defined a partial order <; on S, , with 0
as maximal element. Then let <, be the partial order on S, generated by
<n-1 U {(y, x)| v € Sx}. We shall use these orders in Section 5.

Also for later use, note that the second construction yields a natural embedding
$n Sp — Spy1 -

The properties claimed for the S, in the opening paragraph of this section follow
immediately from Propositions 2.1 and 2.2 and the following assertion.

3.1. PROPOSITION. If a Hausdorff sequential space X coniains a copy of S,,
then o(X)> n. Conversely, if o(X)>n, then X contains a subspace whose sequen-
tial closure is homeomovrphic to S, .

Proof. Let L, be the points of level n in S, ¢ X. If o(X) =k for k < n, there
are countably many points x; € L\ (L, UL,_;) with 0 {the zero-level point of Sn)
in {le j e N}k-1 . Let Aj be the range of a sequence in L, converging to x;, and
for each y; € L, _,, let B; be the points of L, under y;. Since X is a Hausdorff
space, A; N B; is finite for all i, j € N. Hence there exist disjoint sets A and B
such that A;\ A and B;\ B are finite for all i, j € N. The set B U (S, \ L) is
open in S, and contains 0. Hence there is an open set U in X such that
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UNS,=BU(S,\ Ly). Hence AN U =¢@. Thus xj ¢ U for each j. This contra-
dicts 0 € cly {le je N}

The second assertion is obvious for n=0 and n =1, and for n = 2 it follows

from Proposition 7.3 of [9]. In order to complete the induction, we prove something .

a little stronger: if A is a subset of a sequential Hausdovff space X and if

x € A®\ A™ 1 there exists a subset Sy of A™ whose sequential closure is homeo-
movphic to S,, and whose points of level k lie in Ar-k\ An-k-1_ With the asser-
tion stated in this form, the inductive proof is trivial if we note that a sequentially
bicontinuous bijection is a homeomorphism from the sequential closure of its domain
to that of its range. The second assertion of the proposition now follows immedi-
ately.

4, CONSTRUCTION OF THE Ky

In this section we shall construct, for each @ < w,, a countable space Ky (again
with ‘nice’ properties) such that k(Ky) = 0(Kqy) = a.

Let Kg = Sg = {0}, and suppose Kp is defined for each B <a. If o isa limit
ordinal, let Ky be the disjoint topological sum of the Kg with 8 < a. By Proposi-
tion 1.6, k(Ky) = 0(Kg) = a. If @ =8+ 1, choose a sequence of nonlimit ordinals
{B8;} with supremum B. By Proposition 2.1, we may choose 0; € Kﬁi so that

k(Ky) = (sup ;) + 1 = o, where Ky is the sequential sum of the Kﬁi . By Proposi-
tion 1.5, 0 (Ky) = o also. We recapitulate:

4.1, THEOREM. For each ordinal o < w,, there exists a countable, zevo-
dimensional Hausdorff space Ky such that k(Kqg) = 0(Kg) = a.

Note that we may also define the space K, ) as the disjoint topological sum of

the K, for @ < w;. Then le is a zero-dimensional Hausdorif space of cardinal-

ity and local weight 8, , with k(K , ) =0(K, )= w;. Inthe next section we shall

construct another such space that is not only countable but also homogeneous.

5. CONSTRUCTION OF S,

Using the maps ¢,: S, — S, defined in Section 3, we define for each pair
m<n<wyamap ¢&:8  — S, by ¢5 =¢n_j0 0 ¢m+1 | creating an inductive
system (Sn y ¢§l> of spaces and maps. Denote by S, the inductive limit of this
system.

5.1. THEOREM. S, is a countable, sequential, zevo-dimensional, homogeneous
Hausdorff space with k(Sy) = 0(Sy) = w1, and it conlains a copy of Ky for each
a < w; .

Proof, S is clearly countable, and it is sequential by [8, Corollary 1.7]. Hence,
by Propositions 1.3 and 1.5, k(Sy) = 0(S,) < w; (S, is clearly a T)-space and is
therefore a Hausdorff space, since it will be shown to be zero-dimensional). The
opposite inequality will follow from the relation K, € S, for each a <w, .

Denoting by ,,: S, — S the canonical map, we define a partial order on S, by
the rule that x <y if and only if there exists a triple n, a, b such that a € vl (x),
b€ Y;l(y), and a <, b (see Section 3).
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Noting that ¢,(x) = k implies that £, ;(¢,(x)) =k, we may unambiguoﬁsly define
the level ¢(x) of a point x in S, by choosing some n and a with a € Yvil(x) and
setting 0(x) = ¢,(a). It is easy to verify that x <y implies 2(x) > ¢(y).

