COMPLEMENTS OF FINITE SETS OF INTEGERS
D. J. Newman

Let A and B be sets of nonnegative integers, with 0 € A. The set B is called a
complement of A if each nonnegative integer is expressible in the form a +b
(a € A, b € B). One of the basic problems in additive number theory is the deter-
mination, for a prescribed A, of a complement B that is in some sense minimal.
Erdds [1] and Lorentz [2] have discussed some problems and concepts for the case
where A is an infinite set; we shall deal with finite sets A.

For each set B, we denote by B(n) the number of elements of B that do not ex-
ceed n; the upper and lower densities of B are commonly defined as

d(B) = lim sup B(n)/n, d(B) = lim inf B(n)/n.

n -—oo n — oo

If the upper and lower densities coincide, we omit the bar and speak of the density.

The codensity of a set A is defined as the number

c(A) = inf d(B),
B

where B ranges over all complements of A whose density exists.

An important result of Lorentz [2] is that c(A) = 0 if A is an infinite set. If A
consists of k elements and B is complementary to A, then the union of the k trans-
lated sets B +a; (a; € A) contains all positive integers, and therefore d(B) > 1/k,
that is, c(A) > 1/k. In this paper, we study the more difficult problem of finding the
least upper bound c; for the codensity c(A) as A ranges over all sets of k ele-
ments.

It is obvious that ¢; = 1 and ¢, = 1/2. The following two theorems constitute
our main results.

THEOREM 1. c3 = 2/5.
log k
k-

Before proving these theorems, we make some simple but fundamental observa-
tions regarding codensity.

THEOREM 3. (i) c(A) = infg d(B) = infy d(B), wheve B vanges over all com-
plements of A.

THEOREM 2. ¢, ~

(ii) c(A) = infg d(S), where S vanges over all complements of A that ave finite
unions of residue classes.

(iii) There exists a complement By of A such that d(Bg) = c(A).

Proof. Corresponding to any set B, we define the sets

Bpn=Bn[0,n]@{0,n, 2n,3n, -} (=12 ).
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Clearly, if B is a complement of A, then each of the B, is a complement of A.
Also, d(B,) is 1/n times the number of elements in the set B N {0, n], and we can
make this as near d(B) as we like, by an appropriate choice of n. The first part of
the assertion (i) is thus proved; (ii) and the second part of (i) follow because B, is a
finite union of residue classes.

For infinite sets A, (iii) was proved by Lorentz [2]. If A is finite, let a denote
its greatest element. We suppose that B(1) B(2) ... is a sequence of complements
of A such that d(B(k)) | c(A), and for any increasing sequence n;, ny, -+ of inte-
gers we form the union B; of the sets

B(1) n [o, n 1, B(2) n [n; -a,n,], BBGn [n, - a, n,],

The set B is a complement of A, and if ny— % rapidly enough, then B has den-
sity at most d(B(k)), for each k. It follows that d(Bg) = c(A), and Theorem 3 is
proved.

Proof of Theorem 1. First we prove that c¢3 > 2/5, by showing that
c({0, 1, 3})> 2/5. Let S denote any finite union of residue classes such that the
set

SUBS@DL U ES®3)

consists of all nonnegative integers. For convenience, we write
ajy = dlE®i) n OK]

(for example), and we note that

Qg =0) =0Q; =0a3, tpp = Uy3, ®p12 = %123,

We now apply the inclusion-exclusion principle (the logical rule that allows us to de-
termine the number of elements in a union of sets from the number of elements in
each of the possible intersections). Since the rule (together with our assumption on
S) implies that

ag+ o) +az-ap) -ay3-ap3+apgz =1,
we deduce that
(1) 3a0—a01—a02—a03+a013 =1.

Similarly, since S U (S@ 1) U (S@ 2) U (S@ 3) is also the set of nonnegative in-
tegers, the rule implies that

(2) day - 3ag) - 200 - Qg3+ 2001+ @3+ X913 - @23 = 1.

If we multiply both sides of (1) by 3 and subtract the corresponding sides of (2), we
obtain the equation

5ag - 2(ag3 - @g13) - (@p23 - @p123) - @o2 - 2ap012 = 2.

