IRREDUCIBLE OPERATORS
P. R. Halmos

Dedicated to Marshall Harvey Stone on his 65th birthday.

THEOREM. On a sepavable Hilbert space, the set of ivveducible operatovs is a
dense Gg .

Remarks. The theorem says that the set of irreducible operators is topologically
large: most operators are irreducible. (The separability assumption is obviously
necessary; on a non-separable space every operator is reducible.) The proof rests
on several analytic and algebraic lemmas; they occur in Section 1 below. Section 2
contains a few related remarks on finite-dimensional spaces (everything is easier)
and on the set of normal operators (it is topologically small). The topological con-
siderations needed to show that the set of irreducible operators is a Gg occur in
Section 3. Although the principal theorem gives some information about the size of
the set of reducible operators, it does not answer all questions about that set. For
instance, it is still not known whether the set of reducible operators is dense; Section
4 contains some comments on that subject. Closely related to this whole circle of
ideas is the possibility of a topological attack on the problem of invariant subspaces.
It is, after all, not inconceivable that the existence of an operator with only trivial
invariant subspaces could be proved by showing that the set of all such operators is
topologically large. Section 5 contains a result that seems to kill that hope, and it
suggests that in fact the set is topologically small. An appendix contains a theorem,
a special case of which is used in Section 2; the result (rank is weakly lower semi-
continuous) may be of interest in its own right.

Terminology. Hilbert spaces are complex, subspaces are closed linear mani-
folds, operators are bounded linear transformations, and, when it is not otherwise
indicated, all topological concepts (for both vectors and operators) refer to the norm
topology. The commutant of a set of operators is the set of all those operators that
commute with each operator in the given set. An operator is ivreducible if its com-
mutant contains no projections other than 0 and 1.

Notation. The underlying Hilbert space is H. If E is a subset of H, then VE
is the span of E (the smallest subspace that includes E). If E is an orthonormal
basis for H, then ID(E) is the set of all operators that are diagonal with respect to
E (that is, the operators for which each element of E is an eigenvector). If A is an
operator on H, then

NA=L(A+A% and $A=-21—1(A-A*).

Dol =

The set of all those operators A for which both % A and < A are simple diagonal
operators is ID. That is: A € ID if and only if there exist orthonormal bases E and
F such that % A € ID(E), I A € ID(F), and all eigenvalues of both % A and S A
have multiplicity 1. If K is a set of operators, its commutant is K'. The set of ir-
reducible operators is I, the set of reducible operators is IR, and the set of scalar
multiples of the identity is ©.
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1. DENSITY

LEMMA 1. A necessary and sufficient condition that an opevator A be irveduc-
ible is that {R A}' N {3 A} = ©.

Proof. If A is reducible, then there is a non-trivial projection P in {A}'.
Since P is Hermitian, P ¢ {A*}', and therefore Pe {® A}' N {3 A}'; it follows
thatif {9 A}'N {S A}'=©, then A € L. If, conversely, { R A}' n {3 A}' # O,
then that intersection contains a non-trivial projection, and therefore A is reducible;
it follows that if A € I, then {% A}' N {3 A}' = ©.

LEMMA 2. If E is an orthonormal basis and A is an operator inID (E) with
simple spectvum, then {A}' = D(E).

Proof. A standard and elementary computation.

LEMMA 3. If E and F ave ovthonormal bases, then a necessary and sufficient
condition that D(E) N ID(F) + @ is that theve exist non-tvivial subsets Eg and Fg of

E and F, respectively, such that V Eg = VFO .
Here non-trivial means not empty and not the whole set.

Proof. If A € D(E)N ID(F) and A ¢ ©, consider an eigenvalue ag of A. Let
E, and F( be the sets of eigenvectors corresponding to @g in E and in F, respec-

tively. Clearly, VEO = VFO = {f: Af = a@¢f}. Conversely, if E; and Fy are non-

trivial subsets of E and F with VEO = V Fg, let A be the projection whose range
is that common span. Then A ¢ @ and A ¢ ID(E) N ID(F).

LEMMA 4. If A is an opevator such that both % A and I A ave diagonal oper-
ators with simple spectrum (that is, if A € D), and if I A has an eigenvector f
such that (e, f) #+ 0 for every eigenvector e of R A, then A € 1.

Proof. Let E and F be orthonormal bases such that % A € ID(E) and
% A € D(F). If Eg and Fy are subsets of E and F such that VEO = VFO, then

VE - 5y = (VEO)l - (VFO)L - V(F- Fy).

