EICHLER INTEGRALS AND THE. AREA THEOREM OF BERS
Lars V. Ahlfors

1. Let T be a group of fractional linear transformations acting on the extended
complex plane. We denote the limit point set by A and the set of discontinuity by .
It is assumed that A is infinite, and that @ is not empty.

The orbit space S = /T falls into components S; that inherit the complex struc-
ture of the plane. On each component there is an invariant Poincaré metric
ds = X |dz| with curvature - 1.

L. Bers [2] has recently proved the following remarkable fact:

THEOREM (Bers). If I' can be genevated by N elements, the total Poincare
area of S is at most 4n(N - 1).

In this paper we give a different version of Bers’ proof. It is based on the same
idea, but it uses singular Eichler integrals rather than Beltrami differentials.

Sections 2 to 9 are restatements of known facts in the form that we need. The
proof is in Sections 10 to 14, and in Section 15 we show that the number of compon-
ents is at most 18(N - 1), a slight improvement on the bound given by Bers.

2. The projection map 7: & — S defines a ramification number n(p) > 1 at every
p € S, and the points with n{p) > 1 are isolated. They are projections of elliptic
fixed points. If the fixed point is placed at 0, for convenience, the projection may be
expressed through Z =z, where n = n(p) and % is the value at 7(z) of a local pa-
rameter,

For finitely generated I, it had been shown that there are only a finite number of
points with n(p) > 1 on each S;. Moreover, S; can be extended to a compact surface
'S by the addition of a finite number of points, and we set n(p) = when p € S -S;.
In a typical case, the projection near such a point becomes % =e-1/2, To a small
disk A: (|z| < 6) there corresponds a disk A in the z-plane whose center lies on
the positive real axis and whose circumference passes through 0. The disk A is
contained in €, and it is mapped upon itself by a parabolic transformation in I" with
fixed point at the origin; all other images of A under IT'" are disjoint.

The genus of §i is denoted by g;. We recall that the Poincaré area of S; is
given by

(1) I(Si)=277|:2gi—2+ 22 (1-—1—)].

The information given above is contained in [1], and it will be our starting point,
as it was for Bers. In other respects, we shall strive to make the presentation self-
contained.

3. Let q be any integer. If a meromorphic function ¢ on  satisfies
&(Az)A'(z)? = ¢(z) for all A € T, it determines through projection a differential
$dzZ9 on S.
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Definition 1. We call ¢ a I'-differvential of order q if ¢ can be extended to a

meromorphic differential on S= U S;.

The linear space of such differentials will be denoted by D9 =DYI). It is a free |

sum of lthe spaces Dg formed by differentials that vanish identically outside of
Q’i =7" (Si)'

We shall also use D? and ]3? for the spaces of differentials on S and S;.

4. At p € S, let ¥ be the degree (order) of §, and v the degree of ¢ at points
z € 1-1(p). As above, we assume that the projection is given locally by % =z,
n = n(p). From ¢$dzZ9 = ¢dz? we conclude that n(v + q) = v +q. The possible values
of v differ by multiples of n, and it is readily seen that v > 0 if and only if

V > g = -[a(l - 1/n)], where [x] is the greatest integer that does not exceed x. We

shall say that ¢ is regular over p if ¥ > V.

When n(p) = «, this convention must be modified, for v is not defined. We agree
that ¢ shall be considered regular if it is bounded on the diameter of the disk A, in
other words, as z — 0 through positive values. From % =e-1/% and $dZ? = ¢ dz?

we obtain 329 = ¢z%9. Hence, if q > 0, the boundedness of ¢ implies that $z%3 >0

and consequently ¥ > 1 - q. In contrast, if q < 0, we may only deduce that ¥ > -q.
Accordingly, we set 75 =1 -q if >0 and P = -q if q <0, and we say that ¢ is
regular over p if V >7g.

With reference to the same normalization as before, we record the following
facts.

LEMMA 1. If q > 0, ¢ is regular over p whenever ¢ = o(lzl‘zq) as z — 0
thvough positive values, and this implies

¢ = O(Izl‘zq e-l/IZI).

If <0, ¢ is regular whenever ¢ = o(lzl'zq el/l 2l and this implies
¢ =0(]z[29).