For each x € S, let I(x) = {y € Sy,| y < x}; that is, let I(x) be the principal
ideal generated by x. We shall show by an induction on the level of x that each I(x)
is homeomorphic to Sy. For £(x) = 0, the assertion is trivial. Suppose £(x) =1,
and let T, = y;}(I(x)) for each n < wg. Then Tg =@, and for n > 0, T, is homeo-

morphic to S,_;. But clearly I(x) is the inductive limit of the system

(Tn, ont ] T, ), and hence it is homeomorphic to S,,. Now suppose our assertion is
true for points at level n - 1 and that £(x) = n. Then there exists exactly one

y € Sy with £(y) =n -1 and x <y. The point x is at level 1 with respect to I(y), -
which is homeomorphic to S, by the inductive assumption, and hence I(x) = S, by
the level-one argument.

Denote the level-one points of S, by 0;. Then S,, is-the sequential sum of the
family <I(Oi), 0; >, and so S, is the sequential sum of countably many copies of it-
self with the level-zero point of each as base point.

It is easily verified that a sequence {x,} C S, of distinct points converges to
Xg € S, if and only if eventually €(x,) = £(xg) +1 and eventually x, < x5. We shall
write x ~ y if £(x) = £(y) and there exists a z such that (z) = ¢(x) - 1, x <z, and
y < z. Hence {x,} — xo implies that eventually x, ~ X,,, or x, = Xg. In fact, in
order that a sequence of distinct points in S,, converge, it is necessary and suffi-
cient that it be eventually composed of points pairwise related by ~ . Using this
characterization of sequential convergence and the fact that S, is sequential, one
sees that not only is each I(x) open and closed, but for each family {xi} no infinite

subfamily of which is related by ~, U I(x;) is open and closed. It then follows im-
mediately that S, is zero-dimensional,

Let x, y € S, be distinct points. If x and y are not comparable, then I(x) and
I(y) are homeomorphic, disjoint, open and closed neighborhoods of x and y, respec-
tively. If x <y, then I(x) and I(y) \ I(x) are such neighborhoods, and so S,, is hko-
mogeneous.

We shall now recursively imbed each K, in S,,. Suppose this has been accom-
plished for each 8 < @, so that the base point 0g of Kg is the level-zero point of
Sw whenever B is not a limit ordinal. For each such 8, let Lg be a copy of S,
with Kg so embedded. If o isa limit ordinal, then K, is the disjeint topological
sum of the Kg and is homeomorphic to a subset of any sequential sum of the Lg. If
a =8+1, K, is the sequential sum of some sequence Kpg,. Then Ky is-embedded

in the sequential sum of the corresponding <LB" 03- >, which is again S,.
1 1

Since for each nonlimit ovdinal a, K, is homeomorphic to a closed subspace of
Sy, 0(Sy) = w; and the proof is complete.

Dudley has shown [6, Theorem 7.8] that the sequential closure (that is, the small-
est sequential topology containing the given one) of the weak topology of a separable,
infinite-dimensional Banach space is the ‘bounded topology’ (see [7, pp. 425-430]).
We shall apply Theorem 5.1 to show that o(£;) = w; if ¢, is provided with its
bounded topology. The authors are indebted to C. V. Coffman for a key idea in the
proof.

5.2. THEOREM. S, can be embedded as a seéuentially closed subset of L,
taken with its bounded topology. Hence, 0(£;) = w] .



318 A. V. ARHANGEL’SKII and S. P. FRANKLIN

Proof. Using the second description of S, in Section 3, we shall recursively de-
fine an embedding 0,,: S, — £, of each S, into £, in such a way that 6,, = 6, © ¢5,
for each m < n. Since S, is the inductive limit of the S,, this will map S, into
2.

We first represent each S, as a collection of finite sequences of natural num-
bers, as follows. Represent the single point of Sy by the empty sequence. Let
S;=SpU {(i)] i ¢ N}. Supposing that S, has been defined, and for
x= (i, iy, =", iy) € S, and of level n, let S, = {x} U {(iy, =, iy, D] i> i, }-
Now construct S,,;; as in Section 3. S, can be thought of as the union of the S, in
this representation, in other words, as the collection of all finite, strictly increasing
sequences of natural numbers.

Convergence of sequences in S (or in any Sn) can easily be described in terms
of this representation: essentially, a sequence converges if and only if it is even-
tually of the same level (that is length), say n, and eventually constant in each of the
first n - 1 coordinates, and if it is further either unbounded in its eventual last co-
ordinate or eventually constant there. In the first case, the limit point is repre-
sented by the sequence of the first n - 1 eventual values, and in the second case the
sequence is eventually constant. We shall now embed each S, as a sequentially
closed subset of £,, by a 6, such that sequential convergence in 6,(S,) has this
same description. Hence each 6, will be a homeomorphism (see for example
Moore [11, Theorem 6.13]); therefore the limit 6 of the 8, will also be a homeo-
morphism.