Since the expressions in parentheses can not be negative, it follows that 5ay > 2,
and our first assertion is proved.

It remains to show that c3 < 2/5. Suppose that 0 <a <b and that S is a com-
plement of the set {0, a, b}. If m is a positive integer and
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T={ms+j|seS, jel0,m},

then T is a complement of the set {0, ma, mb}, and moreover d(T) = d(S). There-
fore it will be sufficient to prove the inequality for the sets {0, a, b} with
(a, b) = 1.

Corresponding to such a set {0, a, b} we now consider the set S consisting of
all the equivalence classes
3a, 6a, **-, 3ma (mod a+b), where m =I:—a-‘-i——g—i—2—].

Inspection shows that the set S@ {0, a, b} is the union of the residue classes
2a, 3a, *-, (3m + 1)a (mod a +b). We note that 3m > a + b, and that a +b of the
residue classes are distinct [otherwise, a + b would divide some number ka

(0 <k <a-++b)]. It follows that S (augmented by a finite set, if necessary) is a

complement of {0, a, b}. Also,
[a+b+2]
m 3

d(S)=a+b= a+b

The last expression does not exceed 2/5, except if a + b has one of the values
1, 2, 4, 7. The first two of these values are irrelevant. The other two arise only in
the cases of the sets

{0, 1,3}, {o,1,6}, {o0,2,5}, {o,3 4}.
These sets have the complements
{0, 1} (mod5), {0, 1,4, 8} (mod11), {0,1,2} (mod8), {0, 2} (modS5),
respectively. Since none of these complements has density greater than 2/5, Theo-

rem 1 is proved.

R. Graham has developed an algorithm for determining c(A) and has thereby
obtained an independent proof of Theorem 1.

We now turn to the proof of Theorem 2.

An upper bound on ¢, . Corresponding to any fixed set A = {al y Ap, *t, ak}
(0=a; <a, <--<ay), we shall construct a complement whose density is at most
(1+1log k)/k. Let K and N be integers (0 <K < N), and suppose that N > a, , so
that the a; determine k distinct residue classes modulo N. For each number n, we
denote by U, the set of residue classes represented by

n‘al,n-az, "',n'ak
(we use the symbol U to represent an unspecified class U,). The symbol T will
denote an unspecified set of K residue classes modulo N. Clearly, there are
( 11\{1) sets T, and for each n, exactly (NI; k ) of these sets do not meet the set
Un. Since there are at most N different sets U, it follows that there are at most

N ( NI; k) disjoint pairs T, U. Consequently, at least one of the sets misses at
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most N (NI; k)/( 112) of the sets U,. Let S consist of such a set T, together

with all residue classes n (mod N) for which T N U, = Q.

To see that the set S is a complement of A, let m be any integer. If
T N U,, = ®, we have the representation

=0+m (0Oe A, meS).
If TN U, contains some element m - a;, we have the representation
m=ai+(m-ai) (ai€A,m-ai€S).

To estimate the density of S, we observe that

a® <am+ (N )E) F R (MR <R (1-R) < Rrena

By choosing K and N so that the ratio K/N is near (log k)/k, we can bring the up-
per bound on d(S) arbitrarily near to (1 + log k)/k. It follows that the codensity of A
is at most (1 + log k)/k.

Lowey estimates on cx . It remains to show that for each large integer k, some
set A of k elements has codensity approximately (log k)/k. Using probabilistic
methods similar to those of Erdds, we shall show that “most” sets have the desired
property.

LEMMA 1. Let K be the union of k sets K;, Ky, -, Ky, each set K, consist-
ing of at most j elements, and each element lying in at most i of the sets. Let K'
be formed by a vandom process in which each element of K has an independent
probability p of being selected. Then the probability that K' contains at least one
element of each of the sets Ky, is at most [1 - (1 - p)i [&/i,

Remark. X i=1, the sets K are disjoint, and the upper bound in the lemma re-
duces to a familiar expression in probability theory. Similarly, if i ] k, and if each
of the k sets has exactly j elements and the k sets are comprised of k/1 disjoint
sets, each occurring i times, then our expression gives the exact value of the
probability.

