RIEMANN MATRICES FOR HYPERELLIPTIC SURFACES
WITH INVOLUTIONS OTHER THAN THE
INTERCHANGE OF SHEETS

John Schiller

Let w;, ***, wg form a basis for the holomorphic dlfferentlals on a compact
Riemann surface S of genus g, and let (a;, b;) (i=1, -+, g) form a set of retrosec—
tions (one- cycle representatives of a homology basis for S, where 6(a;, bj) = 635,
6(a;, aj) = 0 = 6(b;, b;), 6 being the bilinear, skew-symmetrlc intersection number);

then the g >< 2g matr1x
(A B)E((‘Sv wi) (S wi))
2 b

is called a peviod matrix for S. By a change of basis for the holomorphic differen-
tials, the matrix A can be reduced to the multiplicative identity (the new basis is
said to be normalized with respect to (a;, b;)), and then B becomes A-1B, which is
symmetric with positive-definite imaginary part and is called the Riemann matvix
for S with respect to (a;j, b;). Torelli’s theorem says that if a surface S has the
same Riemann matrix with respect to (a;, b;) as a surface S' has with respect to
(aj, by'), then there exists a conformal homeomorphism from S onto S' taking either
a; to a; and b; to bj or a; to -a; and b; to -bi (see [5, pp. 27-28] and the refer-
ences cited there). If S' (and therefore S) is hyperelliptic, then conformality of one
map implies conformality of the other, since the two maps then differ by the “inter-
change of sheets” on S', which is conformal. Every conformal equivalence class of
hyperelliptic surfaces of genus g that have involutions (conformal self-homeomorph-
isms of order 2) other than the interchange of sheets contains a surface whose equa-
tion is w2 = f(z2), where f(x) is a complex polynomial of degree g + 1. This is a
particular case of a result due to Hurwitz [2, p. 257]. The purpose of this note is to
show that such surfaces can be classified according to their Riemann matrices.

If a surface S has the equation w2 = £(z2), then in addition to the interchange of
sheets t: (z, w) — (z, - w), the surface has at least two involutions, namely

G: (z,w) - (-z,w) and G =10:(z,w) — (-2, -w).

The natural projection 7 from S to the quotient surface S = S/(l o) is given con-
cretely by (z, w) — (z2, 2w) = (Z, W), from which we see that S has the equation
W2 = 41(Z) and that the dlfferentlals (zl/w) az (i= ...) on 8 1lift to the “odd” dif-
ferentials (z2i*1/w)dz on S. Similarly, the prOJectlon # from S to the quotient
surface 8 = S/(1, 6) is given by (z, w) — (z2, 2zw) = (2, W), § has equation

W2 = 42f(Z), and the differentials (zl/w) dZ on S 1ift to the “even” differentials
(z21/w) dz on S. Note that if g is even, then both § and § are of genus g/2, whereas
if g is odd, then § is of genus (g - 1)/2 and § is of genus (g+ 1)/2. In either case,
we can construct a model for S by pasting together two slit copies of S or S and
then t, 0, 0 appear as rotations through 180°, (See Figure 1 for g = 4, wh1ch is
typical for even genus, and Figure 2 for g = 5, which is typical for odd genus.) It
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Figure 1.

Figure 2. Two slit copies of S pasted together along bz and C.

follows from the Riemann-Hurwitz relation (or from the figures) that if g is even,
then S is a two-sheeted branched covering of § and S with two branch | points in each
case, while if g is odd, then S is a two-sheeted branched covering of S with four
branch points and a two sheeted smooth covering of 8.