Let {bi} be the standard orthonormal basis for (,, defined by b%( =0if i#k
and b} = 1. Define 6y by 8y(®) = 0, where 0 denotes the origin in ¢,. Define 8;
by 6,3) = bl and 8, (®) = 8¢(p) = 0. Having defined 6, as an extension of 6,,_; , let
6,417 =0, on S, and for (iy, -, i,,i,41) € Sy \ Sy, let

. . . . : . . .ntl
Onr1 (1, ***5 ins int1) = Opliy, =, i) +igh .

We must show that each 6, is a sequential homeomorphism onto 6, (S,), and that
6 (S,) is sequentially closed in £, .

From the fact that 6_(i;, ---, i,) is nonzero only in the i, i,, -+, i, th places,
it is clear that each 6, is one-to-one.

That 6, is a sequential homeomorphism follows from the well-known fact that .
the sequence {bi} converges weakly to zero. Clearly, 6,(S;) is sequentially closed |
in ¢, . If we suppose that 6, has been shown to be a sequential homeomorphism and f
that {xk} is a convergent sequence in Sh+1, then we may assume all xj to have the
same level. If ¢ ,,(x;) < n, then 6,,;(x)) = 6, (xy), and the convergence is pre-
served. If £,,,(x)) =n+ 1, we may assume that xy = (i}, -+, iy, ji), with the jx
unbounded. (Otherwise, {xy | is an eventually constant sequence and convergence is
preserved.) Then lim xy = (i;, -, i), and

. . Y
9n+1(xk) = en(ll’ T 1n)+ 1nb 1.<’

which converges weakly to 0, (iy, **+, ip) = 041 ()1, ***, in). Thus 654 is sequen- |

tially continuous. %
Conversely, suppose {xX} is any sequence in 6(S,) that converges weakly to

x0 in £,. Since {x¥} must be bounded in norm, there exists a uniform bound, say

q, on the number of nonzero coordinates of the xX. Thus {x¥} c 6q(8q). Hence, if

each 0,(Sy) is sequentially closed, so is 6(Sy,). Since weak convergence implies
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pointwise convergence, and since each coordinate of each xK is an integer, the
sequence { xk} must be eventually constant in each coordinate. Let r be the num-
ber of eventually nonzero coordinates, and suppose the theorem is proved for r <n.
If r =n, we may assume that xX= 6, (i¥, ---, iX), where eventually

i¥=iy, =, iX_;=i,_;. Then x%=6,(iy, -+, in_1) € 6,(Sy), which is therefore
sequentially closed. Clearly, {iX} is unbounded, and so (ili‘, -+, iX) converges in
S, to (i, ***, ip_1). This completes the proof.

Note that 0 is in the weak closure of 6,(Sz)\ 6, (S;) but is not the weak limit of
any sequence therein. This is the well-known example of von Neumann.

6. SOME REMARKS AND QUESTIONS

As Theorem 5.2 suggests, the functions ¢ and x can be extended to the category
of all topological spaces and continuous maps by means of the co-reflective functors
s and k that assign to each space X the spaces sX and kX, where the underlying
set is the same and the new topologies are the smallest sequential and k-space top-
ologies containing the original. We may then define ¢(X) = 0(sX) and «(X) = « (kX).
Propositions 1.5 and 1.6 extend immediately. What else can be said?

Proposition 3.1 establishes the S,, as test spaces for spaces X with 0(X)=n. It
seems that, permitting all possible choices of the B; (see the second paragraph of
Section 4), we could use the K, as test spaces for o(X) = a. Are there test spaces
for k?

The disjoint topological sum K of the Ky fpr o < w; satisfies the condition
0 (K) = w; but contains no copy of S, . Can this happen with a countable space, or
with a homogeneous space?

Is there for each @ > w; a space K, with k(Ky) = @? More particularly, if «
is an ordinal corresponding to a cardinal 7(a) > 8;, is there a k-space K, with
k(Kg)=a and Ky < 7(a) (Ky < ZT(Q))? Is there for each o < B < w; a space
Xo,p With k(Xg g) = @ and o(Xa,g) = B?

What are the permanence properties of a space with 0(X) = ¢ and «(X) = @?

S, is something of a topological curiosity in itself. Are there other countable

Hausdorff k-spaces with no point of first countability? If so, are there others that
are homogeneous and sequential?

It is easily seen that the proof of Theorem 5.2 depends only on the existence of a
sequence bounded away from 0 and converging weakly to 0. For what linear topo-
logical spaces do such sequences exist?
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