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1. INTRODUCTION

An f-group G is said to be completely distribulive if the order of constructing
infinite joins and intersections may be interchanged. In 1939, Lorenzen [7] proved
that an abelian (-group can be embedded in a large cardinal product of totally
ordered groups. In 1963, Conrad, Harvey, and Holland [4] showed that an abelian ¢-
group can be realized as an ¢-subgroup of an ¢ -group of real-valued functions.
Both of these embedding theorems present an abelian ¢-group as an {-subgroup of a
completely distributive ¢-group. In 1963, Holland [6] proved that any ¢-group can
be embedded in the group of order-preserving permutations of some totally ordered
set. The main purpose of this note is to show that the Holland embedding realizes
any ¢-group as an (-subgroup of a completely distributive £-group.

Section 3 is devoted to proving that the group P(L) of order-preserving permuta-
tions of a totally ordered set L is a completely distributive ¢-group. It follows as a
corollary that the ideal radical of P(L) is trivial. In Section 4 it is shown that the
isotropy subgroups of P(L) are closed convex {-subgroups. In Section 5 we answer
a question raised by Conrad [3], by giving an example of an ¢-group that has a trivial
ideal radical and yet fails to be completely distributive.

The author wishes to thank Professors Paul Conrad, Alfred Clifford, and Bruce
Treybig, who patiently read the material in Sections 3 and 4.

2. NOTATION AND TERMINOLOGY

For standard results and definitions concerning (-groups, the reader is referred
to[1] and [5]. If G is an £-group, G*= {x € G| x> 1} is called the positive cone
of G. An f-group G is said to be completely distridbutive if the relation

A ( Vv gij) =V (/\ gif(i))
iel \jeJ feJl \iet

holds whenever {gijl iel jed t is a subset of G for which all the indicated joins
and intersections exist.

If L is a totally ordered set, P(L) denotes the collection of order-preserving
permutations of L. P(L) is a group under the operation of composition of functions,
and it is an ¢-group with respect to the partial order defined by the rule

f > g if and only if f(x) > g(x) for each x € L.
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For f, g € P(L), the join and intersection of f and g are given by
Ve x) = ix)Vex),
(N g)(x) = f(x) A gx)
for each x € L. For g € P(L) and z € L, let
Iy(z) = {x € L| g™(z) < x < g™(z) for some pair of integers n, m} .

I,(z) is called a positive (negative, zevo) interval of g provided g(z) > z (g(z) < z,
g(z) = z). The intervals of g are pairwise disjoint, convex subsets of L. The sup-
port S(g) of g is the union of the positive and negative intervals of g. If g € P(L)

and Ig(z) is an interval of g, the function h defined by

g(x) if xe Ig(z),
h(x) = {

X otherwise

is an element of P(L). For z € L, the isotropy subgroup of P(L) at z is defined as
the group H(z) = {f ¢ P(L)I f(z) =z}. The orbit of z is the set

O(z) = {f(z)| f € P(L)}.

For subsets A and B of L, A <B means that a <b for each pair (a, b) € A X B.
Ift ACBC L, A is said to be bounded in B provided there exist elements b, b' € B
such that {bjL <A<Ap'}.

3. THE COMPLETE DISTRIBUTIVITY OF P(L)

Weinberg [8], [9] has shown that an ¢-group G is completely distributive if and
only if for each g (1 < g € G) there exists an h (1 <h € G) such that whenever
g =V S for a subset S of G+, then h <s for some s € S. A pair (g, h) of elements
of an £-group G that satisfy this condition will be called a distrib/utive pair.

LEMMA 1. If f, g, h ave elements of an ¢-group G, and if £> g > 1 and (g, h)
is a distvibutive paiv, then (f, h) is a distvibutive pair.

Proof. Suppose f=V S, where SCG'. Then g=gAf= VS (g A s). Thus
s€
h<sAg<s for some s € 8.

Remark, If an element g > 1 of an ¢-group G is completely join-irreducible in
the sense that g =V S (S C G') implies that g € S, then (g, g) is a distributive pair.

THEOREM 1. For each totally ovdeved set L, P(L) is a completely distributive
{-group.