There is no loss of generality in assuming that f € F (the simplicity assumption
implies that some scalar multiple of f belongs to F), and, in view of the preceding
comment, there is no loss of generality in assuming that f € Fy (since f belongs
either to Fy or to F - F, and the difference between the two cases is merely nota-
tional). Since, by assumption, f has a non-zero projection on every e in E, the only

way it can happen that f € V Eg is that Eg = E. The desired conclusion follows
from Lemmas 3, 2, and 1.

LEMMA 5. ID is dense.

Proof. 1t is sufficient to prove that the set of Hermitian operators in ID is dense
in the set of all Hermitian operators. To do this, represent any given Hermitian
operator as a multiplication on L2 over a finite measure space. (This is where the
separability assumption comes in.) The multiplier can be uniformly approximated
by simple functions. Multiplication by a real-valued simple function is the direct
sum of a finite set of real scalars, and consequently it is a diagonal Hermitian oper-
ator. A diagonal Hermitian operator can obviously be approximated by one with
simple spectrum.
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The next auxiliary result is easy, but it has a certain interest in its own right. It
is the solution of an approximation problem: given two unit vectors, find a unitary
operator that maps one onto the other and is as near as possible to the identity.

LEMMA 6. If f and g ave unit vectors, then the infimum of ]I 1- U|[ over all
unitary operators U such that Uf =g is equal to ||f - g|, and it is always attained.

The proof shows that U can be chosen so that Uh = h whenever h L {f, g}; this
is sometimes useful.

Proof. If Uf =g, then |1 - U| > |f- Uf| = ||f - g, so that the infimum is not
smaller than nf -g | . What follows is the proof that [f - g| can always be attained.

If g=oaf put Uf = af and Uh =h whenever h L f. Inall other cases the span of
f and g has dimension 2. Define Uh = h whenever h L {f g _], the problem is there-

by reduced to an elementary matrix computation. Choose coordinates so that
f=(1, 0). If g= (@, B) (with |a|2+ |8|2 =1, of course), put

a -B*
(")
N
Clearly, U is unitary. Since |1 - U|%=|(1 - U)@@ - U*)] = |2 - U - U*], since

2-U-U*is 2-a - a* times the identity, and since |f - gl|2 =2 - a - a*, the
proof is complete.

Proof of density. Since ID is dense (Lemma 5), it is sufficient to prove that if
€ >0 and A € D, then there exists an irreducible Ag in ID with ||A Aon <eE.
Write B= %1 A and C= J A, and let E and F be orthonormal bases such that
B ¢ D(E) and C € ID(F).

Consider an arbitrary f in F. The Fourier expansion of f with respect to E
may have some zero coefficients; let g be a unit vector obtained from { by varying
those coefficients slightly so that (e, g) # 0 for all e in E. Let the variation be so
slight that "f - g“ <eg/2 H CH . Lemma 6 yields a unitary operator U such that
Uf =g and |1 - U|| <e/2|C]. 1f Cy=UCU*, then Cy is a diagonal Hermitian
operator with simple spectrum and

lc - col = llc - vcv*| < |c - uc| +|uc - ucu*|
<lel-lr-olf +loc]- {1 -v*] <e.

If Ap=B+1iCg, then Ay € ID. Since C( has an eigenvector (namely g) that has
a non-zero inner product with every eigenvector of B, it follows from Lemma 4 that
A is irreducible. Since, finally,

|a - Aol = [lc-cof <&,
the proof is complete.

R. G. Douglas has observed that in the proof of Lemma 5 it is possible to invoke
the von Neumann approximation (each Hermitian operator when suitably perturbed by
an operator of arbitrarily small Hilbert-Schmidt norm becomes diagonal) in place of
the more obvious norm approximation; the result is that the principal theorem is
true in the sense of Hilbert-Schmidt approximation also. The same result was ob-
tained, later but independently, by J. G. Stampfli.
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2. FINITE-DIMENSIONALITY AND NORMALITY

If H is finite-dimensional, the theorem has a relatively simple geometric proof,
and it can be significantly strengthened.

Here is a possible proof. (a) The operators all whose eigenvalues have algebraic
multiplicity 1 are dense. (b) If all the eigenvalues of an operator have algebraic
multiplicity 1, then its eigenvectors span H, and consequently there exists a linear
basis of H consisting of eigenvectors. (c) By a small perturbation an operator
whose eigenvectors span H can be transmuted into another one of the same kind
such that some particular element of a basis consisting of eigenvectors is nof
orthogonal to any other. (Consider a basis of eigenvectors, form the span of all but
one, note that that one is not in the span, and perturb it slightly, if necessary, so as
to push it out of the orthogonal complement of the span.) (d) If a basis consisting of
eigenvectors of an operator is such that some element of it is not orthogonal to any
other, then that operator is irreducible. (For each reducing subspace, every eigen-
vector must belong either to it or to its orthogonal complement; whichever one the
distinguished “non-orthogonal” vector belongs to must contain all others.)

