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Dedicated to Raymond L. Wilder on his seventieth birthday.

1. INTRODUCTION

Any locally convex, complete, linear metric space is called a Fréchet space. If
a Fréchet space is normed, it is a Banach space. The countable infinite product s
of lines is an example of a Fréchet space that is not a Banach space. It has recently
been shown (see [1], [3], and [5] ) that all separable infinite-dimensional Fréchet
spaces are homeomorphic to each other. In all of these spaces, as well as in the
Hilbert cube I, closed sets of infinite deficiency play an important role. In a
Fréchet space X, a closed set K is said to have infinite deficiency (or infinite co-
dimension) if X\ [K] is infinite-dimensional, where [K] denotes the closure of the
linear subspace spanned by the elements of K. For the Hilbert cube I’ , We agree
that a closed set K has infinite deficiency if for each of infinitely many different
coordinate intervals, K projects onto a single inferior point of the interval.

As examples of topological theorems dealing with closed sets of infinite defi-
ciency, we mention (i) the result of Klee [7] that in £, (the space of square-sum-
mable sequences of reals with the norm topology) each homeomorphism between two
closed sets of infinite deficiency can be extended to a homeomorphism of ¢, onto it-
self, and (ii) the result in [2] that if M is a countable union of closed sets of infinite
deficiency in s, then s\ M is homeomorphic to s. In a sense, a set of infinite defi-
ciency in a space is like a point of the space; but the set itself may be topologically
rich, and it may even be homeomorphic to the whole space.

In this paper, we determine what kinds of closed sets have lopological infinite
deficiency, that is, may be carried onto closed sets of infinite deficiency, by some
space homeomorphism. Corollary 10.2 gives a characterization of topological infi-
nite deficiency in terms of homotopy properties of the complement of the set. Theo-
rem 10.1 gives similar necessary and sufficient conditions under which a homeomor-
phism from a closed set onto a closed set of infinite deficiency can be extended to a
homeomorphism of the space onto itself. It is worth noting that the same conditions
apply to the compact space I” and to each separable, infinite-dimensional Fréchet
space.

The methods used in this paper combine refinements of techniques described in
[2] with special methods dealing with homotopy properties. Except for Section 9,
virtually all the apparatus concerns the Hilbert cube I” and the natural embedding
of s as a subset of I”. In particular, the apparatus shows (Corollary 10.4) that
every homeomorphism of I onto itself is stable in the sense of Brown and Gluck.
This result leads to an affirmative solution of the annulus conjecture for I (Corol-
lary 10.6).

In Section 11, it is shown that there exists a homeomorphism of I onto itself
carrying the so-called pseudo-boundary into the pseudo-interior.
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In Section 8, we show that for each compact subset M of the pseudo-boundary of
I° , the union of M and the pseudo-interior is homeomorphic to the pseudo-interior
(Theorem 8.5).

2. DEFINITIONS AND NOTATION

Let I denote the Hilbert cube; we use the representation I = Hj>0 Ij, where
for each j, I is the closed interval [0, 277]. For (x;), (y;) € I, with x;, y; € L,
the metric in I is given by

(=), (v;) = V 20 (x5 - y;)%.
p((x;), (y; \/j>o X; -

We also use p to denote the distance function for finite products of I;’s. Let s be
defined as IIj>¢ I§, where for each j > 0, If is the open interval (0, 27J). Then

s C I”. We call s the pseudo-interior, and I\ s, denoted by B(I ), the pseudo-
boundary of 1.

We observe that both s and B(I°°) are dense in I~ . With these conventions, we
can regard s as a countable infinite product of open intervals. As such, it is clearly
homeomorphic to the countable infinite product of lines, which is the usual represent-
ation of s as a topological linear space.

Let Z denote the set of all positive integers. For o C Z, we write a' = Z\ o.
For any o C Z, let 7, denote the projection of I onto I, = Hjeql;. For each
je 2, let 7 j denote the projection of I onto I;, and let 7; denote the projection
of I onto Ilyxyj Ix. For each j € Z, let

W;(0) = 7;1(0) and  W;(1) = 771(27).

We call W;(0) and W;(1) the endslices of I”° in the j-direction.

An n-cell M C I* is said to be a standard n-cell if M = Ilj>0 Mj, where Mj is
a closed subinterval of I‘J? for exactly n indices j, and consists of a single point in
IS for all other indices. We say that M is a central standard n-cell if for each
j € Z, 1;\ 7;(M) consists of two components of equal length.

A standavd cubical decomposition of a standard n-cell M -is a finite collection
G of standard n-cells whose union is M, with the property that for all g, g'€ G and
all j € Z, either 'rj(g) = Tj(g') or 7;(g) N 7;(g') consists of a single point or is
empty.

A subset R C I is called a closed basic set if R = II;>0 Rj, where Rj is a
closed subinterval of I; for each j and coincides with I for all but finitely many j.
The interior in I” of a closed basic set is called an open basic set. A closed basic
set R may be regarded canonically as a smaller Hilbert cube R' whose boundary
Bd R in I® is a finite union of endslices of R'. Note that B(R') refers to the
pseudo-boundary of R', while Bd R is a set-theoretic boundary.

A finite polyhedron K C I” is said to be normal if K C s and 7;(K) consists of
a single point for all but finitely many j € Z.

Let X denote either I” or any separable, infinite-dimensional Fréchet space. A
closed subset K of X is said to have Property Z if for each homotopically trivial,
nonempty open set U in X, U\ K is homotopically trivial and nonempty.
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The set K C I is said to be partially deficient with vespect to the set a C Z if
for each i € a the set 7;(K) is contained in a closed subinterval in I{. If for each
i € a the set 7;(K) consists of a single point of I{, then K is said to be deficient
with respect to o. If o is infinite and K is (partially) deficient with respect to ¢,
then K is said to be of infinite (pavtial) deficiency. Observe that if K C s, these
definitions also apply to K as a subset of s.

A homeomorphism h of a space X onto itself is said to be supported on M C X
if h is the identity on X\ M. We let e denote the identity homeomorphism on any
appropriate space, and we let d(h, e) denote the distance of h from the identity. For
any M C X and any homeomorphism h defined on X, the symbol h | M denotes the
function h restricted to the set M.

A B-homeomorphism h is a homeomorphism of I onto itself such that h(s) D s,
and a B*-homeomorphism is a B-homeomorphism for which h(s) = s.

Corresponding to each homeomorphism f of I onto itself, we denote by «(f) the
set of integers j such that T j(p) # 7:(f(p)) for some point p in I”. By B(f) we de-
note the set of integers j such that f2 is independent of I, in other words, such that
some homeomorphism f* of II;2; I; onto itself satisfies the condition

£(p, a) = (p, £¥(q))

for all p € IJ- and all q € g5 1.

A sequence (gi)i>0 of homeomorphisms of a compact metric space X onto itself
is said to converge to a homeomorphism g of X onto itself provided for each € > 0
there corresponds an integer N such that d(g-1 gn, €) < &€ whenever n > N.