Proof. Throughout the proof, g > 1 will be a fixed element of P(L)'. We shall
show that g is the first member of a distributive pair. Because of Lemma 1 and the
subsequent remark, we may assume that g has exactly one positive interval Ig(z)
(note that each element of P(L)" exceeds such an element) and that g is not com-
pletely join~irreducible. The proof is divided into four parts.

Pavt A. If the orbit O(z) does not intersect the open interval (z, g(z)), then
theve exists an h (1 <h € P(L)*) such that S(h) C (z, g(z)); and for any such h,
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(g, h) is a distributive paiv. To see this, let s € P(L) be such that 1 <s <g. Then
there exists y € Ig(z) such that y < s(y) and there is an integer n such that

g(z) <y < gn“(z) Now g(z) < sg™(z) < gn“(z) and since O(z) N (z, g(z)) = @, it
follows that sg?(z) = g”(z) or sgn(z) n+ (z).

I sg?(z) = g™(z), then sg”tl(z) = gn*1(z), and the permutation

s(x) if x € L(y),
s(x) = {
X otherwise
satisfies the conditions § > 1 and S(8) C (g™(z), g®"1(z)). Thus h =g " §g" satisfies

h > 1 and S(h) C (z, g(z)).

I sg?(z) = g"t1l(z), then sg™(z) = g™*1(z) for all integers m. Since s # g, there
exists an interval (gk(z), gkt1(z)) on which gs-! is not trivial. The permutation

_ gs~l(x) if x € (gi(z), g&t1(z)),
h(x) = {
X otherwise

satisfies the conditions h > 1 and S(h) C (gX(z), gk*1(z)), so that h = g~khgk satis-
fies h > 1 and S(h) C (z, g(z)).

Now, if 1 <h € P(L)" and S(h) C (z, g(z)), then (g, h) is a distributive pair. To
see this, suppose that g =V T, where T C P(L)". ¥ t(z) =z for each t € T, then
h-lg >t for each t € T, and this contradicts the assumption that g =V T. There-
fore there exists t € T such that t(z) = g(z), in which case t > h.

Because of Part A, we may assume that there exists k € P(L) such that
1 <k<g and z <k(z) < g(z).

Part B. If 1 <k <g and z <k(z) < g(z), then either (g, k) is a distributive
pair, or theve exists £ € P(L) such that 1 <f < g and S(f) is bounded in 1g(z). To
see this, suppose that (g, k) is not a distributive pair. Then there is a set Sc P(L)*t
such that g =V S and such that s jzk and ka s for some element s € S. Thus
there exist a, b € I4(z) such that s(a) <k(a) and s(b) > k(b). Without loss of gen-
erality we may suppose that a <b. If there exists c € Ig(z) such that ¢ <a and
s(c) > k(c), then IS_ (a)_C_ (c, b) and the permutation

s lk(x) ifxel _; (a),
s™ k
£(x) {
X otherwise
has the property that 1 <f < g and S(f) is bounded in I(z). Therefore it may be
supposed that s(x) <k(x) whenever x € I,(z) and x <a. Let p and m be integers
such that
gP(z) < a < gPtl(z),

g™z) <b < g™ 1(z)
Let
r = gm+1-ps-lkg—nr1—l+p

and
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q=k'ls.

The intersection q A r satisfies the conditions
(@Ax)b) > b,
(@ Ar)(a) < a,
(@ A r)(g™t1-P(b)) < g™m*1-P(b).

Thus I A, (b) S (a, g™*1-P(h)), and the permutation

(g Ar)(x) if x € I a.(b),
f(x)=% X € dgn

X otherwise

has the properties that 1 <f < g and S(f) is bounded in Ig(z).

Because of Part B, we may suppose there exists f € P(L) such that 1 <f<g
and S(f) is bounded in Iy(z).

Part C. If theve exists an element £ € P(L) such that 1 <f < g and S(f) is
bounded in Ig(z), then theve exists h € P(L) such that

ii) S(h) < (z, g(z)),
iii) S(h) < gS(h).

