ARBITRARY FUNCTIONS DEFINED ON PLANE SETS
J. E. McMillan

By an arbitrary function f we mean a (single-valued) function whose domain is a
subset of the complex plane Z and whose range is in the one-point compactification
K of three-dimensional Euclidean space. (We are particularly interested in the case
where the range of f is on the Riemann sphere. Actually, our proofs only require
that the range space be a compact Hausdorff space possessing a countable base of
open sets.) If J is a Jordan arc in Z with one endpoint z, then J - {z} is an arc af
z. If f is defined at every point of an arc A at z, then the clustey set of £ on A at
z, denoted by C A(f z), is defined to be the set of pomts P € K for which there

exists a sequence {zn} of points of A such that z, — z and f(z,) — P. We say that

the ares Ay, -+, A j at z (n=2, 3, +-*) are separatmg avcs of f at z provided they
are contained in the domain of f and no two of the cluster sets C Aj (£, z) =1, -, n)
intersect.

THEOREM 1. Let § be a family of subsets of Z such that {z} € § for every

z € Z, such that USn €T ifSned (m=1,2 ), and such that if S € § and
SogCS, then Sg € §. (For example, § might be the family of all countable subsets
of Z.) Letf be an arbitvary function whose domain is Z, and suppose that for each
point z of a subset E of Z therve exist separating arcs Ay, Ay, and A3 of f at z
such that A;NEe§ (j=1,2,3). Then E € §.

Proof. Let B denote a countable base of open sets for the topology of K, and
let B8 denote the family of finite unions of open sets in Bg. Now consider an arbi-
trary point z € E. Let A} (j =1, 2, 3) be separating arcs of f at z such that

A* NEed (=1, 2, 3). Let U; (=1, 2, 3) be elements of B, no two of which in-
tersect such that C AX (f, z) C Uj (= 1, 2, 3). We can find an open disc D, whose

J
radius is rational and whose center has rational real and imaginary parts, such that
(i) z € D,
(ii) each A} intersects the circumference C of D,

(iii) f(A ) C U; (j =1, 2, 3), where A; denotes the subarc of A* that contains the
point z a.nd lies 1n D except for one endpomt zj on C.

Note that A;N E € 3 (=1, 2, 3). Let vj (1 =1, 2, 3) be open arcs of C, no two of
which intersect, such that zj € y; G=1, 2 3) and the radii of D termmatmg in the
endpoints of the arcs yj have rational slopes We call the set

{D7 (')/1, U]_), (72: UZ)! (73’ U3)}

a collection for z (or simply a collection). There exist only countably many collec-
tions.

Suppose that E ¢ §. Then there exists a subset Eg of E such that Eg ¢ $ and
one collection {D, (v1, Uy, (v2, Up), (v3, U3)} is a collection for each point of Eg.
Suppose now that z, and z, are any two distinct points of E;. Let A Gi=1,23)

be arcs at z, (k =1, 2) such that Ak NEe€ 3, Ak lies in D except for one endpoint
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on -yJ,and f(Ak)CUJ (k=1,2; j=1,2,3). Then A} NA§ =@ if j # (. Let

T = Af U Ak U AY (k =1, 2). Then either z; € T, or z, € Ty: if, for example,
z; £ T, and z; is in the component of D - (T2 U {z2}) whose boundary contains
A% UA%, then z, € A%.

For each point z; € Egy there exists a set T defined as above. Clearly
EoZ T; U {z}, because (T1 NE)U {z)} € §. Hence there exists an open disc
A, whose radius is rational and whose center has rational real and imaginary parts,
such that A N (T1 U {z1})=¢ and A N Eg # @. Therefore, we can find one such
open disc A that intersects Eg, and a subset E* of Eg such that E* ¢ § and for
each z; € E* there exists a set T, defined as above, that satisfies the relation
AN(T; U{z;})=¢@. Choose zp € A N Eg and let T2 be defined as above. Now
choose z; € E*, and let T; be a set, defined as above, such that z; ¢ T;. Then
z1 € Tp. We have shown that E* ¢ T2, which is a contradlctlon since T2 N E € §.
The proof of Theorem 1 is complete.

We note a trivial example.

