QUASICONFORMAL MAPPINGS OF THE UNIT DISC
WITH TWO INVARIANT POINTS

Jan KrzyZz and Julian Lawrynowicz

INTRODUCTION

Let A be the unit disc, and let w = £(z) be a Q-quasiconformal mapping of A
onto itself such that £(0) = 0 and f(z,) = z, for some zy (0 < |zo| <1). ¥ Q=1,
then obviously w = f(z) is the identity mapping. It is natural to ask how far a Q-
quasiconformal mapping w = f(z) satisfying the above-mentioned conditions can de-
part from the identity.

In this paper, we obtain a parametric representation for quasiconformal map-
pings of A onto itself that leave the points 0 and zg unchanged. Our results (Theo-
rems 1 and 2) are analogues of corresponding results due to Tao-shing Shah [5]. A
simple derivation of a parametric representation for quasiconformal mappings has
recently been given by F. W. Gehring and E. Reich [3]. However, the variable com-
plex dilatation as given by formula (2.1) in [3] does not imply the invariance of z
for changing t.

Theorems 1 and 2 enable us to obtain an estimate of |f(z) - z| (Theorem 3) in
terms of z, zg, and Q for the class under consideration. In the limiting case, the
estimate yields an inequality due to Tao-shing Shah [5].

Z
1. THE CLASS S5’ AND ITS SUBCLASSES

Z
Let SQO denote the class of all functions f that map A onto itself Q-quasicon-
formally with £(0) = 0 and f(zg) = zg. Further, let S, denote the class of all meas-
urable complex dilatations p defined a.e. in A and bounded by a constant less than
1. Let (S) denote the subclass of S, con51st1ng of functions belonging to the class
c! and contlnuable on A _as cl functmns Let S be the subclass of (S) consisting
of functions that have in A partial derwatwes of the first order subject to a global

Holder condition with a certain exponent 6 (0 <6 <1). Finally, let (S)Q and SQ

denote the subclasses of S 0 consisting of functions generated by complex dilatations

that belong to the classes (S) and § «» respectively.

AZ A L zZ
LEMMA 1. The subclasses SQ and (S)QO ave dense in the class SQO .
The proof is analogous to the proofs in [1] and [4].

2. AN INTEGRAL LEMMA

In what follows, we consider functions f and the corresponding complex dilata-
tions g depending on one real parameter t.
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For an open set D, we use the notation a(z, t) 3 a(z) as t — 0+ in the sense of
so-called almost uniform convergence in D (that is, uniform convergence on com-

__;a(z . a 3(_2—)

pact subsets of D) and the convergence % on its closure.

LEMMA 2. Suppose a complex dilatation y. € (S),, defined in Ax{t: 0<t<L T},
Fulfills in A the conditions

‘u(?{ t) o(z) for t— 0+,

lnu'ziZ, t)l Sk(Z) fO'V 0<t_<_T,

wheve ¢ and k ave bounded. Suppose, morveovev, that the function f (£(0, t) = 0
0 <t < T) genevated by . and mapping A onto itself quasiconformally for

AL
0 <t< T satisfies the condition f(zg, t) =2z¢ (0 <t < T). Thenfe g,

) f(z, t) - z = z(zg - 2) S§ {C(zo ¢(£) 4= E(__C—) _ }'dg dn

t T e] <1 -0@E-8) " E(1-2zy8)(1 - zb)
for t—=0+ (£ =§&+in) in A,
and
70 - 8(c) Q) }
" |f:|<1{f<Zo OG-0 T z0a -0
(2) B —
_1-3gz { 9(¢) + ¢(t) }dédn
T el V8@ -208)(= -8 T(zo - D)1 - 28)
on 04\,

Proof. In the analogous lemmas of [4] and [5], it is proved first that the function
B defined by

(3) b2 )+l SS S8) agan
lel<1®

is holomorphic in A and continuous on Z, and that

f(z, t) - =

= A.
s 0 on o

(4) 9% lim
t— 0+

The only changes in the proof arise from the replacement of the supplementary con-
dition f(1, t) =1 by f(zo, t)=29 (0<tLT).

Let us write Bz) ( ) + ¢ + h(z), where b and c are constants and h is holo-

morphic in A, It can eas11y be verified that



QUASICONFORMAL MAPPINGS OF THE UNIT DISC 489

1§
27i |Z'|= z' -z

2B 4zt < nz) bzt 2me (2] <1).

Hence, in view of (3) and (4),
(5) B—gz—) = ]EO C SS 72 9@ _ dédn .
|C| <1 1 = Z
From (3), (5), and the condition £(0, t) = 0 (0 <t < T), we obtain the formula

- {f #0) ggan,
lel<1 ¢

and consequently

lim f(—ZLtt)—'—Z SS té@) dedn - SS (9
t—0+ |§]<1 §|<1§(1—Z§')
Using the condition f(z,, t) = z5 (0 <t < T), we obtain first the equation
U (9 ﬁ _ 3@ _
c == dédn - — dédn,
T SR D T T L T gD

and then (1). Obviously, f € (Q)ZO .
The formulae (1) and (4) imply (2), and this completes the proof.

3. PARAMETRIZATION THEOREMS

Lemma 2 implies the following theorems.