For any sequence (fi)i>0 of homeomorphisms of a compact metric space X onto
itself for which the sequence (f;of;_jo---of 1)i>0 converges to a homeomorphism f
of X onto itsel, we call f the infinite left product of (fi)i>0 , and we write
=Ll f; (or f=LIIf;).

The following lemma gives a criterion for the existence of the infinite left product
of a sequence (f;);~o of homeomorphisms of a compact metric space onto itself. The
criterion is known, and it has been used occasionally; we underscore it because it
seems to be particularly valuable in infinite-dimensional product spaces. Because it
involves the distance of f; from the identity, it may appropriately be used in the in-
ductive definition of a sequence (f;);~( of homeomorphisms to ensure existence of
the infinite left product.

Notation. For any € > 0 and any homeomorphism h of a metric space onto it-
self, let

A(h, €) = {Hl for some two points x, y € X, d(x, y) > ¢ and d(h(x), h(y)) = 6 }.
Let a(h, €) =g.1.b. A(h, €). If X is compact, then it follows from the uniform con-

tinuity of h~! that a(h, €) > 0. Also, in cases where X is compact, a(h, £) is some-
times called the modulus of continuity of h-1.

LEMMA 2.1. If (f5)i>0 s a sequence of homeomovphisms of a compact metvic
space X onto itself and if

d(f;, e) < min((37Y), (37Y) - a(f;_; 0---ofy, 271))

Jor each 1> 1, then Ll f; exists,
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Proof. Clearly, since d(f;, e) < 37, the Cauchy criterion implies that for any
p € X, (fio---of1(p))i>0 converges to a point p' of X. Thus, if we define f(p) = p',
then f is a function from X into X. But since for each i the function f; is continu-
ous and onto, and d(f;, e) < 3°1, we also know that f is continuous and onto Finally,
f is one-to-one, since for each s > 0 no two points at distance greater than £ can
have the same image under f.

3. STABILITY OF HOMEOMORPHISMS OF I~

In this section we lay the foundation for the later proof (Corollary 10.4) that
every homeomorphism of I onto itself is stable in the sense of Brown and Gluck [4].

Definition. A homeomorphism of a space X onto itself is stable if it is a finite
product of homeomorphisms each of which is the identity on some open set.

In [2; see p. 201] we remarked that the homeomorphisms introduced in [2] could
all be specified to be stable. Here we shall amplify this statement, since we wish to
use the stability of some of these homeomorphisms. In his dissertation, Raymond
Wong has given an elementary proof, based on results proved in [1] and [2], that
every homeomorphism of s onto itself (or of ¢, onto itself) is stable. He also has
shown independently that every homeomorphism of ¢,, s, or I onto itself is iso-
topic to the identity. Incidentally, we obtain the theorems of this section without
using Wong’s isotopy theorem.

We note first the trivial facts that every finite product of stable homeomorphisms
is stable and that any inverse of a stable homeomorphism is stable.

We now establish an essential elementary lemma, which is a special case of
Theorem 3.7. We shall give a proof whose applicability to this lemma was suggested
to me by Raymond Wong. He uses a similar argument in his dissertation.

LEMMA 3.1. Let h be a homeomovphism of I° onto itself, and suppose there
exists an endslice W such that h(W) =W and h I W is isotopic to the identity. Then
h is siable.

Proof. Without loss of generahty, we may consider W to be an endslice in the

1 d1rect10n W1th W = Wl(O) Let J” be Hj>0 Xj, where Xj = I; for j #1i, and where
= [-2-1, 2-1]. Then I is a closed half—space of J° w1th boundary W. For each

t (0 <t<L 1) let Vi denote the level homeomorphism of an isotopy from Vo =h l w
to V; =e|W. For each t (0 <t < 1), let Yt be the set of all points of J* for which
the ith coordinate is St/2i Let fi be the homeomorphism of J® onto itself that
coincides with h on I”, with e on each Y for 1<t < 2, and with Vi for each t
(0 <t < 1), with Y; identified canonically as W. Let U be the 2-(it! -neighborhood
of Wi(1) in J*°. Let y; bea , homeomorphism of [-27* , 211 = X; onto itself such that
p; is the identity on 7;(U U h 1(U)) and carries 7;(W) onto 2‘1 +2-(+2) 16t p
be the homeomorphism of I onto itself defined coordinatewise as p; on X; and as
the identity on Xj for all j #i.

Clearly, (u “1 f-1 i) is the identity on some nelghborhood of W, since f-1 is the
identity on a neighborhood of p(W). Thus (u-1h-1u) carries I” onto 1tse1f Also,
by the definition of u, ho (u -1g-1 K) is the identity on U and carr1es I onto 1tself
We define h* as h(u-1f-! u), and we note that A=h*(u-1R-1p)-!. Since each of
h* and (u-'h-1p) carries I" onto itself, we see that

= B|1° = 0™ | 1°)o[(u- 1R ) | 17],
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and therefore h is the product of two homeomorphisms each of which is the identity
on some open set. Thus h is stable.

Since the identity homeomorphism is automatically isotopic to the identity, we
also have the following result.

COROLLARY 3.2. Let h be a homeomorphism of I onto itself such that h | w
is the identity on W for some endslice W of I°. Then h is stable.

Now we are in a position to justify the additional conclusion of stability in those
theorems of [2] that we shall use below.

THEOREM 3.3. For each compact set K C s theve exists a stable B*-homeo-
morvphism h such that h(K) has infinite deficiency.

This theorem (without the condition of stability) is given as Lemma 3.3 of [2].
Using the methods of the proof given in [2], we may require that h is the identity in
some neighborhood U of an endslice for which K N Cl1 U = @. By definition, such an
h is stable.

In the proof of Theorem 8.1 we shall need the following corollary of Theorem 3.3.
It is not explicitly given in [2].

COROLLARY 3.4. Let K be a compact set in ° , and let o be an infinite subset
of Z such that 7i(K) C I3 for each i € a. Then there exists a stable B*-homeomor-
phism g such that g(K) is deficient with respect to some infinite subsel a, of a.

Proof. Let Ky be the projection of K on Iy =1Ij¢ ¢ Ij. Then, regarding Iy
canonically as a Hilbert cube, we see by Theorem 3.3 that for some stable 8*-home-
omorphism h of I, onto itself, h(Ky) is deficient with respect to some infinite sub-
set @) of . But then, letting I” = Iy X (Il £ ¢ Ij), we can define the desired homeo-
morphism g coordinatewise as (h, e), with h acting on Iy and e acting on Ij¢ o Ij.

THEOREM 3.5. Each homeomovrphism f of a compact subset K of s into s can
be extended to a stable B*-homeomorphism F of 1° onto itself. '

In [2], the proof of this theorem (without the explicit use of stability) involves the
following three steps.

(1) Exhibiting a S*-homeomorphism g of I onto itself such that both g(K) and
g(f(K)) have infinite deficiency. Since K U f(K) is compact, our Theorem 3.3 implies
that we may require g to be stable.