To prove this, we may suppose that f has a single supporting interval Iga). Let
gP(z) < S(f) < g™(z),

where p and m are the largest and smallest integers for which this inequality holds.
Let f; =g PfgP, andlet n=m - p. Then 1 <f; <g and S(f;) C (z, g™z)). ¥ n=1,
then h =f; satisfies the three conditions. If n> 1 and there exists b € S(f;) such
that

z <b<g(z and g% b)e S,

let k = g'n“fl g“‘l and let h=k A f;. Then h satisfies the three conditions. The
only case left is that in which n > 1 and for each x satisfying

x € (z, g(z)) N S(f;)

it is known that g®~!(x) ¢ S(f;). In this case, let k =g ™"2f,g"-2 and h =k A f;.
Then h satisfies the three conditions.

Payt D. Conclusion of the Proof. Because of Parts A, B, and C, it may be as-
sumed that there exists h € P(L) satisfying the three conditions of Part C. Let
w € Ig(z) be such that w < h(w). Since w € S(h), it follows that g(w) ¢ S(h). Thus,
for each positive integer n, h™™g(w) = g(w) > w and therefore g(w) > h*(w) > w.

If h is the first member of a distributive pair, then so is g, because of Lemma
1. If not, then Parts A, B, and C prove the existence of g; € P(L) such that
h>g; >1 and S(g1)  (w, h2(w)). In this case, (g, g|) is a distributive pair. To see
this, let g = hzgl h-2. Then g; and g, satisfy the conditions
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1<g;<g, 1<g,<g, S(gy),Sgy) c (w,gw), S(g;) <S(g,).

Now suppose that g = V T, where T C P(L)". If t(w) < S(g») for each t € T, then
gglg >t for each t € T, and this contradicts g =V T. Therefore there exist t € T
and ¢ € S(g,) such that ¢ < t(w), and therefore t > g, .

Holland [6] has shown that each ¢-group G can be embedded as an {-subgroup of
P(L), for some totally ordered set L. Because of this, Theorem 1 has the following
corollary.

COROLLARY 1. Each {-group can be embedded as an (-subgrvoup in a com-
pletely distributive 0-group.

This corollary suggests the following questions: If G is an £-group, does there
exist a minimal completely distvibutive (-group containing G? If two such groups
exist, ave they {-isomovphic? To the author’s knowledge, this problem has not yet
been attacked.

In [3], Conrad has shown that a completely distributive ¢-group has a trivial
ideal radical. Because of this result, the following corollary is immediate.

COROLLARY 2. For any totally ordeved set L, the ideal vadical of P(L) is
trivial,

This corollary seems to indicate that the £-ideals of P(L) are rather scarce.
Another open problem is that of determining the {-ideal structure of P(L). Holland’s
embedding theorem gives this question considerable importance.

Remark. The proof of Theorem 1 shows that every convex £-subgroup of P(L) is
completely distributive. This proof also shows that an £-subgroup of P(L) that is
full in the sense defined by Cohn [2] is completely distributive.

4, THE ISOTROPY SUBGROUPS OF P(L) ARE CLOSED
A convex f-subgroup H of an (-group G is said to be closed if whenever S is a
subset of H such that g =\ S exists, then g € H.

THEOREM 2. For any ovderved set L. and for any element z of L, the isotropy
subgroup H(z) is a closed convex { -subgrvoup of P(L).

Proof. H(z) is clearly a convex {£-subgroup of P(L). In order to show that H(z)
is closed, it suffices to show that if k =\/ S, where S C H(z)", then k € H(z). Sup-
pose then that k ¢ H(z), and define g by

k(x) if x € I, (z),
g(x) = {
X otherwise .

Then 1 <g<k and g = \/S (g /A s). Note that z < g(z) and that
S€

g As € H(z) for each s € S.

