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Dedicated to R. L. Wilder on his seventieth birthday.

Let G be a finite group. We shall consider the problem of classifying the effec-
tive actions of G on closed oriented surfaces M. If two such actions are equivalent,
their orbit spaces are homeomorphic, and so it is natural to study the totality A of
actions having a fixed orbit space M. The problem is (1) to determine the equiva-
lence classes of A in the sense of putting them into one-to-one correspondence with
the equivalence classes of some algebraic system and (2) to compute, using the alge-
braic scheme, the number of equivalence classes in A for different M’s and G’s.
J. Nielsen [4] gave a solution of (1) for the case where G is cyclic, but he did not
consider (2) explicitly. We give here a solution of (1) for G = Zp X e X Zp (p a
prime) by showing that in this case the equivalence classes are 1n one-to- one corre-
spondence with the equivalence classes of certain matrices over Z, under certain
operations on the columns. Actually, a solution for (1) can be given for arbitrary
finite abelian groups. But in this more general case we have little information rela-
tive to (2), whereas in the case considered we do solve (2) in some simple instances.

A CLASSIFICATION THEOREM FOR FREE ACTIONS

A homeomorphism X —» Y or (X, x) — (Y, y) is always “onto.” A homeomor-
phism between oriented manifolds always preserves orientation.

1. We consider actions a = (G, E), where G is a fixed discrete group and X a
topological space. We denote by p(a) the space in which the action a takes place: if
a= (G, %), then u(a)= X. An action (G, %) is effective if the identity is the only
element of G that leaves all points of X fixed; it is free if no point of X is left
fixed by any element of G - {1}. Two actions a = (G, ¥) and a'= (G, X') are
equivalent (notation: a ~ a') if there exists a homeomorphism t: ¥ — X' such that
t(gz) = g(tz) for g € G, r € X. To indicate that ¢ defines an equivalence, we refer
to it as an equivalence map.

A space X will be called allowable provided it is arcwise connected and semi-
locally arcwise connected (so that the theory of coverings as described by paths is
valid; see [2, pp. 89-97]), and provided further that it has the following “isomor-
ph1sm replacement” property: if x, x' are distinct points of X, and u is a path in
X from x to x' and u, the isomorphism 71(X, x') - 7(X, x) induced by u, then
there exists a homeomorphism t: (X, x') — (X, x) such that t; = u;, where t; is the
isomorphism of fundamental groups induced by t. A connected manifold admitting a
differentiable structure is allowable. In particular, compact 2-manifolds are
allowable.

Call an action (G, X) allowable if its orbit space X is allowable and if the pair
(%, ), where Y is the natural map of X¥ onto X, is a covering of X.
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For the present we consider only free actions. Let X be an allowable space.
We denote by A«X, G) the totality of free allowable actions whose orbit spaces are
homeomorphic to X. For each a, we choose a definite identification of its orbit
space with X. In this way, the natural map of p(a) onto the orbit space of a be-
comes a map ¢,: p(a) — X such that ¢a(gxr) = ¢pa(z) for g € G, ¢ € p(a) and
(n(a), ¢,) is a covering of X. The maps ¢, will be denoted simply by ¢.

2. Let K, G be groups. We denote Hom [K, G] by [K, G], and the set of epimor-
phisms in [K, G] by (K, G].. If fi, f; are elements of [K, G}, we write f; = f, if
there exists an inner automorphism s of G such that f; = sf,.

Let X be an allowable space, and let 7, = 71(X, x) (x € X). Let G be a group.
We introduce an equivalence into UsE x [7s, Gle as follows. Let fy € [7y., Gle

1 1

(i=1, 2). Then fXl ~ fx‘2 means that there exists a homeomorphism
t: (X, x|) — (X, x,) such that fxl = fxztﬂ . Let a € A(X, G), and let X = p(a). With

each pair (a, r) (r a point of X) we associate an element f§ € Us [7g, Gl as
follows. Let x = ¢z, let u be a loop representing an element q of 7, and let u be
the cover of u that begins at ¢ (that is, the path obtained by lifting u). The terminal
point of u covers x and hence equals gr for some g € G. The element g depends
only on z and q. Define f7q to be g.

We hold a fixed for the moment and write f; for f?. It is easily seen that f; is

surjective. We prove that f; is a homomorphism, hence an element of 7y, Gle.
Let v be a loop representing 1 € 7, and v the cover of v that begins at ¢; v ends
at hy, where h=1£,1. Now u(gv) is a cover of uv, and it begins at z. Hence its
terminal point ghy equals (f;(ql))z. Hence fy(ql) = gh = () £,(1).

It follows immediately from the construction of fg that
(2.1) ker f: = ¢*771(I, ).

We wish to compare f§ with f{j. Let v be a path in ¥ from ;¢ to y, and let
X =¢r, y=¢y, v=¢v. One verifies readily that

a a
fl] = fIVTT’

where v_ is the isomorphism =, — 7, induced by v.

m y
Case 1. Suppose x =y, so that {g, 1;} C qb'lx. Then v is a loop and represents,
say, 1€ 74, and vy is conjugation of wx by 1. Hence for q € 7x,

(2.2) fg(q) = hfza(q)h'l, where h =13(1) € G,

so that fg = £z .

Case 2. x #y. In this case, v; = t; for some homeomorphism
t: (X, x) — (X, y) (Section 1).

Thus f? ~ f% in both cases. Hence, for fixed a, the maps f? (r € p(a)) belong to
one and the same equivalence class of s [7TS , G]e .