(2) Exhibiting a B*-homeomorphism h that carries g(f(K)) into a set of infinite
deficiency which is complementary to a set of infinite deficiency containing g(K):
The homeomorphism h can be achieved as the product of two f*-homeomorphisms
h; and h, , where h; involves interchanging just two coordinates (and is thus stable),
and where h; involves interchanging infinitely many pairs of coordinates, but carries
one endslice W onto itself. But such an h; is clearly isotopic to the identity under
an isotopy carrying W onto itself, and Lemma 3.1 implies that h, is stable. Thus
we can require that h is stable.

(3) Exhibiting a g*-homeomorphism ¢ that extends (hgfg-l) (with the indicated
homeomorphisms cut down to the appropriate sets) from g(K) to hgf(K). The argu-
ment for the existence of ¢ is essentially that of Klee [7], and since g(K) U hgf(K) is
compact, we may clearly require that ¢ is the identity in some neighborhood of an
endslice. Thus we may require ¢ to be stable.

Finally we observe that we may define F = g'1 h-1 ¢g to be the desired stable
homeomorphism.
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THEOREM 3.6. For each endslice W of 17, there exists a stable B-homeomor-
phism 0 that carvies some compact subset K of s onto W.

The proof of this theorem is essentially accomplished in [2; Theorems 6.1 and
5.7}, and it is possi?ole to require that 6 is the identity in a neighborhood of the op-
posite endslice in I . Thus € can be required to be stable.

We now give the main theorem of this section.
THEOREM 3.7. If a homeomorphism p of I onto itself either
(i) carries an endslice onto itself or
(ii) carries an endslice into s,
it is stable.

Proof. Case (i). Suppose p carries the endslice W onto W. Let 1 be a stable
homeomorphism carrying W into s, and let © be a stable homeomorphism extending
(npn~1) | n(W). Then p carries n(W) onto itself, and (n -1 41 5)p is the identity on
W and is therefore stable, by Corollary 3.2. Hence p=(n-!pun)[(n-tp-1n)p] is
the product of two stable homeomorphisms, and thus it is stable.

Case (ii). Suppose p carries W into s. By Theorem 3.6, some stable homeo-
morphism ¢ carries some copy W' of W onto W (with W'C s). By Theorem 3.5,
some stable homeomorphism f carries p(W) onto W'. The homeomorphism ofp
carries W onto W, and by Case (i) it is stable. Therefore p =f-1o-! (cfp) is
stable, since it is the product of three stable homeomorphisms.

The following obvious corollary of Theorem 3.7 justifies the statement that all
the homeomorphisms introduced in [2] are stable. Of course, our later Corollary
10.4 asserts even more, namely that ¢/l homeomorphisms of I onto itself are
stable.

COROLLARY 3.8. Any finite product £y 0---of, of homeomorphisms of I onto
itself is stable provided a(f;) # Z for each i (1 <1i <Kk).

4, EXISTENCE LEMMAS FOR HOMEOMORPHISMS

In this section we give a sequence of three lemmas, the third of which is used
explicitly in the proof of Theorem 8.1. The lemmas are quite similar in spirit to
several of the lemmas and theorems of Section 5 of [2]. We shall prove Lemmas 4.2
and 4.3 in detail, but we shall discuss the proof of Lemma 4.1 only briefly, since it
is essentially included in [2].

LEMMA 4.1. Let € > 0, let @@ be an infinite subset of Z, and let K be a closed
subset of an endslice W = W;(0), W;(1) such that X is deficient with vespect to Q.
Then there exist a stable B- homeomorphism h and a closed set Q in the t-neigh-
bovhood Sg(W) of W such that

(1) a(h) c (@ u {i}) and a(h) £ Z,

(2) d(h, e) <& and h is supported on S (W),

(3) 7;(Q) = Ti(K) and 7;(Q) comsists of a single point of I},
(4) h@Q) =K,

(5) (W) C W and h"l(W)cwuQ u|: U [W;(0) U W;(1)] :l, ané
jea
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(6) for each j € @ and A =0, 1, h(Wj()) C [W U W;(0)] and h-1(W;(2)) € W;(0).

Proof. The proof of this lemma is essentially given as the proof of Lemma 5.1
in [2], with the e-condition implicit. It involves a type of infinite twisting operation
by use of various different @-directions with motion of Q toward W. Thus we may
develop h as a left product LIlj> ¢ hj, where for each j, a(h;) = {i, A;} with
Aj € @, and where a(h) # Z. It follows from Corollary 3.8 that h is stable.

LEMMA 4.2. Le! a be an infinite subset of Z, and let R be a subset of B(I°°)
such that R is closed relative to B(I") and R is deficient with respect to &. Then
there exist an infinite subset ag of o and a stable B-homeomovphism £ such that
f(s)=s U R and a(f) N ag = .

Proof. Let (A;);i>0 be a monotonic increasing sequence of all indices A for
which R N [W)(0) UW,(1)] #@. Then @ N {Aj}i50 =@. Let
Ry, = R N [W, (0) U W, (1)].

Then for each 1> 0, Rhi is closed and deficient with respect to o. Let

a = Uizo @;, where a; is infinite for each i > 0 and where o; N a5 = ¢ whenever
i #j. We inductively define a sequence (f-l)i>0 of homeomorphisms such that
f=(LIIi>o fi'l)‘1 . The f; are to be chosen inductively in such a way that (f_{l)i>0
satisfies the convergence criterion of Lemma 2.1. For each i > 0, let

For each i, let f; o and f; ; be B-homeomorphisms of the type described in Lemma
4.1, supported on disjoint neighborhoods of Wy i(0) and Whi(l), respectively. Here

A; plays the role of i, and @; plays the role of &@. For i=1, in(O) and Rhi(l)
separately play the role of K, and for i > 1,

£{ 0 of1 (R (0)  and 1) 00 f]N(Ry (1))

separately play the role of K. Also, f; o [or f; ;] is the identity if and only if
Rhi(O) [or Rki(l)] is empty. We left f; =f; §°f; ;, and we shall now verify that

(LIIf] 1)'1 is the desired homeomorphism f.

(1) For each point p in R, £~ !(p) € s, since Ll'[fi'1 moves p off every endslice
on which it appears and does not move p onto any endslice on which it does not
appear.

(2) £-1(s) c s, since fi‘l(s) C s for each i, and since for each endslice W there
is at most one index j for which £ j‘l moves any point toward W.
(3) Each point p € B(I”)\ R occurs on some endslice, and if for some j

fj‘l o...0f7}(p) is not on an endslice, then fj'l o...0f7l(p) is on some new endslice
with index in (a; U *+- U aj) from which it is not moved by any fi. for k > j.

(4) Since «a(f) # Z, the homeomorphism f is stable (Corollary 3.8).