The strengthening is that I is not only a G (the proof of this in the general case
is in Section 3) but open.

PROPOSITION 1. On a finite-dimensional Hilbert space the set of reducible
operators is closed and nowhere dense.

Proof. Suppose that A, is reducible and A, — A, and, for each n, let P, be a
non-trivial projection that commutes with A, . Finite-dimensionality implies the
compactness of the unit ball in the space of operators. There is, therefore, no loss
of generality in assuming that P, — P, where P is, of course, a projection, and,
clearly, AP = PA. If dim H =k, then 1 < rank P, <k - 1; since rank is lower
semicontinuous (see the Appendix), it follows that P #0, 1. This proves that R is
closed; that it is nowhere dense follows from the already proved density of its
complement. '

Similar easy techniques give information about the size of the set of normal
operators on spaces of arbitrarily large dimension.

PROPOSITION 2. On a Hilbert space of dimension greater than 1, the set of
normal operators is closed and nowhere dense.

Proof. Closure is obvious; since the mapping A — A* A - AA* is continuous, the
set {A: A¥*A - AA* =0} is closed. A closed set is nowhere dense if and only if its
complement is dense. Since an irreducible operator can be normal only if the space
has dimension 0 or 1, the conclusion for separable spaces follows from the density
of the set of irreducible operators.

There is a better, direct proof, independent of the previous density theorem, that
works for non-separable spaces just as well as for separable ones. It is sufficient
to prove that every normal operator is arbitrarily near non-normal ones. For
scalars this is obvious. (Find a non-normal T, and consider A + ¢T, where X is the
given scalar and ¢ is small.) If A is normal but not a scalar, then either % A or
3 A is not a scalar; say 9% A is not. Then there exists a Hermitian T that does not
commute with % A (this is where it is necessary that the dimension be greater than
1). If € > 0, then A + ieT is not normal but can be arbitrarily near to A.
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3. TOPOLOGY

This section contains the second half of the proof of the principal theorem, that
is, the proof that I is a Gg.

Let IP be the set of all those Hermitian operators P on H for which 0 < P < 1.
Recall that IP is exactly the weak closure of the set of projections. Let IPy be the
subset of those elements of IP that are nof scalar multiples of the identity. Since
IP is a weakly closed subset of the unit ball, it is weakly compact, and hence the
weak topology for IP is metrizable. Since the set of scalars is weakly closed, it fol-
lows that IP; is weakly locally compact. Since the weak topology for IP has a count-
able base, the same is true for Py, and therefore IP; is weakly o-compact. Let

P, IPp, -+ be weakly compact subsets of IPg such that U =1 IP, =1Pg.

It is to be proved that R is an F; (norm topology). Let IP, be the set of all
those operators A on H for which there exists a P in IP, such that AP = PA

(n=1, 2, 3, :-+); the spectral theorem implies that U: | P, =R,

The proof can be completed by showing that each Il:"n is (norm) closed. Suppose,
therefore, that Ay € IP and that Ay — A (norm). For each k, find a Py in IP,
such that Ay Py = PrAyx. Since IP, is weakly compact and metr1zab1e there is no
loss of generality in assuming that the sequence {Py} is weakly convergent to P,
say. (This is the point where it is advantageous to consider all the operators in IP
and not just projections; there is no guarantee that P is a projection even if the
Py,’s are. Note that P € IP,, so that, in particular, P is not a scalar.)

Assertion: AP = PA. This follows from an easy lemma: if Ax — A (norm) and
P, — P (weak), then Ay P, — AP and P, A; — PA (weak). Indeed:

|(Ax Pict, g) - (APE, g)| < |(AxPyif, g) - (APLT, g)| + [(APyE, g) - (AP, g)|
< JAg- Al -] - el + [(Py - PXE, A*g)].

(It is important that the sequence {Py} is bounded.) These inequalities imply that
Ay P, — AP (weak); the other order follows Jfrom the consideration of adjoints.
Once this is done, everything is done: A € IPn , hence 1P, is closed (norm), hence
R is an Fg (norm)

4. REDUCIBILITY

By the principal theorem, the set R of reducible operators is always an F,
and, by Proposition 1, in the finite-dimensional case R is closed. Could it be that
IR is always closed? The answer is no. Reason: on an infinite-dimensional space
every operator of finite rank is reducible, so that every compact operator is in the
closure of IR, but it is easy to construct compact operators (weighted shifts) that are
irreducible.