THEOREM 1. Suppose a complex dilatation . € Sy defined in Ax {t: 0 <t < T}
has partial derivatives Wy and [y . Suppose, moreover, that the function {
((0, t) =0, 0 <t <L T) genevated by | and mapping A onto itself quasiconformally for

0 <t <L T satisfies the condition f(zy, t) =29 (0 <t <T). Then f € Sgo and

af _ f(zg - 1) Sg { (¢, t) $(C, £)
6) _— = —,—_— 2 + — _, —
(6) p €] <1 Elzo - O(E-8) " F(1-208)(1 - £E)

}d%dn in O,

wheve the function ¢ is defined by the formula

w (1, t), t)

(7) M = T v, 0]

exp (- 2i arg fEI(C, t);

movreover



490 JAN KRZYZ and JULIAN LAWRYNOWICZ

zo - £ { #(&, t) &, t) }
T e < C(zo-C)(f—§)+§(1-zof)(1_fg) ac dn

(8)

_ 1o %f { 8(&, £ D }d d
ST l¢] <1 C(l—EOC)(f—C)+E(£0_g)(1_fg) tEdn  on 3A.

THEOREM 2, If w=f(z) belongs to §on , then there exist functions 10
w = ¢, t), depending on zy (|zo| < 1), defined in A x {t: 0 <t < T =log Q}, and
having continuous partial devivatives ¢, and ¢z;and 20 v = k(zg, Q) > 0, defined
Jor 0< |zO| < 1, such that

(1) |¢@z, t)] < k(z0,Q) X {t: 0<t < T=1logQ};
(i) k(zo, Q) L 1/2 for |zo| <1, and k(zp, Q) — 1/2 as |zo| — 1-;
(iii) the solution w = {(z, t) of the equation

ow _ Wiz - W) { oL, t) F() }
O T T L T O D T g o wnf

with the initial condition 1(z, 0) = z is identically equal to f.

The proofs are the same as in [5], except that the lemma applied there must be
replaced by Lemma 2 of the present paper.

4, THE MAIN -RESULT

In this section we obtain our estimate of |f(z) - z| for the class SZO . As usual,
we let K and K' denote complete elliptic integrals; then

K(vVw) =%ﬂ{1+(%>2 W +(%%)sz +} (o] < 1, w=1),

and K'(Vw) =K(V1 - w).

THEOREM 3. If f € S0, then

4|Zol
m

|1(z) - 2| <

Zio (1 -%) {K(V2/20)K' (VE/Z,)

(10)
+K(VZ/2y)K'(V z7zo)}’ X k(zq, Q)logQ

for |z| < |zo| and = # 2, and

4
|£(z) - z| < —IE-I-' (1 -—29) {K(Vzy/2)K'(VE,/2Z)

T
(11)

+ K(VE,/2)K ' (V2g/D)} ' X K(zy, Q)log Q

Jor |zol < |zl L1 and z # zq; the factor k satisfies the inequality
k(zy, Q)< 1/2 for |zo| < 1, and k(zy, Q) — 1/2 as |zq]| — 1-.
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Proof. In view of Lemma 1, we may assume without loss of generality that

z
A0
fe SQ . Applying Theorem 2, we see that

-1 T
S af dt S

0

of-!

ot dt

If L(w) - w| =

v bt e
1 ) dé dn ,
<740, DioeQ €< Ko - 06 - 0] *Tea-z00-z01) %

where z = f-1(w). But

 we _ff_se

l§l<ll§(1-z0€’)(1—z§)| lglzllé’(zo—t)(z—ﬁ)l'

Thus
(12) lf(Z) - Z| S E—(‘Z—‘:;_-‘—Z)_IK(ZO ) Q)W(Z, Z()),
where

- dé dn
v, zo) Sj 16 - 2)(C - 2)|

Notice now that
W(z/2q) ) W(zo/z)
|Zo| |Z| ’

where Y(w) = Y(w, 1). Hence (12) implies

l//(Z, ZO) =

(13) |£(z I ol | 2 7o (1 - —6) k(zq, Q(z/zq)log Q
and
(14) |£(z) - z| < L:l—l Q)Y(zo/z)1og Q.

If |w| <1 and w # 1, then (see [5, p. 406] and [2, p. 73])

2

Yw)

mSI dt 51 dt
(15) o Vi@ -0 -wt) 0 vt -1 -1 - w)t)

4 |K(V)K'(V@) + K@) K'(Vo)| .
From (13) and (15) we obtain immediately (10), and from (14) and (15) we obtain (11).
The proof is complete.

The inequality (10) can be ertten in a weaker but simpler form: It is known (see
Tao-shing Shah [5]) that if f € s , then
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(16) i) - 2| <5 {r<1/4)}4logQ

In the proof of this result, it is shown that

4
) max {o@ - D)} = pi/2) = AL
o] <1 "

The relations (10), (15), and (17) yield for f € S;O the inequality
‘ r(1/4)}*
1) - 2] < ZUOE 5] o, Qrog @ (f2] < o], 2 % 20).

Thus Theorem 3 implies the following corollary.

COROLLARY. If f € S5 and |z| < |zo|, 2 #zg, then

4
If(z) - z| 5{—2%%&)—}— ]zollog Q.
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