The proof is trivial.
3. To summarize our definition of regularity, it is expedient to write
[a(1 - 1/n(p))]  if n(p) <<,
(2) mi(p) = < q -1 if n(p) =, 9> 0,
q if n(p) =, q <0.
It is of some interest to observe that the last two cases are limiting cases of the

firstt mYp)= lim [q(1 - 1/n)].

n— oo

We define the ramification divisor of order q as the divisor a9 on S with co-
efficients - m%(p). According to Section 4, ¢ is regular if ¢ is a multiple of a?,

More generally, let @ be any divisor on S with zero coefficients at the branch

|

'
|
i
H

points. We say that ¢ is a multiple of o if ¢ is a multiple of a® + a. The space of :

such multiples is denoted by D%(a), and its restriction to by D?(a). Similarly,
B9(B) and DI(B) refer to multiples of B on § and §;. Obviously,
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(3) D{(a) ~ DHa?+ @).

6. The divisors @9 and al~2 are closely related.
LEMMA 2. a%9=-a!"9,

For n(p) = o, it follows trivially from (2) that m? = - m!-9, For n(p) =n < o,
we find that

m% + m! ¢ <ql-1/n)+(1-q)(1-1/n)=1-1/n,
and for diophantine reasons,
md+m!"% > q(1-1/n)-(1-1/n)+(1-q)(1-1/n)-(1-1/n)=-1+1/n.
Hence m%+ m!~9 = 0, and the lemma follows.

7. The Rlemann—Roch theorem gives a relation between the dimensions of
TSq(ozle + a) and D; 1-qgl-a . a), that is, according to (3), between the dimensions of
Dq(a) and D} - a(-a).

In the following, @; denotes the restriction of a to §i .
LEMMA 3.

(4) dim D(a) = dim D} "%-a) + 22 m%Up) - deg a; + (2q - 1)(g; - 1).

54

We omit the standard proof, but remark that D?(oz) = 0 whenever
deg(a? +a,) > 2q(g; - 1).

This is true when deg @; is sufficiently large. We shall need the following special
case:

LEMMA 4. D}a)=0 if deg @; > 0 and q < 0.
Indeed, by virtue of (1),
deg(oz;1 +a) > - 27 m%(p) > - 27 q(1 - 1/n) > 2q(g; - 1).
S. S.
1 1
In particular, there are no everywhere regular differentials with q < 0.

For q > 2, we obtain from Lemmas 3 and 4

(5) dim DX0) = 27 m%Up)+ (2q - 1)(g; - 1),
PES

and it follows further that (4) can be rewritten as
(6) dim D}(@) = dim D; "%(- a) + dim DX0) - deg .

8. Throughout the remaining part of the paper, we assume q > 2.

Definition 2. A meromorphic function f on  is called an Eichler integral of
order 1 - q if £(24-1) ¢ Da,
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i
We denote the space of Eichler 1ntegra1s by E!-2. The study of Eichler mtegrals
is based on the following identity, discovered by G. Bol and quoted in [3].

LEMMA 5.

(7) D*I (A7) A'(z)! 9] = 129D (Az) A'(2)2.

Here A is an arbitrary linear transformation, and f needs to be defined and
analytic only in a neighborhood of a point Azg # . Let ¥ be a small circle about
Azy. By Cauchy’s integral formula and the identity

(AL - Az)® = (€ - 2)*A'(§)A'(z),

we obtain for Az inside 7 the equations

a1 (az) - UL ( (cf(t:)dt BCES O - MEXUE

27i - Az)2a 27 -1, (AL - Az)%d

_ q- 1! HADA'®)! ™A _ . 1-ap2a-1 IR
T~ oni S -1, (€ - BRI A'(z) D17 [f(Az)A'(z)" ~Y].

The second application of Cauchy’s formula is valid if z is inside A-l v, and this is
so for sufficiently small y because A~le #z,,
9. As an immediate consequence, we obtain the following. |
LEMMA 6. D'"% c E!"9,

For another consequence, assume that f € E1~9, and set
f(Az)A'(z) 9 - £(z) = PA1(z).

Then (PA f)(zq‘l) = 0, and we conclude that PAf isa polynomial of degree at most
2q - 2, in each component of 2. The polynomials PAf will ordinarily differ from
component to component.

The PAf are called periods of f, and they are interdependent according to the
scheme

(8) PABi(z) = PR #(Bz)B'(z)! "2 + PP1(z).

We conclude that all periods can be computed from the periods PAi f, which corre-
spond to the generators A;, -+, Ay . In particular, f € D1-2 if all PAif are 0.
10. It will now be assumed that « is neither a limit point nor an elliptic fixed
point. Under this condition, it is easy to see that for each q > 2 the series
27, |A'(€)]? converges uniformly on compact subsets of D.
By virtue of the convergence, the function

_ A'©)?
(9) ¥z, €) = AGEI' AT
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is meromorphic in both variables, for z, { € Q. As a function of {, the series is a
Poincaré theta-series, and it is a matter of easy verification that

¢(z, ADA(C)T = ¢(z, C).