LEMMA 4.3. Lel o be an infinite subset of Z. Let h be a B-homeowmorphism
such that Cl[h(s) N BI™)] N B(I™) is deficient with vespect to «. Then there exists
a stable homeomorphism g such that (gh) is a *-homeomorphism and
a(g) Na; = @ for some infinite subset ay of «.
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Proof. Let R = Cl[h(s) N B(I")] N B(I°). We may write R = UjZl R;, where
for each j, R; is the nonempty intersection of R with an endslice. Thus R; is a
closed set. By Lemma 4.2, there exists a S-homeomorphism f such that
f(s)=s UR and a(f) N a2 = @ for some infinite subset a2 of @. Observe that
(f-1h) carries s into s, but that it may also carry some points of B(I”)\ h(s) into
s. We now find a homeomorphism ¢ that carries such points off s.

Since I”\'s is a countable union of compact sets, so is I” \ h(s). Therefore, for
each j, Rj\h(s) is the countable union of compact sets, and thus R\ h(s) may be

expressed as U1>o Qi, where for each i, Qi is a compact set such that f- 1(Q1) is
infinitely deficient with respect to o, . By Lemma 5.2 of [2], there is an infinite
subset @) of @ and a B-homeomorphism ¢ with a(¢) N @] = @ such that for

p € s, ¢(p) € B(I”) if and only if p € Ui>o f‘l(Qi).

Thus (¢f-1) is the desired homeomorphism g of the lemma, since (¢f-1h)
carries s onto s and a(¢f-1) N a, = @. As in the preceeding lemmas, since
a(g) # Z, g is stable, by Corollary 3.8.

5. TWO PRELIMINARY LEMMAS ON EXTENDING HOMEOMORPHISMS

In proving the key lemma of Section 6, we shall need the following two lemmas,
which will be shown to follow from results of [2].

LEMMA 5.1. Let R be a closed basic set, and let K| and K, be normal finite
polyhedrons in 1° such that

K,UK, CR and K;NBdR =K, N BdR.

Let £ be a homeomorphism of K, onto K, such that £ is the identity on Ky N Bd R.
Then there exists a stable B*-homeomorphism g such that

g|K; =f and g|(@®\R)=-e]|(I"\R).

Proof. Except for the g*-condition on g, this lemma is a corollary of Theorem
7.1 of [2] (with stability following by definition). However, to get the full lemma, we
must use several results of [2] in sequence. We consider R as a “smaller-scale”
Hilbert cube R' with pseudo-interior s'. Since Bd R in I* is the union of a finite
number of endslices of R', some B*-homeomorphism 6 of R' carries Bd R into
one endslice W of R' (let ¢ be induced by a homeomorphism of an n-cube onto it-
self). By Theorem 6.1 of [2], some S*-homeomorphism p of R' carries 6(Bd R)
into the relative pseudo-interior of W. By applying Lemma 5.1 of [2], we see that
there exists a S-homeomorphism ¢ such that ¢(s') =s' U p6(Bd R). Now the sets

=[¢71po(K, UBdAR)] and Kj=[s"'p6(K, UBdR)]

are.compact subsets of s'. Let f3 be the homeomorphism of (Bd R) UK onto
(Bd R) U K, that redices to f on K; and to the identity on Bd R. Then (w1th the
indicated homeomorphisms appropriately restricted) (¢=1p 6)fy(¢p~1p6)-! isa
homeomorphism of Kj onto KZ By Theorem 4, 2 of [2], some B*- homeomorph1sm
o of R' onto itself extends (¢-1p 8)to(p-1p6)-1. Thus (¢~1p08)-lo(p-1p0d) isa
B*- homeomorphlsm of R' onto itself that extends f;. We observe that
(6-1p6)-lo (¢-1p6) is a B¥-homeomorphism, since it carries Bd R identically
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onto itself and each of the seven indicated homeomorphisms carries every other
point of B(R') 1nto B(R') and every point of s' into s'. Let 0y be the extension of
(6-1p6)-Lo(¢~1p0) to I such that for each p € I°\R, oy(p) =p. Then o0y is the
desired homeomorphism.

LEMMA 5.2. Let € > 0, and let R be a closed basic setin I°. Let T bea
novmal finite polyhedron in R let K' be a closed subset of R, and let g be a map of
a closed n-cell E™ into (Int R)\K' such that g I B(E™) is a pzecewzse linear homeo-
movphism onto a polyhedral subset of T. Then theve exists a homeomorphism g* of
E™ into Int R such that

(1) g* | B(E™) = g | B(ED),
(2) g*(E™) is a normal finite polyhedron,
(3) g*(E™) N (K' U T) = g(B(EW),

(4) d(g, g*) <e.

Proof. Let U be a neighborhood of g(E™) such that U C (Int R)\ K'. For each
point p € E™, let V be a spherical neighborhood of p in E™ such that g(Vp) is
contained in some open basic set that has diameter less than £€/3 and is a subset
of U.

Let V* be the collection of all such sets V, and let V' be a finite subcolle¢tion
of V¥ covering E®. Let A be a triangulation of E® compatible with g and so fine
that for each n-simplex of A all the vertices lie in some element of V'. Since each
open basic set is convex, the images of the vertices of A under g determine a
piecewise linear map g' from E?® into U. We observe that d(g, g') <e.

Since A has only finitely many vertices, we can modify the images of the ver-
tices, each by an amount less than [¢ - d(g, g")]/10n, to achieve a new piecewise
11near mapping g" of E™ into U such that (1) the image of each simplex of A is a
normal finite polyhedron in some open basic setin U of diameter less than €/3 and
(2) d(g, g") < &. Finally, since both T and g"(E™) are normal finite polyhedrons,
and since infinitely many different orthogonal directions are available, it is possible
to move each vertex of g"(A) by an amount less than [¢ - d(g, g")]/10n so that the
desired piecewise linear homeomorphism g* is achieved.

6. THE KEY LEMMA ON TRANSLATING PROPERTY Z
INTO HOMEOMORPHISMS

LEMMA 6.1. Let € > 0. Let K be a closed subset of I° such that K has Prop-
erty Z. Let M be a standard n-cell in I7° ,and let U be an open set containing M.
Then there exists a stable B*-homeomorphism h of I° onto itself, with support on
U, such that

(1) MOhK) =¢@ and (2)dh,e)<ce.

. Proof. Let M be a standard cubical decomposition of M such that the mesh of
M is less than €/2n. For each j (0 <j <n), let M; be the j-skeleton of M, and let
M* denote the union of the elements of M; j- We proceed by a finite 1nduct1ve proc-
ess We give the first step (which is somewhat special), and the inductive step.

Let Ugp be a neighborhood of M such that Ug C U- and each component of Uy
has diameter less than £/2n and is an gpen basic set containing exactly one element
of My. Since K has Property Z, K contains no open set. In each component of Uy,
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there is a point not in K. Therefore we may apply Lemma 5.1 to find a stable g*-
homeomorphism that (i) carries such a point onto the point of Mg in such a com-
ponent and (ii) is the identity outside such a component of Ug. A finite composition
of such homeomorphisms (one for each component of Ug) is a stable 8*-homeomor-
phism hg with support on U and satisfies the conditions hg(K) N Mg = @ and

d(ho, e) < 8/211

By the inductive hypothesis, there exist stable f*-homeomorphisms
hgy, hy, **-, h;_; with support on U such that

(1) hj_jo*ohg(K)N M¥_; =@ and

(2) d(hj, e)<e/2n foreach j (0<j<i-1).
We proceed to describe h;j. For each element m € Mj, let m' be a standard
i-cell with m'C m, with m' N M¥_; = ¢, and with

[Clm\m")] N [h;_;o:-ohy(K)] = &.