Thus g #g A\ s for each s € S. If O(z) N (z, g(z)) = P, Part A of the proof of Theo-
rem 1 demonstrates the existence of an element h > 1 such that S(h) C (z, g(z)). In
this case, it is easy to see that gh‘l exceeds g A s for each s € S, and this contra-

dicts the relation g = VS (g N\ s). Therefore it may be assumed, as in Part B of the
s€
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proof of Theorem 1, that there exists k € P(L) such that 1 <k <g and
z <k(z) < g(z). Now there exists s € S such that g A s i k and g A si k. The
proofs of Parts B and C of Theorem 1 guarantee the existence of h € P(L) such that

i)g>h>1,
ii) S(h) ¢ (z, g2(2),
iii) S(h) < gS(h).
Since g > h-! g, there exists t € S such that g A ti h-l g. Therefore there exists
w € Ig(z) such that
g lhig At)(w) > w.

If w¢ g 1S(h), then h™!g(w) = g(w) > (g A t)(w), and this contradicts the above in-
equality. Thus

weg st c (g7(2), glz).
Suppose that w < z. Then
hig A t)(w) < h(gAt)(z) = z < g(w),
and this again contradicts the choice of w. Thus w € (z, g(z)). Now

g lh(g At)(z) = g l(z) < z
and
g 1h(g A t)(g(z)) < g 'hg?(z) = g(z).
It follows that
Ig-lh(g/\t) (w) ¢ (z, g(2)).
Define h, by

glhg At)(x) ifxe Ig (w),

-1
h)(x) = { h(g/\t)

X otherwise.

Then h; > 1 and S(h;) C (z, g(z)). It is easy to show that hilg exceeds g A s for
each s € S, and this contradicts g = VS (g N\ s). It follows that the isotropy sub-
S €

group H(z) is closed.

5. AN EXAMPLE

An (-ideal of an {-group G is a normal convex f(-subgroup of G. The ideal
radical 1(G) of G is defined as follows: For 1 #g € G, let Ly denote the subgroup
of G generated by the collection of all £-ideals of G not containing g. Then
L(G)=11Ly (g € G, g #1). Conrad [3] has shown that for a representable {-group
G, L(G) = {1} if and only if G is completely distributive, and he asks if this is true
for an arbitrary ¢-group. The following example shows that the two conditions are
not equivalent.
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Example. Let R denote the collection of real numbers, and let f € P(R) be de-
fined by f(x) =x+ 1. Let

= {g € P(R)| gf™=f™g for some positive integer m} .

Then G is an £-subgroup of P(R). It will be shown that G is not completely dis-
tributive and that L(G) = {1}. In fact, G has no proper {-ideals.

G is not completely distvibutive. This will be demonstrated by showing that G
does not satisfy Weinberg’s condition; in particular it will be shown that f is not the
first member of a distributive pair. Let h € G, where 1 <h. Since h commutes
with some positive power of £, S(h) is cofinal in R. Let {x, }a=; be a sequence of
real numbers such that x,, € S(h) and n+ 2 < x,. For each n, let t, be an integer
such that x, <t,. Define g}, on [0, t,] by

2"+ 1)x (o<x<——)

gy =l X+ (—1<x<n),
n

2n
X341 (m<x<n+2),
2 2 —
X n+2<x<ty,).
For each n, g, has an extension to g,, € G satisfying gnftn = ftn gn. Also,
o0
f= J{/ g ,and no g, exceeds h, since gn(x,) = x, and h(xy) > x,,.
n=1

G has no proper f-ideals. Suppose N # {1} is an ¢-ideal of G, and let
1 <h € N. Let m be the smallest positive integer such that hf™ = f™h, Let [a, b]
be an interval such that [a, b] € S(h) and b <a+ m. Let t be a real number
(0 <t<b-a) and k a positive integer such that kt > m. For each integer i
(0 <i <k), define h; and f; by

hi(x) = h(x - it) +it, fi(x) = x+it,

for each x € R. Then, for each i, h;=f;hfi! and hif™ = f™h;. Also,

k
[a +it, b+ it] € S(h;). Let g= VV h;. Then g € N, gf™ ={"g, and

i=0
[a, a-+ m] C S(g). It follows that g has no fixed point. Therefore there is a positive
number & such that g(x) > x+ ¢ for each x € R. Thus g > g) > 1, where g1 € G is
given by g;(x) = x+ €. The convex (-subgroup of G generated by g is all of G,
and therefore N = G. Since G has no proper (-ideals, it is clear from the definition
that L(G) = {1}.
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