It can also be shown that the differential is regular except for at most a simple pole
at z.

However, for our purposes it is the properties of ¢(z, {) as a function of z that
are important. It is almost obvious that ¢(z, ) € E! ‘q, but the crucial fact is that
the periods are the same in all components.

LEMMA 7. The periods pA &(z, €) are equal to the same polynomial of z, in all
of Q.

The proof is computational. For a fixed B € I, the summation in (9) can be
taken over all AB, and we obtain the equations

BYALIA)T _ 172 s BUALITH 2 Are)d
A§l" z - BAC B'(z) 2 z - At ’

¢(Bz, §) =

from which we deduce that

q-1/2 1epnd
ez, OB -0tz 0 = D | (SRS) - | A

Here, since B'(z) is of the form (cz + d)-2 , one recognizes that the bracketed ex-
pression is a polynomial in z of degree 2q - 1 and that it is divisible by z - A{. It
follows that PB ¢(z, €) is indeed a polynomial of degree at most 2q - 2.

11. To complete the study of the function q(z, ), we need to investigate its be-
havior at a parabolic puncture. With the same notations as in Section 4, the points
At lie on or outside a circle passing through 0, and as we approach the fixed point
along a diameter, we have the inequality |z - ACI < |z| for sufficiently small |z].

It follows from (9) that the regularity condition in Lemma 1 (with 1 - q < 0) is amply
fulfilled.

Therefore, any period-free linear combination of functions ¢(z, {) is a differen-
tial of order 1 - q, regular over the punctures.

12. Let @ be a divisor formed by the projections of m distinct points
€1, *, £y € Q different from the elliptic fixed points.

LEMMA 8.

(10) dim D! "9(-@) > deg @ - (N - 1)(2q - 1).

Consider the linear space spanned by ¢(z, {;), ---, ¢(z, §,,) together with all
polynomials of degree at most 2q - 2. This subspace of El1-9 has dimension
m + 2q - 1, and in order that an element have zero periods over A;, ---, Ay it must
satisfy N(2q - 1) linear conditions. The lemma is proved.

Actually, (10) is true for arbitrary o, but the proof becomes more complicated.

13. We combine (10) and (6) to obtain
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(11) 27 (dim DX0) - dim D{(e)) < (N - 1)(2q - 1).

1

The sum needs to be extended only over the terms with o; > 0. But for these terms
we may choose a@; so large that dim D(a) = 0. The result applies to an arbitrary
selection of terms, and we have proved the following result.

MAIN THEOREM,
(12) dim D(0) < (N - 1)(2q - 1).

This is Bers’ Corollary 2, but we prefer to call it his main theorem because it
contains basic information and is stronger than the area theorem.

14. The area theorem follows when we express dim D9(0) = 27 dim D?(O) by use
i

of (5) and let q — <. We obtain the inequality

E( 2 (1-1/n)+2gi—2) <2(N-1),

i P ESi
and we deduce from (1) that the total area is at most 47(N - 1).

15. We conclude by showing that (12) leads to a better estimate of the number of
components. We need to know when D?(O) does not reduce to 0.

First of all, if g; > 2, it follows immediately from (5) that dim D > 2q - 1 > 0.
The same is true if g; = 1, for then there is at least one puncture, and
m%(p) > [q/2] > 0.

It remains to consider the punctured spheres. We contend that in all cases
dim D;} (0) + dim Di6 (0) > 0. Since the dimensions do not decrease when the ramifica-

tion increases, we need to check only the lowest permissible signatures, namely
2,2,2,2,2), (2,2,2,3), (2,3,7), (2,4, 5), and (3, 3, 4). The result is as follows:

dim D*(0) dim D®(0)
@2, 2,2, 2) 3 4
@, 2, 2, 3) 1 1
@, 3. 7) 0 1
(2, 4, 5) 1 0
(3, 3, 4) 0 1

We add the inequalities (12) for q =4 and q = 6, and conclude that the number of
components is at most 18 (N - 1).

It would be useful to know all cases with dim D9(0) = 0. The only candidates are
the punctured spheres. If the dimension is 0, we must have

2q-1=2[q(1-1/0)] > (q-1) 2 (1 -1/n) > (q - 1)(2 + 1/42),

which gives q < 43. Actually, q = 43 with signature (2, 3, 7) does give dimension 0.
To check the other cases is too laborious, unless a real need arises.
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