INVERSES OF EUCLIDEAN BUNDLES

J. M. Kister

To Raymond L. Wilder on his seventieth birthday.

For each Euclidean bundle or microbundle it is useful to find another bundle of
the same type, called an inverse bundle, such that the Whitney sum of the two is a
trivial bundle. Milnor in [4] ingeniously showed how to construct an inverse to a
microbundle over a finite-dimensional, locally finite, simplicial complex. Here we
give a short and elementary proof of the existence of inverses for Euclidean bundles
over paracompact spaces having a finiteness condition. This contains Milnor’s re-
sult, since one may regard a microbundle as a Euclidean bundle [2]. Hirsch [1] has
also developed a new proof of the existence of the inverse of a bundle over a poly-
hedron, in his work on the stable existence and stable isotopy of normal micro-
bundles.

Terminology. By Euclidean bundle we mean a fibre bundle (in the sense of
Steenrod [5]) whose fibre is Euclidean space R™ and whose structural group is
Hp(R™), the group of all homeomorphisms of R™ leaving the origin fixed, and pro-
vided with the compact-open topology. Other bundle terminology will also be taken
from [5]. For microbundle terminology, see [4]. The identity map on a space will
be denoted by id, the unit interval by I.

Define maps ¢ and p of Hy(R®) X Hy(R?) into H,(R2™) by
c{f, g) = (go f) Xid: R®* X R” - R®" X R" and p(fzg)=f><g_

LEMMA 1. p is komotopic to c.

Proof. Let 6; (t in I) be in SO(2n), and suppose that 8y = id and
6,(x, y)=(-y, x) (x, y in R*). Define ¢ Ho(R™) X Hy(R?) — H,(R2n) by

¢, 8) = 071 o (idx g) o 6, o (fx id).

Then ¢ (t in I) is the desired homotopy with ¢y = p and ¢; = c.

Remavk 1. If the homomorphism p is restricted to G X G, where G is a sub-
group of Hp(RR), and if K is a subgroup of H (Rzn) contammg both SO(2n) and
p(G X G), then the homotopy constructed above assumes values in K. Examples of
this occur when G and K are the orthogonal, rotation, or stable homeomorphism
groups in dimensions n and 2n, respectively.

LEMMA 2. Let &K and n’z be two Euclidean bundles (of dimension kK and £, re-
spectively) over a space B. Suppose that B is the union of two open sets U and V,
and that § and 1 ave both trivial over U and V. Let the coordmate transformations
Sfor & and 1 be given by £f: UNV — H(RK) and g: UNV — HO(R ), respectively.
Then the Whitnev sum E@ n is also trivial oz,er U and V, and the coordinate trans-
Jormation may be taken to be h: UNV — HO(Rk+ ), where h(b) = f(b) X g(b).

The proof is straightforward, and we omit it.
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LEMMA 3. Let &" be an n-dimensional Euclidean bundle over the union of two
open sets U and V in a normal space B, and suppose & is trivial over U and V.
Let U' be a set whose closure lies in U. Then theve exists an n-dimensional Eu-
clidean bundle n™ over U UV such that (¢ @D n) | (U' U V) is trivial.

Proof. Let ky: UXR™ — E(£ | U) and ky: VX R™ — E(£ | V) be the coordinate
functions with coordinate transformation f: U N V — Hy(R™) defined by

£(b) (y) = pr o k3! o ky(b, y),

where pr: V X R™ — R" is the projection map. Next define g: U NV — Hp(R™) by
g(b) = £(b)~1, and let 7 be the Euclidean bundle over U U V having g as its coordi-
nate transformation. More precisely, let E(n) be the decomposition space obtained
by taking the disjoint union of U X R™ and V X R™ and identifying (b, y) in U X R™
with (b, [£(b)]~1(y)) in VX R®, for all b in U NV and y in R®. The projection
map of 1 is ordinary projection onto the first factor.

By Lemma 2, £ (@7 is trivial over U and V, and the coordinate transformation
is h: U NV — Hy(R21), Let

ki UXR®™ - E((¢@n)|U) and ki: VxR - E(E®n)|V)
be the corresponding coordinate functions for £ (® n, so that

h(b) (y) = (£(b) X g(b)) (¥) = pr o ki; ! o ki;(b, y)
for all b in U N V. By Lemma 1, there is a homotopy

¢ Hy(R®) X Hy(R™) — Hy(R®")  (t in I)
such that
¢o(f(b), g(b)) = £(b) X g(b) = h(b) and  ¢,(f(b), g(b)) = (g(b) o £(b)) X id = id.
Define hy: UNV — HO(Rzn) by hi(b) = ¢(f(b), g(b)), so that hg =h and h;(b) = id for

all b. We need to change the coordinate function ky so as to realize the identity as
the coordinate transformation of (¢@ )| (U' U V).

