ARBITRARY FUNCTIONS DEFINED ON PLANE SETS

J. E. McMillan

By an arbitrary function f we mean a (single-valued) function whose domain is a subset of the complex plane Z and whose range is in the one-point compactification K of three-dimensional Euclidean space. (We are particularly interested in the case where the range of f is on the Riemann sphere. Actually, our proofs only require that the range space be a compact Hausdorff space possessing a countable base of open sets.) If J is a Jordan arc in Z with one endpoint z, then $J - \{z\}$ is an arc at z. If f is defined at every point of an arc A at z, then the cluster set of f on A at z, denoted by $C_A(f, z)$, is defined to be the set of points $P \in K$ for which there exists a sequence $\{z_n\}$ of points of A such that $z_n \to z$ and $f(z_n) \to P$. We say that the arcs A_1, \dots, A_n at z $(n=2, 3, \dots)$ are separating arcs of f at z provided they are contained in the domain of f and no two of the cluster sets $C_{A_j}(f, z)$ $(j=1, \dots, n)$ intersect.

THEOREM 1. Let \mathfrak{F} be a family of subsets of Z such that $\{z\} \in \mathfrak{F}$ for every $z \in Z$, such that $\bigcup S_n \in \mathfrak{F}$ if $S_n \in \mathfrak{F}$ ($n=1,2,\cdots$), and such that if $S \in \mathfrak{F}$ and $S_0 \subset S$, then $S_0 \in \mathfrak{F}$. (For example, \mathfrak{F} might be the family of all countable subsets of Z.) Let f be an arbitrary function whose domain is Z, and suppose that for each point z of a subset E of Z there exist separating arcs A_1 , A_2 , and A_3 of f at z such that $A_i \cap E \in \mathfrak{F}$ (j=1,2,3). Then $E \in \mathfrak{F}$.

Proof. Let \mathfrak{B}_0 denote a countable base of open sets for the topology of K, and let \mathfrak{B} denote the family of finite unions of open sets in \mathfrak{B}_0 . Now consider an arbitrary point $z \in E$. Let A_j^* $(j=1,\,2,\,3)$ be separating arcs of f at z such that $A_j^* \cap E \in \mathfrak{F}$ $(j=1,\,2,\,3)$. Let U_j $(j=1,\,2,\,3)$ be elements of \mathfrak{B} , no two of which intersect, such that $C_{A_j^*}(f,\,z) \subset U_j$ $(j=1,\,2,\,3)$. We can find an open disc D, whose radius is rational and whose center has rational real and imaginary parts, such that

- (i) $z \in D$,
- (ii) each \boldsymbol{A}_{j}^{*} intersects the circumference C of D,
- (iii) $f(A_j) \subset U_j$ (j = 1, 2, 3), where A_j denotes the subarc of A_j^* that contains the point z and lies in D except for one endpoint z_j on C.

Note that $A_j \cap E \in \mathfrak{F}$ (j = 1, 2, 3). Let γ_j (j = 1, 2, 3) be open arcs of C, no two of which intersect, such that $z_j \in \gamma_j$ (j = 1, 2, 3) and the radii of D terminating in the endpoints of the arcs γ_j have rational slopes. We call the set

$$\{D, (\gamma_1, U_1), (\gamma_2, U_2), (\gamma_3, U_3)\}$$

a $collection\ for\ z$ (or simply a collection). There exist only countably many collections.

Suppose that $E \notin \mathcal{F}$. Then there exists a subset E_0 of E such that $E_0 \notin \mathcal{F}$ and one collection $\{D, (\gamma_1, U_1), (\gamma_2, U_2), (\gamma_3, U_3)\}$ is a collection for each point of E_0 . Suppose now that z_1 and z_2 are any two distinct points of E_0 . Let A_j^k (j=1,2,3) be arcs at z_k (k=1,2) such that $A_j^k \cap E \in \mathcal{F}$, A_j^k lies in D except for one endpoint

Received July 25, 1966.

on γ_j , and $f(A_j^k) \subset U_j$ (k = 1, 2; j = 1, 2, 3). Then $A_j^1 \cap A_\ell^2 = \emptyset$ if $j \neq \ell$. Let $T_k = A_1^k \cup A_2^k \cup A_3^k$ (k = 1, 2). Then either $z_1 \in T_2$ or $z_2 \in T_1$: if, for example, $z_1 \notin T_2$ and z_1 is in the component of D - ($T_2 \cup \{z_2\}$) whose boundary contains $A_1^2 \cup A_2^2$, then $z_2 \in A_3^1$.

For each point $z_1 \in E_0$ there exists a set T_1 defined as above. Clearly $E_0 \not\subset T_1 \cup \{z_1\}$, because $(T_1 \cap E) \cup \{z_1\} \in \mathfrak{F}$. Hence there exists an open disc \triangle , whose radius is rational and whose center has rational real and imaginary parts, such that $\triangle \cap (T_1 \cup \{z_1\}) = \emptyset$ and $\triangle \cap E_0 \neq \emptyset$. Therefore, we can find one such open disc \triangle that intersects E_0 , and a subset E^* of E_0 such that $E^* \not\in \mathfrak{F}$ and for each $z_1 \in E^*$ there exists a set E_1 , defined as above, that satisfies the relation $E_1 \cap (T_1 \cup \{z_1\}) = \emptyset$. Choose $E_2 \cap E_0$ and let $E_1 \cap E_0$ be defined as above. Now choose $E_1 \cap E_1$, and let $E_1 \cap E_1$ be a set, defined as above, such that $E_1 \cap E_1 \cap E_1$. Then $E_1 \cap E_1 \cap E_1$ are the proof of Theorem 1 is complete.