The finite collection M' of such m' (one for each element m of M;) is a collection
of disjoint standard i-cells, each of diameter less than £/2n. Let U; be an open set
contained in U such that (1) U; is the union of a finite collection V; of disjoint open
basic sets, each of diameter less than £/2n, (2) for each m' € M’', there exists an
element v of V; such that m' CInt v but M{" ; N Clv = ¢, and (3) no two elements

of M; intersect the same element of V;.
For each v € V;, we wish to apply Lemma 5.2 followed by Lemma 5.1. Let EL
be an abstract polyhedral i-cell, and observe that B(m') is a polyhedral (i - 1)-

sphere. By Property Z, there exists a map ¢,, of E! into v\K such that
¢v| B(E') is a piecewise linear homeomorphism onto B{(m'). Let

T = [Cl(m\m")] N [C] v],

and observe that T N h;_jo--- OhO(K) = @. By Lemma 5.2, there exists a homeomor-
phism ¢’{‘, of Ei onto a normal finite polyhedron in v\ K such that

¢*| B(E') = ¢_|B(E) and ¢XE) N (KU T) = Bm).

Let £, be 2 homeomorphism of (Bd v) U T U ¢¥(E1) onto (Bd v) U (m N v) that
reduces to the identity on B(v) U T. By Lemma 5.1, there exists a stable g*-ho-
meomorphism g, that is an extension of f,, and is supported on v. We choose

hy = I ¢ v; 8y a8 the homeomorphism of the inductive step. Finally, h=h o---ohj

is the desired homeomorphism of the lemma.

7. FROM PROPERTY Z TO INFINITE PARTIAL DEFICIENCY

In this section we shall prove a lemma about the existence of a certain stable
homeomorphism g of I° onto itself. In the next section we shall use g to exhibit a
stable f*-homeomorphism translating Property Z to infinite deficiency.

LEMMA 7.1. Let K be a closed subset of 17 guch that K has Property 4Z.
Then there exisls a soiéable homeomog;phism g of I onto itself such that
g(K) U Cllg(s) N B(I")] U Cllg(BA™)) N s] has infinite partial deficiency.
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The proof of Lemma 7.1 is conceptually easy but technically rather complicated.
We begin with a heuristic outline of the argument employing the symbolism to be
used in the proof.

(1) The homeomorphism g is to be exhibited by.an inductive construction with
g = LIl gx and with convergence by the convergence criterion of Lemma 2.1.

(2) Each g is to be exhibited as a composition of two B*-homeomorphisms,
g\ = hy ofy, where f, is constructed as in Lemma 6.1 to carry gy _j o+ g, (K) off
of a certain central standard ny-cell M, with M, chosen so that (M, , I") is small.

(3) Since d(f) ogy_jo---og;(K), M,) > 0, there must exist a basic open set con-
taining M, and not intersecting f) og,_10:--0og 1(K). Thus there must exist an inte-
ger j, such that jj >y, jy > jx.1 and for ay = {j| i <ir},

Tay(My) N 7q,(Eyogy 10" 0g(K)) = @.

Thus (TaA(MA) X IOZ';\) N ogy_jo--0g;(K)=¢@.

The homeomorphism h) will be designed to “enlarge” a certain neighborhood of
the intersection of the set ('rah(Mh) X Ia')\) with the union of the two endslices in the

ja-direction, so that 7;, hy ofyo gy _jo---og)(K) CI5, . In the definitions to follow,
we describe characteristics of the desired h).

(4) Referring to the notation of (3), we inductively develop a sequence (j;))>o0 of
positive integers. In fact, g(K) U Cl[g(s) N B(I*)] U.C1[g(B(I*)) N s] is to have infi-
nite partial deficiency with respect to { jA} a>0- To achieve this property it suffices,
in the light of the conditions of (3), that we inductively require that for each A > 0
there is a neighborhood V) of the union of the two endslices in the j)-direction such
that gy |V =e| Vy = hy |V, for each A’ > A. For each A > 0, we shall introduce
a montonic increasing sequence (J jA(m))m>0 of closed subintervals of IJ?A . We may

consider V, to be TJ-; (Ijh\ Um>o ij(m)).

Definitions. Let i and j be integers (i < j). For any point p, an (i, j)-expansion
of X={p} XI;x I; is a homeomorphism h of X onto itself such that

h'({p} x1; x {0}) anda n7'{p} x1;x {27})

are closed subintervals of ({p} X I3X {0}) and ({p} x1¢x {277}), respectively.
We call the projections of these two inverse sets on I; the base sets of the (i, j)-
expansion. For any space Y, a (Y, i, j)-expansion is a homeomorphism h of

Y X I; X I; onto itself such that for each y € Y, h | ({y} X Ij X I;) is either an

(i, j)-expansion or the identity. For any j > 1, a j-complete expansion is a homeo-
morphism h of I onto itself, defined for p € lly<; Ix and q € Ii>; Iy as

h(p, a) = (h*(p), q), where h* is a (I} 14;]}, i, j)-expansion for some i

(1 <i<j). We also say that h is a j-complete expansion with vespect to i.

Proof of Lemma 7.1. We use the notation and definitions introduced above. We
begin with a description of g;. The inductive step for g, will differ from that for

g, only in notation and in the necessity to handle I; 1’ Ij2’ XN Ij)\- | rather specially.
Let 1>¢, >0, let n; € Z, with 2 1 <¢/4, and let M be a central standard
nj-cell in I such that
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p(7;(M;), G\I) = g, -2797%  for each j (1 <j<ny).
By Lemma 6.1, there exists a f*-homeomorphism f; such that d(f;, e) <&e;/4 and
£;(K) N M, =¢. Since f;(K) and M; are both compact, we see that p(f;(K), M;) > 0.
Let 6, = p(f;(K), M;). There exists an integer j) > n; such that EJZJl 27 < 6% .
Letting ) denote {j|j <ij,}, we see that 74 (M;) N 7, (£;(K)) = .

Now we shall define h; as a finite composition h; j,_1©---oh; j such that h; ;

is a jj-complete expansion with respect to i, for each i (1 <i<j; - 1). Specifi-
cally, for each p € _Hk<j k#i Ik, the base sets of the.assz,ociated G4, j 1)-expansion
of {p} X I;x1I; are both to be the closed (5 ‘&) .27917%)_neighborhood in I; of
7;(M;). Also, we require that

_i-2 -itn, -2
d(h) i, e)<eg; -2 for i<n; and d(hy;, e)<g;-2 for i >n;.