This we do as follows. Let 7: B — I be a Urysohn function with support con-
tained in U and with 7(U') = 1. Define ky: V X R2™ — E(§ D7) by

ki (b, h(b) o [h, 1,y '(¥) for be UNV,
ky(b, y) =
ky(b, y) for be V - U,
For b in U', we have 7(b) =1 and ky(b, y) = ky(b, h(b)(y)), and hence

pr o-kl\’;l o ki;(b, y) = pr o (ky, o id X h)!o ki;(b, y)

pr o (id X h(b))~! o k'v-l o ki;(b, y)

]

pr o (id X h(b)~1) (b, h(b)(y)) = y.

In other words, if we use kg | U % R?™ and ky; as coordinate functions for
(E@n) l (U' U V), then the coordinate transformation takes on only the value id, and
therefore (¢ @n) | (U' U V) is trivial.
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We shall say that a bundle & is finifary if there exists a finite covering
{Uy, Uy, ***, U} of the base such that & | Uj is trivial (i=0, 1, ---, k).

PROPOSITION. If ¢ is a bundle whose base space B has finite covering dimen-
sion and is parvacompact, then & is finitary.

Proof. Let & = {U} be an open covering of B such that £ | U is trivial for each
U in % . In view of the hypothesis on B, we may assume that % is locally finite and
that no point of B lies in more than k + 1 sets in . Let {¢y} be a partition of
unity relative to %, and let N(%) be the nerve of %, in this case a k-dimensional
simplicial complex. Then {qu} determines a map ¢: B — N(%), in the usual man-
ner, by letting the barycentric coordinate of ¢(b) corresponding to U be ¢y(b). If
SUl is the open-star neighborhood of the vertex in N(U) corresponding to U, then
¢~ (Sy) C U.

Next, for each integer i (0 < i < k), find a disjoint collection ¥7; of open subsets
of N(a), each containing the interior of an i-simplex and contained in the open star
of some vertex of that simplex. Furthermore, every open i-simplex should lie in
exactly one set in 7';. For example, for the i-simplex whose vertices are
Vo, V], ***, Vi, take the set of points in N(#) each of whose barycentric coordinates

in vg, -+, v; is greater than any of its other barycentric coordinates.
Denote by V; the union of the sets in 7;. It follows from the disjointness condi-
tion that £ | ¢=1(V;) is trivial; hence £ is finitary.

THEOREM. Every finitary Euclidean bundle over a paracompact base has an
inverse.

Proof. Let £™ be a Euclidean bundle over B, and let {Uo, Uy, oy, Uk} be an
open covering of B such that ¢ | U; is trivial (i=0, 1, ---, k). Shrink the covering
to get another covering {Ug, U}, «--, Up} with U; C U; (i=0, 1, ==, k). We shall
proceed to construct the inverse inductively over the U; sets. By applying Lemma
3, we get a bundle over Uy U U] that is inverse for £ | (UgU UY).

Assume we have a Euclidean bundle 7! over V=Uy UU} U -+ U U}, so that

je
(¢ | V)®n is a‘{,*ﬂ , an (n + ¢)-dimensional trivial bundle over V. Let
U=Uj,, U'=UL,;,, D=UnaV, W=UUV, W =U'UV.
We want to construct an inverse for £ | W,
Since (¢ | D)@ (n| D) and (£ | D) are both trivial,

@ M|D) = el = (e @n)|D.

Therefore £y 7 can be extended to a bundle 7 ntl gyer W so that 7' I U is
trivial. If we let £' be (£ | W)@ 7', a bundle over W, we see that &' | U is
(6] U)@® ('] U), the sum of two trivial bundles, and that &' |V is

EV@E @n = ¢ V@@ = 2D,

another trivial bundle. Hence, applying Lemma 3 again to &', we obtain a bundle 7"
over W' such that (&' lW')@n " is trivial. Thus

(gu [W')@n" = (5 le)@(,nl lwt)(_Bnu
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is trivial and (n' [W') ®n" is an inverse for & l W', This completes the induction
and the proof.

Remark 2. The construction in the theorem also provides inverses of the same
type to vector bundles, to orientable vector bundles, to bundles whose structural
group is the group of stable homeomorphisms, and in fact to any bundle whose struc-
tural group contains the rotation group. See the remark after Lemma 1.

Remavrk 3. The hypothesis that the bundle in the theorem be finitary is neces-
sary; this can be seen from the following example. There is a standard 1-dimen-
sional nontrivial vector bundle £, over real projective space P, [3]. Its total
Stiefel-Whitney class is 1 + o, where « is the nonzero element of Hl(Pn; Z,). It
follows that (1 + a)~l =1+ & + a? + - + a®™ in the ring H¥*(P,; Z2), and hence, by
the Whitney product theorem, the nth S - W class of an inverse to &,, is nonzero
and must have fibre dimension at least n. Thus, by taking B to be the disjoint union
of P, P2, P3, **-, and £ to be the 1-dimensional bundle such that § I Pn = &n, we
obtain a vector bundle with no inverse.
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