Taking first the case where g is even, we can select retrosections
(ai, Eai, bi: Ebi) = (ai, -Gai, bi! —Gbi) (i = 1, ey, g/2)

for S, where the (a;, b;) = (7a;, 7b;) are retrosections for S and the
(a;, b, ;) = (ma;, Tb;) are retrosections for S (see Figure 1). Now, for any hyper-

elliptic surface W2 = f(Z), the differentials (Zi/W)dZ (i=0, ---, g - 1) form a basis
for the holomorphic differentials. Hence, if a period matrix (A B) for S is con- |
structed with respect to the retrosections (a;, oca;, b;, 0b;), with the integrals of
the “even” differentials in the first g/2 rows and the integrals of the “odd” differen-
tials in the remaining g/2 rows, then

~ -~ A A i

A -A B -B
A AB B

where (A B) is a per1od matrix for § with reépect to (4;, 1) and where (A B) is al
period matrix for S with respect to (al, b; ;). The corresponding Riemann matrix is 1

. M+M M-M ‘
A_1B=§( ), |

M-M M+M
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where M =A-1B and M =A-18 are the corresponding Riemann matrices for S and
S, respectively. Matrices of this form will be denoted by <M, M> . If new retro-
sections (aj, b}) (i=1, ---, g) are defined by

b; + ob; b =b

1o = t - .
a; =a; - 0a;, a‘i+g/2 i i i i

b_i+g/2=_aa’i (i=1; Tt g/z)a

then the corresponding Riemann matrix is

_l_(M I)
~ H
2\ 1 _fx!

where - M-! is the Riemann matrix for S with respect to the retrosections

(-by, a;) (i=1, -+, g/2) and I is the (g/z) X (g/z) multiplicative identity matrix.
Matrices of thls form will be denoted by (M M). A surface has a Riemann matrix of
this form if and only if it has one of the form ( M, M) . That there exists a Riemann
matrix of the form (1\7[, M) for hyperelliptic surfaces of even genus having involutions

other than the interchange of sheets generalizes a previous result for g =2 due to
Oskar Bolza [1], [3, pp. 12-22].

On the other hand, if a surface S has a Riemann matrix of the form <1\7i, 1\7I>

with respect to some retrosections (a;, b;), then S has the same Riemann matrix
with respect to the retrosections (aj, b;), where

1 ! ! .
i = Byyg/2s  Big/2= 33,  Pi= bigra,  bPirgz=by (=1, 0, 8/2).

If S is hyperelliptic, it follows from Torelli’s theorem (where S = 8') that the retro-
sections (a;, b;) are of the form (a;, 0a;, b;, ob;) (1 «+, g/2), where ¢ isa
conformal self-homeomorphism of S. Furthermore, 02 1nduces the identity auto-
morphism on the first homology group of S, and therefore being conformal, it is the
1dent1ty mapping [4, p. 737]. Finally, ¢ is not the interchange t of sheets, since

:a; — -a;, by — -b;, and (a;, -a;, b;, - b;) are not homologously 1ndependent
Hence S has an involution other than the interchange of sheets. If wy, -, wg are
the normahzed holomorphic differentials on S with respect to (a;, b;) giving rise to
(M, 1), then

S ow; = 5 wj = S | witg/z (=1, -+, g/2),

ai,Eai,bi,Ebi Eai,ai,gbi,bi aj,0aj,b;, Ob;

so that wjtg/2 = Gw; (i=1, -+, g/2). The w; + Ow; are invariant with respect to
G; therefore they are defined on the quotient surface S =S/(1, ¢), and in fact they
form a basis for the holomorphic differentials on this surface, normalized with re-
spect to the projection of (a;, b;) (i=1, ---, g/2). Hence, M is a Riemann matrix
for S. Similarly, by considering w; - Gw;, we see that M is a Riemann matrix for

the quotient 8 =S/ (1, Lt G). S is a two-sheeted branched covering of each quotient
space, and since each quotient is of genus g/2, the Riemann-Hurwitz relation im-
plies that there are two branch points in each case. We summarize:

THEOREM 1. Let S be a hyperelliptic Riemann suvface of even genus g, Then
S has an involution other than the intevchange of sheets if and only if S has a Rie-
mann matvix of the form
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l(M I)
2\1 ™

and then M and M are Riemann matvices for suvfaces S and S 'respectwely, each

of genus 'g/2 and S is a two-sheeted branched covering of S and of S with two
branch points in each case.