Clearly, h, is a B*-homeomorphism, 7. hj;of,(K) cI$ , and d(h;of;, e)<g;j.
1 » Tj, h1of; i 1°f) 1

Let (J jl(m))m>o be a sequence of closed subintervals of 1‘31 such that
(1) le(1)3 'le(hlof]_(K)),

(2) J; 1(m 1) is contained in the interior of le(mz) for m; < m,, and

(3) Um>0 le(m) is contained in a closed subinterval J i of Igl .

We now give a description of g, , assuming (g« ), (J <y » and associated

sets as indicated in the description of g;. Specifically, we require inductively that
Tjk(gk—l o-.-0g(K)) C ij(?-?t - 3) for each k < .

Let &) (1> &) > 0) be selected so that it satisfies the convergence criterion.
Let n, be a positive integer such that (27 *) <&)/4 and ny > jy.). Let My be a
central standard ny-cell in I° such that

p(TJ(Mh), Ij\ f;) = 87\'2'j'2 for each j (1 S]S 1'17\) with j ?Ejl, tee, j)\-l’

and 7;(My) = J;(2\ - 2) for each j (j=j1, =, ia-1).

For j=1jj, iz, **, ia-1, let b(, A) denote p(I;\J;(2x - 2), J5(21 - 3)). By defini-
tion, b(j, A) > 0. By Lemma 6.1, there exists a f*-homeomorphism £ such that

(1) fk og-1 O oo ogl(K) N Mx = ¢.
(2) £, is the identity on 7j1(I;\J;(2x - 1)) for j =iy, iz, =", jx-1, and
(3) d(f)_, e) < min (8}\/4’ b(] 1 }\)s "ty b(j}\—l’ A))-

With the definition of h, to follow, this will insure that T; (gyo -+ 0g1(K)) C Jj(ZA -1)
for j=j1, ***, ja-1. Since fyog), -.1°---°2g(K) and M, are both compact,
8y = p(fy ogy _y ©++- 0g(K), M, ) > 0. There exists an integer j, > n) such that

25>j, 27 < 6%. Letting @, denote {j| j <j)}, we see that

TCE)\(MA) n ’ral(f;tOg;\_l o+ 0g)(K)) = @.
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Now we shall define h) as a finite composition hy j_j o-:- oh) ; such that h) ;
isa ]h—complete expansion with respect to i, for each 1 1<i < J;\ -1). Spec1f1-
cally, if i =j;, -+, ja-1, then h, ; is to be the identity. If i #j;, -, J) -1, then
for each p in

( I Ik) X II Je(2r - 1)
k<jh kzj]_:".:jh_l
k #i,jl N P |
the base sets of the associated (i, j))-expansion of {p} X I;X I are both to be the
closed (6 €32 J?‘)—nelghborhood in I; of 7;(M,); and for each p € Mk < Ik

with the property that 74(p) € (I \ Ji(21)) for some k =j;, **-, j; .1, the associated
(i, j;)-expansion is to be the identity.

We also require that d(hy ;, e) <g)* 27172 for i< n) and

-i+n7t-2

d(h)l,i’ e) < 8)\.'2 for i > m .

Clearly, h) is a p*-homeomorphism, d(h)of), e) < ¢), and

Tj)\(h;to fpogy.1°2"ogy (K)) c Ifj)h
Also,
'Tji(h)\ofk ogy_1°°og(K)) C in(27\ -1) for each i (1 <i<2).

Let (J jA(m))m> o be a sequence of closed subintervals of IE’A such that

1) = h;\ ofyogy_1° 'Ogl(K)Cth(z?\. - 1),

(2) th (m;) is contained in the interior of ij(mz) for m; < mj, and

(3) Um>0 Jj A(m) is contained in a closed subinterval Jj, of I-(i)}x .

The homeomorphism g = LII) >0 g) is stable, since g; is stable and LII) > ; g)

leaves the endslices in the j ,-direction pointwise fixed (thus making Lemma 3.2 ap-
plicable).

We note that for A > 0 and X' > A
-1
gx: | Tin T \J5)) = e | TJA( ix Vi) -

But since 8,07 08, is a B*-homeomorphism, we see that for each point

p € U)\>0 TJA( A\JJ)\) g~1(p) € s if and only if p € s. Also, g-1(p) ¢ K. It

follows that g(K) U Clg(s) N B(I°)] u C1[g(B(I™)) n s] has infinite partial defi-
ciency with respect to {j) }a>o0-
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8. FROM PROPERTY Z TO INFINITE DEFICIENCY

We are now in a position to prove the following important theorem.

THEOREM 8.1. If K is a closed subset of I° and has Property Z, then there
exists a stable B*-homeomorphism £ for which the set £(K) has infinite deficiency

in I®.

Proof. By Lemma 7.1, there exists a stable homeomorphism g of I onto it-
self such that

Ko = g(K) U [Cl(g(s) N B(I™))] U [C1(g(BE™)) N s)]

has infinite partial deficiency. By Corollary 3.4, there exists a stable S-homeomor-
phism h such that h(Ky) has infinite deficiency. By Lemma 5.1 of [2] and Corollary
3.8 of this paper, there exists a stable S-homeomorphism 6 such that

6-1(s) = s\ h(Ky) and 6(h(Ky)) has infinite deficiency. But 6hg is a B-homeomor-
phism, and thus, by Lemma 4.3, there exists a stable homeomorphism ¢ such that
[#(6hg)] is a B*-homeomorphism and ¢6hg(K) has infinite deficiency in I, It fol-
lows that ¢8hg is the desired homeomorphism f of the lemma.

To apply Theorem 8.1 to certain subsets of I (or to s itself or to any separable
infinite dimensional Fréchet space), we need a theorem of the following type. We
shall give a proof based on Lemma 8.3 stated below.

THEOREM 8.2. If K C s is closed (velative to s) and has Propevty Z (relative
to s), and if K c D(K) C I" and D(K) is closed in 1° and D(K) N s = K, then D(K)
has Property Z (relative to I7°).

LEMMA 8.3. If U is a nonempty, homotopically trivial open set in I, then
U N s is a nonempty, homotopically trivial open set velative to s.

Proof of Lemma 8.3. Since I°°\ s contains no open set in I° and the topology of
s is inherited from that of I, UM s is a nonempty open set in s. Let E™ be an
abstract polyhedral n-cell with boundary sn-1 , and let g be a mapping of sn-1 into
U N s. By hypothesis, there exists a mapping g* of E™ into U such that
g* ] sn-1= g. To prove the lemma, we need to show the existence of a map h of E®
into U N s such that h | s™-! = g Since g*(E™) is compact, there exists a finite
collection W of open basic sets such that W covers g*(E"™) and each element of W
is a subset of U. Let A be a (closed) triangulation of E” so fine that for each
6 € A, g¥(0) is a subset of an element of W. Let Ap be the 0-skeleton of A, and
let ho be a map from S®~! U A¢ into U such that hg | S?~! = g and such that for
each p € (Ap\ Sn‘l), ho(p) lies in the intersection of s with the intersection of the
elements of W that contain g*(p). Since the intersection of s with any element of
W is convex, we may realize the desired map as an extension of hg in a piecewise
linear fashion from E" into s.