We note a trivial example.

Example 1. Let f assume exactly three values and be constant on the (open) upper half-plane, on the lower half-plane, and on the real axis. Then there exist three separating arcs (which can be taken to be rectilinear segments) of f at each point of the real axis.

COROLLARY 1. Let S be an arbitrary subset of Z, and let f be an arbitrary function whose domain is S. Let E be the set of points of Z - S at which there exist three separating arcs of f. Then E is countable.

Remark 1. The first two paragraphs of the proof of Theorem 1 suffice to prove Corollary 1.

Remark 2. Bagemihl's ambiguous-point theorem [1] says, in our terminology, that if f is an arbitrary function whose domain is $\{|z|<1\}$ and whose range is on the Riemann sphere Ω , and if E is the set of points of $\{|z|=1\}$ at which there exist two separating arcs of f (such a point is an ambiguous point of f), then E is countable. To see that this theorem follows from Corollary 1, extend the definition of f to the complement of $\{|z|=1\}$ by giving it on $\{|z|>1\}$ a constant value that is in K - Ω .

Remark 3. Part of the argument in the first paragraph of the proof of Theorem 1 was given by R. L. Moore [3] in the proof of a theorem on triods. Corollary 1 is readily seen to imply the following special case of Moore's theorem: A family of mutually exclusive triods whose rays are Jordan arcs is countable (for the terminology, see [3]).

Remark 4. It follows from Corollary 1 that if the domain of f is an open set U, and if E denotes the set of points of the boundary of U at which there exist three separating arcs of f, then E is countable.

Example 2. There exists a function f, whose domain is a subset S of Z, such that the boundary B of S is uncountable, and such that at each point of B there exist three separating arcs of f. To see this, let C be a Cantor set on the real axis, and let $\{z_n\}$ be a sequence of points of the (open) upper half-plane such that the set of cluster points of $\{z_n\}$ is C. Let $S = Z - \{z_n\}$. Let f have a constant value P_1 on the lower half-plane and a different constant value P_2 on the real axis, and in the part of S in the upper half-plane, let f be bounded away from P_1 and P_2 and be such that at each z_n there exist three separating arcs of f. Then f clearly has the desired property.

Since a Jordan arc in Z is nowhere dense, Theorem 1 has the following corollary.

COROLLARY 2. Let f be an arbitrary function whose domain is Z, and let E be the set of points of Z at which there exist three separating arcs of f. Then E is a set of the first category.

Since a rectifiable Jordan arc is a set of two-dimensional (Lebesgue) measure zero, we obtain a further corollary to Theorem 1.

COROLLARY 3. Let f be an arbitrary function whose domain is \mathbf{Z} , and let \mathbf{E} be the set of points of \mathbf{Z} at which there exist three rectifiable separating arcs of \mathbf{f} . Then \mathbf{E} is a set of two-dimensional measure zero.

Example 3. Let J be a Jordan curve with positive two-dimensional measure, and let f assume exactly three values and be constant on the interior domain of J, on the exterior domain of J, and on J. Then at each point of J there exist three separating arcs of f.

Example 4. According to Bagemihl [2, Theorem 9], there exists a function f, defined on Z, with the property that every point of Z is a rectilinearly oppositely ambiguous point of f. This means that at each point of Z there exist two separating arcs of f that are oppositely directed rectilinear segments.

THEOREM 2. Let f be an arbitrary function whose domain is Z, and let E be the set of points of Z at which there exist four separating arcs of f. Then E is countable.

Proof. Suppose that E is uncountable. Define $\mathfrak B$ as in the proof of Theorem 1. By a routine argument, there exist open sets U_j $(j=1,\,2,\,3,\,4)$ in $\mathfrak B$, no two of which intersect, such that at each point z of an uncountable subset E_0 of E there exist arcs A_j $(j=1,\,2,\,3,\,4)$ satisfying the relations C_{A_j} $(f,\,z)\subset U_j$ and $f(A_j)\subset U_j$ $(j=1,\,2,\,3,\,4)$. For each $z\in E_0$, at least three of the sets U_j $(j=1,\,2,\,3,\,4)$ do not contain f(z). Therefore, there exist an uncountable subset E^* of E_0 and three of the sets U_j $(j=1,\,2,\,3,\,4)$ that do not intersect $f(E^*)$. Let the notation be such that

$$f(E^*) \cap (U_1 \cup U_2 \cup U_3) = \emptyset.$$

Then at each point $z \in E^*$ there exist arcs A_1 , A_2 , and A_3 such that $A_j \subset Z - E^*$ and $C_{A_j}(f, z) \subset U_j$ (j = 1, 2, 3). By Corollary 1, we have a contradiction, and the proof of Theorem 2 is complete.

REFERENCES

- 1. F. Bagemihl, Curvilinear cluster sets of arbitrary functions, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 379-382.
- 2. ——, Ambiguous points of arbitrary planar sets and functions, Z. Math. Logik Grundlagen Math. 12 (1966), 205-217.
- 3. R. L. Moore, Concerning triods in the plane and the junction points of plane continua, Proc. Nat. Acad. Sci. U.S.A. 14 (1928), 85-88.