If S has equation w2 = £(z2) and is of odd genus, one selects retrosections
(a;, 0aj, b;, ob;)  and (a(g+1)/2, b(gr1)/2) (@G =1, -, (g~ 1)/2)
for S, where the (a;, b;) = (Ta;, 7b;) are retrosections for § and
Ma(gi1)/2 = 0 = Tb(gi1y/2;
(51, Bi) (i=1, -+, (g + 1)/2) are retrosections for §, where
(@;, b;) = (ma;, tby) (=1, (g - 1)/2), b(gr1)/2 =Tb(gs1)/2, 2a(g+1)/2 = TA(g+1)/2

(see Figure 2). Proceeding as in the case of even genus, we find that the Riemann
matrix <M M> for odd genus is

~ ~ ~ 5K

M*+M| RY|M-M

m -R

DO bt
oo

M-M* | -Rt| M*+M

where M* is M with the last row and last column deleted, R is the last row of M
with the last element deleted, m is the last element in R, and t indicates the trans-
pose. If new retrosections (a;, b;) (i=1, ---, g) for S are defined by

a3 = ag- gai, aig+1)/2 = A(g+1)/2> a{+(g+1)/2 = bi+ 8'bi, bi = bi,
big+1)/2 = P(g+1)/2,  Dbiygr1)/z = -0ai  (A=1, -, (g - 1)/2),

then the Riemann matrix (l\~/I, M) obtained for odd genus is

-~

1 M | I
2 Iitl_ﬁ-l ?

where I' is the ((g + 1)/2) X ((g + 1)/2) multiplicative identity matrix with the last
column deleted.

If one starts with the assumption Ehat a hyperelliptic surface S of odd genus g
has a Riemann matrix of the form < M, M) (and therefore of the form (M, M)) with
respect to some retrosections (a;, b;), then a change to retrosections (aj, bi), where

1 1 [} 1
ai T Ai4(g+l)/2> Ait(g+1)/2 T 24, b; = biy(gr1)/2s biy(gr1)/2 =05

for i =1, --+, (g - 1)/2, and where
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Agr1)/2 = “Hgt1)/z A4 Berrya T Pginysas

leaves the matrix invariant. Proceeding as in the case of even genus, we find that
the retrosections giving rise to <1\7{ f/[) are of the form (a;, Ga;, b;, Ob;)

(i=1, (g - 1)/2) and (ajgi1)/2 5 b(gﬂ)/z) with corresponding normalized differ-
entials wj, le , and w(g+1)/2, where 0 is an involution other than the interchange
t of sheets, and where

Gagi1)/2 = “Agr1)/20  OP(gr1)/2 = “Plge1)/2-

Furthermore, S is a two-sheeted branched covering of the quotient surface

§= S/(1, &) with four branch pomts and M is a Riemann matrix for S with respect
to the projections of (a;, b;) (i=1, -+, (g - 1)/2), the corresponding normalized dif-

ferentials being the projections of the '5 invariant w; + Ewl However, because
b(g+1)/2 is invariant under 10 and therefore need not project to a simple cycle on
the quotient surface S =S/ (1, ¢ 7), the same technique cannot be used to show that M
is a Riemann matrix for 8. Indeed, it is not difficult to show that the group of ma-
trices of changes in retrosections that preserve the form <fll, M > does not pre-
serve the Siegel modular orbit of M. We summarize:

THEOREM 2. Let S be a hyperelliptic surface of odd genus g. Then S has an
tnvolution other than the intevchange of sheets if and only if S has a Riemann matvix
of the form

1 M I

A1t f1/’
and then M is a Riemann matrix for a surface S of genus (g - 1)/2, and S is a two-
Ssheeted branched covering of S with four branch points.
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