There is another example, which shows that IR is not closed in a more surpris-
ing way. For each positive integer n, let IR, be the set of all operators that have a
reducing subspace of dimension n.

PROPOSITION 3. Every isometry is in the closure of Ry .

Proof. Observe to begin with that for an operator to be nearly irreducible is the
same as to be near to a reducible operator. This auxiliary assertion can be stated as
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follows, in precise terms: if |A - Ag| <& and P is a projection such that
AgP =PAy, then |AP - PA| < 2¢; if, conversely, |AP - PA| <& and
Ag=PAP+(1 - P)A(1 - P), then AgP = PAy and [|A - Ap] < 2¢. The proof of the
first assertion is implied by the inequality

|aP - PA]l < AP - AP + [AoP - PAG| + | A, - PA].

The proof of the second assertion is implied by i

[A - Aol = @@ - PAP +PAQ - P)|

|

I AP - PA)P - P(AP - PA)| < 2||AP - PA].

The motivation for the definition of Ay is the consideration of the matrix of A cor-
responding to the direct sum decomposition of H into ran P and (ran P)': throw
away the off corners.

In view of the preceding paragraph, it is sufficient to prove that if U is an
isometry, then there exist projections of rank 1 that nearly commute with U. To
prove it, let A be a number of modulus 1 that is an approximate eigenvalue of U,
that is, an element of the approximate point spectrum. It follows, by definition, that
corresponding to each positive number € there is a unit vector e such that
| Ue - xe|| <&, and hence such that

lu*e - axe|| = |-2*U*(Ue - 2e)| <c¢.
If P is the projection onto e, that is, if Pf = (f, e)e for all f, then
| (WP - PUX| = & e)Ue - (UL, e)e|| < ||, e)Ue - (£, ere| + [ (£, elre - (£, U*e)e|
<6 ) - [ue - xef + [i£]l - [u*e - el < 2¢ 1],

so that |UP - PU|| < 2e. The proof is complete.

Since there exist irreducible isometries (for example, the unilateral shift),
Proposition 3 implies again that IR is not closed.

Proposition 3 raises the hope that IR} is dense, but it is not. If H is a Hilbert
space, and if A is the operator on H () H with matrix ((1) g), then A is not in

the closure of R; . (It is easy to see that A is in R5; in fact, A is the direct sum
of operators of rank 2, equal in number to the dimension of H.)

To prove that A is not in the closure of R}, it is sufficient to prove that the
infimum of "A - B", as B varies over IR}, is positive. Given B in Rj, let
(f, g> (with f and g in H) be a reducing eigenvector of B of norm 1; that is,

B(fg) =2{fg), B*{(Le) =2*{tg), |il*+]el® =1.
Since A - A = (A - B) +(B - 1), it follows that
la-0¢te) | < la-B] ana  Jar-a {6 e)] < A -Bl;

since (A-A){f, g) = (-2, £-2g) and (A* -2*) (£, g) = {g- N, -N*g), it
follows that
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A2 I£]2 + [l£- 2> < Ja-BJF  and g -2*¢)* + 2P [e)* < |a-B]*.
The latter inequalities imply that
1+2|2|2-amax(, g) < 2]A-B|?,

and hence that 1 +2|x]|2 - 2 |a| <2]|A - B]|2. Since 1 - 2]|r|2-2]|a]>1/2 for
all A, the proof is complete.

There is at least one question along these lines that seems to be of interest and
that is unanswered: is IR dense?

5. INVARIANCE

An operator is transitive if {0} and H are the only subspaces it leaves invar-
iant. The problem of invariant subspaces is to decide whether there exist transitive
operators on Hilbert spaces of dimension greater than 1. (The word “transitive”
was suggested by W. B. Arveson. Its present meaning is not identical with its mean-
ings in group theory and ergodic theory, but it is in close harmony with them.) Let
T be the set of transitive operators. One possible approach to the problem is to try
to prove that T is not empty by proving that it is topologically large, i. e., that it is
(or includes) a dense Gg. As it stands, this is doomed to failure: T is not dense.

PROPOSITION 4. If U is a non-invertible isometry, and if |[U* - A|| < 1, then
ker A = {0}.

Proof. Since [|[U* - Al <1, it follows that |U*U - AU|| <1, i.e., that
|1 - AU|| < 1. From this, in turn, it follows that AU is invertible, and hence that
ran A = H. If it were true that ker A = {0}, then it would follow from the closed
graph theorem that A in invertible. Since AU is already known to be invertible, it
would then follow that U is invertible, and this contradicts the assumption.

