TWO PROBLEMS IN THE THEORY OF
GENERALIZED MANIFOLDS

Frank Raymond

Dedicated to Professor R. L. Wilder on the occasion of his seventieth birthday.

At the R. L. Wilder Conference in Topology at the University of Michigan, held in
honor and appreciation of R. L. Wilder’s contributions to topology, I discussed three
problems in the theory of generalized manifolds that have interested me. This is a
report on two of these problems.

1. DIMENSION OF GENERALIZED MANIFOLDS

We adopt the conventions of [1] and call a locally orientable generalized n-mani-
fold M over a principal ideal domain L a cohomology n-manifold over L (M is an
n-cm over L). This differs slightly from the terminology of Wilder [12] in that no
assumption on the covering dimension of M is made. It is known that the cohomolo-
gical dimension of M over L, to be denoted by dimy, M, is exactly n. Whether or
not the covering dimension of M is finite is still unknown. Several other interesting
questions concerning the covering dimension of generalized manifolds have been
stated by Wilder in [12, p. 382]. The recent reprinting of [12] (1963) contains a dis-
cussion of the present status of these questions.

PROBLEM 1. Let M be an n-cm over L. Is dim, M= dimM = dimj M,
3%

for all primes p?

If Z, or Q are L-modules, then M is also an n-cm over the respective Zp or
Q. Also, if n < 2 and M is separable metric, then M is locally Euclidean by a
theorem of Wilder [12, pp. 275-280]. Hence, the answer to Problem 1 is partially
known. However, the question is unanswered in the following special situation.

(i) Let M be an np-cm over Zy, for each prime p and the vational field (p = 0).
Is ny independent of p? Is M a cm over 7Z?

It may be possible to answer affirmatively the second part of (i) with the added
assumption that M is clc over Z (see [8, p. 1375]).

An affirmative answer to either question in (i) would imply that every compact
effective group of homeomorphism of a manifold (or separable metric cohomology
manifold) is a Lie group (see [7] for more details). This problem, of course, is the
generalized Fifth Problem of Hilbert. The answer is still unknown. We can indicate
a feeling for the connections between these two problems by considering a special
case. Assume that the p-adic group Ap operates freely on an orientable n-cm M

over Z. Consider the space (M X EP ) /Ap , where the action of Ay is the diagonal
action and Ep is the p-adic solenoid. This space can be fibered over the circle with
fiber M. Hence (M X EP)/AP =M' is an (n+ 1)-cm over Z. The p-adic solenoid
now operates freely on M', so that M'/ Ep is homeomorphic to M/A,,, the space
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that we want to discuss. Since EP is acylic, if we use cohomology with Zp-coeffi-
cients, the Vietoris mapping theorem implies that dimZp M/ Ap isatleast n+ 1, In

fact, we can use Wilder’s monotone mapping theorem [13] and actually conclude that
M/A isan (n+ 1)-cm over Z,. On the other hand, if we take coefficients in Zq
(q prlme to p), then M/A, is an n-cm over Zyg (q may be 0). This is easily
proved by means of the transfer homomorphism (see [7]). Thus, if such an action
exists, the answer to Problem 1 must be negative.

I shall give several other unusual properties of the orbit map n: M — M/A and
the orbit space M/Ap, with the hope that they might either provide a guide to the
construction of an action or lead to a proof that no action exists.

In [14] and [2] it was shown that dim M/Ap=n+2 if dimzy M=n. Let C bea
closed subspace of M/A then

dimy; C=n+2 #dimZpC=n+1, dimqu=n,
dim, C=n+1 #dimZpC=n, diquC=n- 1,

dim C =n, dim C=n-1or
Zp ’ Zq

dim, C=n =
dimZpC=n -1, diquC<n— 1,

dimy;C=n-1 =>dimZngn— 1, diquC <n-1.

(Here q may take the value 0.) These facts are consequences of [8, 3.1 Lemma] and
the property (see [6, p. 9]) that for a cm, closed subspaces of (cohomological) codi-
mension 0 (respectively, codimension 1) are identical with the subspaces having
nonempty interior (respectively, the subspaces that locally separate the cm).

It follows from [8, 3.1 Corollary] that dim, (C X C) = 2 dimy C - 1 in the first
two cases. Thus, each of these subspaces is a space of Boltjanskii type. The re-
maining two cases are also not dimensionally full-valued (see also [10, Section 6]).

C. N. Lee has made the observation (unpublished) that the mapping 7 must be a
fibering in the sense of Hurewicz. (It is known that all Hurewicz fiberings of a mani-
fold, with totally disconnected fibers, onto weakly locally contractible spaces are
genuine covering maps, [9, 2.10].) Suppose that C is a closed subspace of M/Ap
and that C can be deformed, in M/A to a point. A generalization of the argument
used in the proof of Propos1t1on 4 of [5] shows that w: 7-1(C) — C has a cross-
section. Hence, C can be imbedded as a closed subspace of M, an n-cm over Z. In
a cm over Z, dimL C is independent of L if the (cohomological) codimension is at
most 1. Thus we have the following proposition, which is a variation in this specific
case, of an unpublished result of R. F. Williams.

PROPOSITION. No closed subspace C of M/A, with dimz C >n - 2 can be de-
formed to a point, in M/A
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2. BORDISM GROUPS

Consider continuous maps f: M™ — X, where M" is a closed triangulated homol-
ogy n-manifold over L and X is any topological space. We say that (M?, f) is
equivalent to (N™, g) if and only if there exists a triangulated homology (n + 1)-
manifold with boundary W'l and a map h: W2"! — X such that the boundary of
wotl jg M® Y N® and h | MP =£, h|N® = g (U denotes disjoint union). That is, we
define a bordism homology theory in analogy to the differentiable case by using tri-
angulable homology manifolds instead of differentiable manifolds. With care, one
can actually show that this defines a homology theory on the category of CW com-
plexes (in fact over all topological spaces, by certain extension techniques; see [4,
Section 5] for details in the differentiable case).

Let #4,, #Z,, and &, denote the nth bordism functor whose antecedent spaces
are differentiable n-manifolds, piecewise linear n-manifolds, or triangulated ho-
mology n-manifolds. Certain obvious natural transformations

P2,

N

n n

A

are equivalences if n < 3.

PROBLEM 2, What ave the coefficient groups fov the genevalized homology
theory #4,? Can one also compute the ving structuve of 2, (point)?

By suitably restricting our antecedent triangulable homology manifolds, (for ex-
ample: take only triangulated homology manifolds imbedded in some triangulated
Euclidean space, where the triangulations of R™ are compatible with those of R®!;
and assume that the maps have range in the finite subcomplexes of a countably in-
finite simplex) we may assert that the cohomology theory associated to this homology
theory is representable [3]. This yields the analogue of the Thom spectra. Problem
2 calls for the determination of the stable homotopy groups of this spectrum. Of
course, there are at least two such theories, the oriented and unoriented theories.

In the unoriented theory, where all modules are over Z,,

PX) ~ 2 @,,._; (point) @ H;(X) .
J

One may prove this by using (among other things) the injectivity of .#, — £, to-
gether with the spectral-sequence argument employed in [4, Section 8] for the dif-
ferentiable case. Well-behaved analogues of tangent and normal bundles do exist for
triangulated homology manifolds. One can also define Stiefel-Whitney classes of a
homology manifold. Furthermore, the Stiefel-Whitney numbers must agree if two
homology manifolds are to be bordant. However, it is likely that many more “exotic
characteristic classes?” exist and must be recognized before a theorem analogous to
Thom’s [11] can be proved.
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