Proof of Theovem 8.2. Let U be any nonempty homotopically trivial open set in
I”. By Lemma 8.3, U N s is a nonempty, homotopically trivial open set (relative to
s), and U\ D(K) is nonempty since

U\DK) 2 [(UNs)\ DK)] = (UnN s)\K # &.

Let E™ be an abstract polyhedral n-cell with boundary gn-1 . Let g be 2 map of
s”-1 into U\ D(K), and let g* be a map of E" into U such that g* | sn-l =g,

First we shall exhibit a map h of E" into U such that
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h|s" ! =g and hE*\S*!) c@Wns).

Since g*(E™) is compact, there exists a finite collection W of open basic sets such
that W covers g*(E™), and each element of W is a subset of U.

Let A be a (closed) triangulation of E™ so fine that for each 6 € A, g*(6) is a
subset of an element of W. Let Ap be the O-skeleton of A. Let hg be a map from
SP-1 U Ag into U such that hg | S®-1 = g, and such that for each p € (Ag\Sn-1),
ho(p) is an element of the intersection of s with the intersection of the elements of
W that contain g*(p). Since each element of W is convex, we can realize the de-
sired map h as an extension of hg in a piecewise linear fashion from E™ into U.

Now we complete the proof. Since h(S™-1) N D(K) = @, there exists a subset
E} of E™\ 8"~ ! such that ET is an n-cell and h[C(E™\ E})] N D(K) = @#. Let S}~ 1
denote the boundary of E7. Then h (S}~ hc (U N s) and (U N s) is homotoplcally
trivial, by Lemma 8.3. By hypothesis, h I Sn can be extended to a mapping h of
E} into (U N s)\ K. Thus the mapping that is h | (E™\ E7]) and is h on E7 is the
de51red extension of g from E® into U\ D(K).

The following two theorems are almost immediate applications of Theorems 8.1
and 8.2. The first is also a special case of a more general theorem given in Section
10 as Corollary 10.2.

THEOREM 8.4. If K is a relatively closed subset of s and has Property Z
relative to s, then there exists a homeomovphism f of s onto itself such that £(K)
has infinite deficiency.

The techniques of [2] by themselves were not sufficient for proving the following
theorem. However, they are applicable in the special case where the compact set M
of B(I*) is contained in a finite union of endslices of I*

THEOREM 8.5. Let M be any compact subset of B(I°). Then there exists a B-
homeomorvphism h such that h(s) =s U M.

Proof. Regarding K as the empty set, we see from Theorem 8.2 that M has
Property Z. By Theorem 8.1, there exists a f*-homeomorphism f such that f(M)
has infinite deficiency. By Lemma. 4, 2 there exists a f-homeomorphism g such
that g(s) =s U f(M). The mapping f-!g is the desired homeomorphism h.

9. INFINITE DEFICIENCY IMPLIES PROPERTY Z

Let X be I” or any separable, infinite-dimensional Fréchet space. We shall
prove the following theorem.

THEOREM 9.1. If K is a closed set of infinite deficiency in X, then K has
Property 7.

Proof. Let U be any nonempty, homotopically trivial open set in X. Clearly,
U\K is open and nonempty. Let E™ be an abstract polyhedral n-cell with boundary
s2-1 et g be a map of S™-! into U\K and let g* be an extension of g from E"
into U Since both g*(E™) and g*(S™!) are compact, there exists a finite collection
W of open convex subsets of U such that W covers g*(E™) and no element of W
intersects both K and g*(Sn-1). Let A be a (closed) triangulation of E™ that is so
fine that

(1) g*(6) N K =@ for each 6 € A for which 6 nsh-! # ¢, and
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(2) for each 6 € A, g*(d) is contained in some element of W.

To complete the proof of Theorem 9.1, it suffices to note the existence of a map
h of E™ into U\ K such that h | gn-1 = g. But such an h can clearly be realized as
an extension in a piecewise linear fashion of a map hg from the union of S?-! and
the 0-skeleton Ag of A into U\ K, where hg I sn-1 =g and where for each
p € (Ao\S™"1) the point ho(p) lies in the intersection of the elements of W that
contain g¥*(p), and is obtained from g*(p) by small changes in finitely many coordi-
nates with respect to which K is infinitely deficient. We may use a standard gen-
eral position technique in locating the points of hy(Ag\S™~1), so that h(6) N K = @
for any 6 € A for which 6 N S*-1 =@,

10. THE HOMEOMORPHISM EXTENSION THEOREM
AND ITS COROLLARIES

We are now in a position to prove our main theorem and its corollaries.

THEOREM 10.1. Let X denote the Hilbert cube ov any separable, infiniie-
dimensional Fréchet space. Let K be a closed subset of X, and let £ be a homeo-
morphism of K onto a closed set of infinite deficiency in X. In ovder that f can be
extended to a stable homeomorphism of X onto itself, it is necessary and sufficient
that XK have Property Z.

It should be noted that the same condition applies to the compact space I and to
certain linear topological spaces that are not locally compact. Also, the necessary
and sufficient condition given is independent of f itself and of the topology of K. It
depends only on the embedding of K in X.

Proof. Necessity. Since Property Z is (clearly) a topological property, and
since f(K) has Property Z (by Theorem 9.1), it is necessary that K have Property
Z.

Sufficiency. Consider first the case where X = e, By Theorem 8.1, there
exists a stable B*-homeomorphism h such that h(K) has infinite deficiency. Ob-
serve that h(K) N B(I®) and £(K) N B(I") are closed relative to B(I") and that each
has infinite deficiency. By Lemma 4.2, there exist stable f-homeomorphisms g and
¢ such that

g(s) = s U[h(K) N BA®)] and ¢(s) = s U [£(K) N BI")].

Thus g-lh carries s U K onto s. Hence g-1h(K) is a compact subset of s. Simi-
larly, ¢-1 carries s U f(K) onto s. Hence ¢-1£(K) is a compact subset of s. By
Theorem 3.5, there exists a stable f*-homeomorphism 6 that extends the homeo-
morphism ¢-1fh-1g of g-1h(K) onto ¢-1f(K). We see that ¢ 0 g-1h is the desired
stable homeomorphism of X onto itself that extends f.

Consider finally the case where X #17.

Since all separable infinite-dimensional Fréchet spaces are homeomorphic,
there exists a homeomorphism h of X onto s. As before, we consider s to be em-
bedded canonically in I°. Since Property Z is topological, since K has Property
Z, and since Theorem 9.1 asserts that f(K) has Property Z, it follows that h(K) and
hf(K) have Property Z with respect to s. By Theorem 8.2, C1[h(K)] and Cl1[hf(K)]
have Property Z with respect to I”. By Theorem 8.1, there exist stable 8*-home-
omorphisms ¢ and g such that g(C1[h(K)]) and ¢(Cl[hf(K)]) are deficient with re-
spect to the infinite subsets o | and o, of Z, respectively. Without loss of
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generality, suppose Z\ @] and Z\ o, are also infinite. Let p be a f*-homeomor-
phism obtained by interchanging the o] - and Z\ a-coordinates as well as the

Z\ a;- and a,-coordinates. Then pgh(K) and ¢hf(K) are closed sets deficient
with respect to Z\ @, and o, respectively.