Since there exist non-invertible isometries (for example, the unilateral shift),
Proposition 4 implies that T is not dense.

There is an open question along these lines that has at least some curiosity
value: is the complement of T topologically large? The following result is perti-
nent.

PROPOSITION 5. The set of all operators with an eigenvalue is dense.

Proof. The result is an easy consequence of the existence of approximate eigen-
values (compare the proof of Proposition 3). Given an operator A, let A be an ap-
proximate eigenvalue of A; it follows that corresponding to each positive number &
there is a unit vector e such that |Ae - xe| <&. If P is the projection onto e, that
is, if Pf = (f, e)e for all f, and if Ag=A - (1 - P)AP, then a direct verification

roves that e is an eigenvector of A with eigenvalue (Ae, e). Since
T(Ae, e) - A| <&, it follows that

la - a0x| = |1 - P)aPE| < [ e)| - [ (1 - P)Ae]
< il - lae - (ae, ede]| < 26 1],

so that ||A - AO” < 2¢. The proof is complete.
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(In matrix terms the proof could have been phrased this way: choose an approxi-
mate eigenvector e for A with approximate eigenvalue ); use e as the first term of
an orthonormal basis; replace the first column of the resulting matrix for A by

<)L, 0, 0, >, the new matrix A, has the eigenvalue A and is near to A.)

APPENDIX

THEOREM. Rank is weakly lowey semicontinuous.

The rank of an operator is the dimension of the closure of its range. The state-
ment means that for each operator Ag there exists a weak neighborhood N of Ag
such that rank A > rank Ag for all A in N. Equivalently, in terms of convergence:
if {An} is a net that converges weakly to Ag, then lim inf, rank A, > rank Ag.

The possible values of rank in this context are the non-negative integers, to-
gether with *; no distinction is made among different infinite cardinals. Were such
a distinction to be made, the result would become false. Here is an example. Let H
be a non-separable Hilbert space with an orthonormal basis {e j}. Let D be the set
of all countable subsets of the index set, ordered by inclusion: for each n in D,

write A, for the projection onto V {ej: j € n}. Since for each fy in H there exists
an ng in D such that fo L e; whenever j ¢ ng, it follows that A, — 1 (not only
weakly, but, in fact, strongly). Since rank A, = 8y and rank 1 > 8, the cardinal
version of semicontinuity is false.

LEMMA 1. If {ey, ***, ey} is an ovthonormal set and |f; - e;]] <1/vn
(i=1, ---, n), then the set {f;, ++, £} is linearly independent.

Proof. If &; #0 for at least one i, then

20 & (8 - el < 20 &5 (85 - el < ( El Iiil)'(l/ﬁ) < ﬁ\/zl & [° /v,
i=1 i=1 i= i=

and therefore

n

27 g5l > 120 ge] - |2 £ (g - e) >\/E Isilz—\/E l£.]2.
i=1 i=1

i=1 i=1 i=1

LEMMA 2. Rank is strongly lowev semicontinuous.

Proof. To prove: if rank Ag >n (=1, 2, 3, ---), then there exists a strong
neighborhood N of A, such that rank A > n for all A in N. Let {el y ", en} be
an orthonormal set in ran A ; find f;, ---, f, such that Ayf, =e, (i=1, ---, n).
Write

i

N = {A: "Afl _AOfi” <1/ﬁ’ i= 1, "',l’l};

it follows from Lemma 1 that, for each A in N, the set {Af;, -+, Af } is linearly
independent.

Proof of the theorem. To prove: if rank Ag >n (=1, 2, 3, -+ ), then there
exists a weak neighborhood N of Aj such that rank A >n for all A in N. Let
{el s 0 en} be an orthonormal set in ran A ; find f;, ---, f, such that
Ayf, =¢ (i=1, -+, n). Write
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N = {A: |((A - Ayt ei)| <gj;i,j=1, >, n},

where € is an as yet unspecified positive number. Given A in N, write

@;; = (Afj, e;). Note that (Aof;, e;) = (ej, e;) = @;;. Since (by Lemma 2) rank is
strongly lower semicontinuous, and since for finite-dimensional spaces all the usual
operator topologies coincide, it follows that if the matrix a is sufficiently near the
identity matrix (that is, if € is sufficiently small), then rank & > n, and therefore
rank ¢ =n. In other words, if ¢ is sufficiently small, then @ is invertible. This

n
implies that if 27 j=1 §;Af; = 0, so that

n n
2 o585 = 2 (Afj, e5) €5 = 0,
j=1 j=1

then &; = .- = £ =0, so that the set {Af;, -+, Af_} is linearly independent.
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