Proof. We use induction on k. Since the result is trivial for k = 1, we turn to
the general case; that is, we suppose the lemma has been proved for sets of fewer
than k elements. We select one of the k sets, say K, and we consider a success
as coming about in the following way: first we pick an element in the selected set,
and after that we pick an element in every remaining set not conlaining that element.

The first event occurs with a probability at most 1 - (1 - p)j . After the event
(and conditional on it), there remain at least k - i sets from each of which we must
pick an element. This latter event has probability at most

[1-(1-p)ijte-i)/i)

by the induction hypothesis, and therefore our upper bound for the probability of
success is

[1-(1-pYI[1-(1-p)3]&-D/io[1- (1 - p)I]/i,

This completes the induction, and Lemma 1 is established.
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Suppose now that p is a fixed number (0 < p < 1), and let A be the result of
choosing the number 0 and then choosing each of the integers in [ 1, (?1) + 1) k]

independently with probability p. We assert that, with high probability for large
values of Kk,

(3) A has at least k elements,
(4) c(a) > (1 - 4p) 12X

Because the existence of even one set A satisfying conditions (3) and (4) (with small
p) is sufficient to complete the proof of our theorem, the proof of the assertion will
achieve our purpose.

Since it is clear that (3) holds with high probability, we need only deal with (4).

LEMMA 2. Suppose ¢ >0, p<1/2,and j < (— - 2) log k. If k is large
enough, then the probability that

(5) [1, k] is coveved by some set of j translates of A

is less than ¢.

Proof. Let {bj, by, - bJ} be any fixed set of 1ntegers We first estimate the
probability that the union of the translates of A by bj, bz, ---, and bj covers [1, k].
For this to happen, A must contain at least one element from the set

{1-Dpy,1-1bz, -, 1-Db5},

one from the set {2 - by, ---, 2 - b}, -+, and one from the set {k - by, -+, k - b;}.
Now each of these k sets contains j elements, and no number m can lie in more
tha.n j of the sets (since this would give it two representations m = r - b; and

=s - b; with r #s). Lemma 1 is therefore applicable, and it tells us that
P<[1-(1- p)ik/i,

Clearly, we may assume that all the b; lie in the half-open interval

( ( ) k, k:I, so that the number of admissible j-tuples is bounded by
[ (Geo)e]
These two estimates give the upper bound
1 j - k/ .
(6) a-| (2+2)x |- - it

for the probability of (5). To show that it is less than & for sufficiently large values
of k, we note that

log Q = j logl: (?1)+2)k]+§—{10g [1-@-p)f] <] log[(l—lj+2)k]——]]f5(1 -p).

The last member is a decreasing function of j. Replacing j with (fl) - 2) log k, we

obtain the upper bound
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k k(%)-Z)log(l-p)

logQS(1—2)10gk-10gl:(1+2)k]— 1 .
p p (~- 2) log k
p
Expanding 1 + (1—1) - 2) log (1 - p) in powers of p, we see that log Q < -kP when
k is large, and we conclude that Q — 0 as k — «,

We now show that the failure of (5) implies (4). Indeed, suppose that A does not
satisfy (5) and that B is a complement of A; we shall prove that each interval of

length ( —:—) + 2) k contains more than (_1@1) - 2) log k elements of B. This will then
imply that
( 1. 2 ) log k
(2+2)x
p

> (1 - 4p)(log k)/k,

and the proof will be complete.

Consider the interval I, = ( n- (%+ 1) k, n+ k]. By the complement proper-

ty, each integer in [n+ 1, n + k] is of the form a +b (a € A, b € B), and the num-
bers b that arise in these representations automatically lie in I,,. Since the union of
the translates of A by the numbers b in I covers [n-+ 1, n + k], Lemma 2 implies

that with probability greater than 1 - g, there are more than (?1) - 2) log k of these
numbers. This completes the proof of Theorem 2.

Our theorems about sets of integers can easily be applied to other sets. Thus
Theorem 1 implies the following proposition about point sets on the circle. If 6;, 6,,
and 03 are distinct (modulo 27), then for each € > 0 theve exists a set E on the

unit civcle C, of measure less than —g’ﬂ + €&, such that
g U 2 U d%BE=C.

For some triples 01, 0, 03 there does not exist such a set of measure % .
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