By Theorem 4.1 of [2] (which employs Klee’s method), there exists a homeomor-
phism 7 of s onto itself that extends ¢hfh-lg-1p-1 from pgh(K) onto ¢phf(K).
Therefore h-! ¢-1 ypgh is the desired extension of f from K onto f(K) (stability
follows from Wong’s result [9] that all homeomorphisms of s onto s are stable).

In the following two corollaries, X denotes I or any separable, infinite-dimen-
sional Fréchet space, and K denotes an arbitrary closed subset of X.

COROLLARY 10.2. In ovdev that there exist a stable homeomorphism of X onto
itself carrying K onto a set of infinite deficiency, it is necessavy and sufficient that
K have Property 4.

Proof. This corollary will follow directly from Theorem 10.1, provided we can
prove the existence of a closed set that has infinite deficiency and is homeomorphic
to K. For the case where X = I, we observe that I contains many infinitely de-
ficient subsets homeomorphic to I, For X #I°, it is shown independently in [6]
and [8] that X contains a closed, infinite-dimensional subspace of infinite deficiency.
But such a space must be homeomorphic to X, since both are separable, infinite-
dimensional Fréchet spaces. Hence X does contain an infinitely deficient closed
copy of K, as we wished to show.

COROLLARY 10.3. Each homeomorphism between two closed subsets of X
with Property Z can be extended to a stable homeomovrphism of X onto itself.

The proof uses Corollary 10.2 and Theorem 10.1, and it is obvious.

The next corollary represents a result that the author and Raymond Wong have
sought for some time. It apparently does not follow directly from methods of [2].
The proof uses the full strength of the homeomorphism extension theorem, Theorem
10.1, in the form of its corollary given above.

COROLLARY 10.4. If h is a homeomovphism of I° onto itself, then h is stable.

Proof. Let W be an endslice of I°. Then W and h(W) both have Property Z,
and by Corollary 10.3 the homeomorphism h -1 | h(W) carrying h(W) onto W can be
extended to a stable homeomorphism g of I” onto itself. But f = gh is the identity
on W, and thus it is stable, by Corollary 3.2. Hence h = g-1f is the product of two
stable homeomorphisms, and thus it is stable.

We can now give an independent proof that every homeomorphism of I onto it-
self is isotopic to the identity, a result established originally by Wong [9] with a
straightforward but rather ingenious argument.

COROLLARY 10.5. Each homeomoyrphism h of I° onto itself is isotopic to the
identity.

Proof. By Corollary 10.4, we may express h as hj o--- ohy, where for each
i (1 <1i<Kk) h; is the identity on some open set. By use of the Alexander technique
of shrinking the set of support to a point, it is clear that h; is isotopic to the iden-
tity. Hence h is isotopic to the identity.

Finally, we observe that the (an) annulus conjecture for I” has an affirmative
solution. In light of the stability of all homeomorphisms of I onto itself, the proof
of Lemma 9.1 of [4] (when properly interpreted for I°) gives the following version
of the annulus theorem. We do not reproduce the proof here.
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COROLLARY 10.6. If K, and K, are disjoint closed sets in 1. , and if theve
exist homeomorphisms £, and £, of I° onto itself such that

£,(K;) = £,(K,) = {p| 7, (p) = 1/4},
then there exists a homeomovphism f of I° onto itself such that

#K,;) = {p| 1, () = 1/8} and i(K,) = {p| 7,(p) = 3/8}.

11. A HOMEOMORPHISM CARRYING B(I”) OFF ITSELF

In this final section, we shall give the essential structure of a proof of a theorem
that affords considerable insight into the role of B(I®) in I . In spite of the fact
that I° has the fixed-point property, B(I”) can be “folded” into the pseudo-interior
under a homeomorphism that is a left product of -homeomorphisms.

THEOREM 11.1. There exists a sequence (fi)i>0 of B-homeomovphisms such
that £ = LIl > o f; exists and £(B(I*)) C s.

For the proof we need a definition and two lemmas.

Definition. A subset K of I” is said to be a j-normal subset of Wj(O) ]
[or of W;(1)] provided K =II; < I; X {p} xT;~;J;, where p=0 [or p=27], and
where for each i > j, J; is a closed subinterval of 1‘3.

LEMMA 11.2. For each € > 0 and each j > 0, there exists a B*-homeomor-
bhism gj such that

(1) g; is supported in the e-neighbovhood of W;(0) U W;(1),

(2) dlej, e) <,

(3) g3(W;(0)) and gj(Wj(1)) are j-normal subsets of Wj(0) and W;j(1), respec-
tively, and

4) Blg;) > {1, -, j-1}.

Proof. The proof of this lemma is basically the proof of the Contraction Theo-
rem (Theorem 6.1 in [2]), with I; of [2] replaced by I; and with the first (j - 1)
coordinate factors held constant. We do not repeat the argument.

LEMMA 11.3. For each £ > 0 and any j-normal subsets N;(0) and N;(1) of
Wj(O) and Wj(l), respectively; there exists a B*-homeomorphism h; such that

(1) hy is supported in the &€-neighbovhood of W;(0) U W;(1),
(2) d(h_]a e) < £,
(3) hj(Nj(O)) and h;(N;(1)) have infinite deficiency, and

(4) Bhy) > {1, -+, 5 - 1},

Proof. We omit the detailed proof of this lemma, since it is basically like that of
Corollary 3.4 of this paper or Lemma 3.3 of [2], where we showed how a set of infi—
nite partial deficiency can be carried onto a set of infinite deficiency by a g*-homeo-
morphism.

We are now in a position to organize a proof of Theorem 11.1. We use an induc-
tive construction of f;. The convergence follows from the convergence criterion of
Lemma 2.1. Each f; is to be a product g{lhi'l qbi‘l of three homeomorphisms,
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where g; is as in Lemma 11.2, h; is as in Lemma 11.3 and ¢; is a composition of
two homeomorphisms, each as in Lemma 4.1, but independent of the first (i - 1)-
coordinates. In fact, each of B(g;), B(h;), and B(¢;) is to contain {1, ---,i- 1}. We
select first the homeomorphism g;, then h;, using the set g;(W;(0) U W;(1)). Fi-
nally, we choose ¢. so as to move h;g;[W; (0) U W,(1)] into

sul U w0 uwa ]
i<i
and off of W;i(0) U W;(1). Then f; = (g{1 hilei!) moves ¢; h; g;(W;(0) U W;(1)) onto

W;(0) U W;(1). It is easy to verify that (f o--of;)"1 lJJ<1 (W;(0) U W; (1)) must
be a subset of s, and since B(f;) D {1, ---, i} for each k > i, it follows that
£f(B(I”) N B(I®) = ¢, as we wished to show
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