Example 1. Let f assume exactly three values and be constant on the (open)
upper half-plane, on the lower half-plane, and on the real axis. Then there exist
three separating arcs (which can be taken to be rectilinear segments) of f at each
point of the real axis.

COROLLARY 1. Let S be an arbitvarvy subset of Z, and let £ be an arbitvary
Junction whose domain is S. Let E be the set of points of Z - S at which there exist
thvee sepavating avcs of f. Then E is countable.

Remark 1. The first two paragraphs of the proof of Theorem 1 suffice to prove
Corollary 1.

Remark 2. Bagemihl’s ambiguous-point theorem [1] says, in our terminology,
that if £ is an arbitrary function whose domain is {|z| < 1} and whose range is on
the Riemann sphere , and if E is the set of points of {|z| =1} at which there
exist two separating arcs of f (such a point is an ambiguous point of f), then E is
countable. To see that this theorem follows from Corollary 1, extend the definition
of f to the complement of {|z| =1} by giving it on {|z| > 1} a constant value that
isin K - Q.

Remark 3. Part of the argument in the first paragraph of the proof of Theorem
1 was given by R. L. Moore [3] in the proof of a theorem on triods. Corollary 1 is
readily seen to imply the following special case of Moore’s theorem: A family of
mutually exclusive triods whose rays are Jordan arcs is countable (for the termi-
nology, see [3]).

Remavk 4. It follows from Corollary 1 that if the domain of f is an open set U,
and if E denotes the set of points of the boundary of U at which there exist three
separating arcs of f, then E is countable..

Example 2. There exists a function f, whose domain is a subset S of Z, such
that the boundary B of S is uncountable, and such that at each point of B there
exist three separating arcs of f. To see this, let C be a Cantor set on the real axis,
and let {z,} be a sequence of points. of the (open) upper half-plane such that the set
of cluster points of {z,} is C. Let S=Z - {z,}. Let f have a constant value P;
on the lower half-plane and a different constant value P, on the real axis, and in the
part of S in the upper half-plane, let f be bounded away from P; and PZ and be
such that at each z, there exist three separating arcs of f. Then f clearly has the
desired property.
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Since a Jordan arc in Z is nowhere dense, Theorem 1 has the following corol-
lary.

COROLLARY 2. Let f be an arbditvary function whose domain is Z, and let E
be the set of points of Z at which there exist three sepavating avcs of £. Then E is
a set of the fivst category.

Since a rectifiable Jordan arc is a set of two-dimensional (Lebesgue) measure
zero, we obtain a further corollary to Theorem 1.

COROLLARY 3. Let f be an arbitrary function whose domain is 24, and let E
be the set of points of Z at which there exist three vectifiable separating avcs of 1.
Then E is a sel of two-dimensional measure zevo.

Example 3. Let J be a Jordan curve with positive two-dimensional measure,
and let f assume exactly three values and be constant on the interior domain of J,
on the exterior domain of J, and on J. Then at each point of J there exist three
separating arcs of f.

Example 4. According to Bagemihl [2, Theorem 9], there exists a function f,
defined on Z, with the property that every point of Z is a rectilinearly oppositely
ambiguous point of f. This means that at each point of Z there exist two separating
arcs of f that are oppositely directed rectilinear segments.

THEOREM 2. Let f be an arbitvary function whose domain is Z, and let E be
the set of points of Z at which theve exist four separating avcs of £. Then E is
countable.

Proof. Suppose that E is uncountable. Define $ as in the proof of Theorem 1.
By a routine argument, there exist open sets U; (j=1, 2, 3, 4) in -8, no two of
which intersect, such that at each point z of an uncountable subset E; of E there
exist arcs A; (j =1, 2, 3, 4) satisfying the relations CAj (f, z) C U; and £(A;) C U;

(j=1, 2, 3,4). For each z € Eg, at least three of the sets IL, (=1, 2, 3, 4) do not
contain f(z). Therefore, there exist an uncountable subset E* of E and three of
the sets Uj G=1,2,3, 4) that do not intersect f(E*). Let the notatlon be such that

HE¥) N (U; UU,UTU,) = B.

Then at each point z € E* there exist arcs A, A,, and A3 such that A ;€ Z - E*
and C Aj (#, z) c U; (j =1, 2, 3). By Corollary 1, we have a contradiction, and the

proof of Theorem 2 is complete.
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