(2.3) PROPOSITION. Let a, a}' € AX, G), and let ¢ € X = p(a), y'e X'=p(a.
Then a ~ a' if and only if £ ~ fF..
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Proof, Suppose a ~ a'. Let t: ¥ — X' be an equivalence map. Let i) = tz.
Since fz: ~ f%: , it is sufficient to show that f? ~ fEE:l . The map t induces a homeo-
1

morphism t: (X, x) — (X, x}), where x = ¢z and x| = ¢(z}). Clearly, the construc-

tion that defines f7(q) (q € 7, ) is carried over by the maps t and t into the con-

struction that defines f:: (@) (a' = t;q), so that f?(q) = f%:l(q). Suppose conversely
1

that f? ~ f?: . Then there exists a homeomorphism t: (X, x) — (X, x') such that

fy = f;:tﬂ . Hence there exists g € G such that
gip(@g™’ = £3.t,(q) for each q € 7.

Now the element 1 in formula (2.2) depends on z, y, and the path v from g to y. If
t is fixed and y ranges over ¢-lx, and if for each y, v ranges over the paths from
z to p, then 1 takes on all values in 7, and hence h = f(1) takes on all values in
G. Hence there is a y € ¢-1(x) such that f;‘)‘(q) = gfg(q)g”1 . Hence fj = f%:tﬁ. It
follows that

t; ker f‘;’; C ker fax”: ,

and therefore t; ¢, 71(%, y) C ¢em (X', '). Hence [2, Theorem 16.4] there exists a
unique homeomorphism t: (%, y) — (%', z') that covers t and therefore maps orbits
onto orbits. Hence, if h is a given element of G, there exists a function j = j(z) with
values in G such that htz= tjz (r € X). Easy considerations of continuity show that
j(z) is constant. We assert that in fact j(z)'= h. We may assume ¢ =y. Let q be an
element of 7, such that f‘;’)‘(q) =h. Then f5:t;(q) = h. Now, by the definition of f, hy
is the terminal point of a path u whose projection u represents q. Also, hi' is the
terminal point of a path u' covering u' representing t;d. We may suppose that
u'=tu and u'=tu. The terminal point hz' is therefore the t-image of the terminal
point of u, namely thy. Then thy = hx' = hty. Hence thy = tjy, which implies

hy = jy, h =j. Since h is an arbitrary element of G, we have proved that a ~ a'.

(2.4) PROPOSITION. Let f be an element of [1x, Gle. Then f = £ for some
a=(G, X) in A¢ and some ¢ € qb‘lx.

Proof. Let (%, ¢) be the covering of X constructed by the paths in X emanating
from x taken modulo ker f. (See [2, Section 17].) There is a natural action (7, %)
in which the stability group of each point of X is precisely ker f. Hence the rule
gz =qx, g = f(q) induces a free action a = (G, ¥). Let r be the point of X repre-
sented by the constant path x, so that ¢z = x. It follows immediately that f% =f,
Obviously, a is allowable.

Propositions (2.3) and (2.4) imply the following:
(2.5) THEOREM. The map that associates with each a = (G, X) in AdX, G) the
subset {f;}zéx of Usex [7, G, defines a one-to-one corvespondence between

the equivalence classes of A{X, G) and those of US [7s, Gle.

3. Let u be an oriented, simple closed curve in p(a) (a € A(X, G)), and let
Gy = {g € G, gu=u} (the stability group of u). Now let u be an oriented, simple
closed curve in X, and r a point in ¢'1u. Let q be the element of Ty (x = ¢z)
represented by u. Let u be the component (an oriented simple closed curve) of
¢-lu that contains z.
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(3.1) The stability group Gy is trivial if and only if fi(q) =1,

Indeed, starting at z and proceeding along u in the direction of the orientation of
u, let ' = gr be the first point of G ¢ encountered after leaving z. The arc zz'
thus traversed is precisely that cover of u that begins at ¢. Therefore g = fa(q)
and g =1 if and only if Gy = {1}

4. Let V and G be groups, and let .« be a group of automorphisms of V. Call
two elements f; and f, of [V, G] «-equivalent if there exists an « € « such that
f; =f ;2. In particular, suppose V is the additive group of a vector space over a
field F and G is the additive group of F. Then f; and f, are elements of the dual
space V* and are £ -equivalent if and only if one is the image of the other under
the dual of some element of «,

Now assume that G is abelian. Let a = (G, %) be an element of Ai(X G), and
for x € X, let 74 be the canonical epimorphism 7y — H(X). Let r € ¢-1x. Two
elements. of 7, with equal images under 7, differ by a commutator, hence have
equal images under f% (since G is abelian). Hence the formula

(4.1) h = £3770  (x=¢z)

defines an epimorphism h¥ € [H,(X), G],

If h is an epimorphism H;(X) — G, there exists an 2 such that the correspond-
ing ha is h. In fact, let f be the epimorphism 7, — G defined by f =h7,. Let a
and p be such that fa f (2.4). Then ha— fa '1 =h7t_ 'r'l = h.

(4.2) THEOREM. The correspondence fa — hi defines a bijective map from the
equivalence classes of U [7s, Gle to the d equwalence classes of [H(X), Gl,
wheve £ is the group of automorphisms of H(X) induced by homeomovphisms
X — X,

It will be sufficient to show that fa ~ fa, if and only if ha and ha, are .-
equivalent.

(4.3) LEMMA. Let x and x' be points in an allowable space X, and let t be a
homeomorphism X — X. There exists a homeomorphism t': (X, x) — (X, X') such
that ty = ty;, where ty and ty ave the induced automorphisms of H(X).

Proof. Let x; =tx. If x; = X', there is nothing to prove. Suppose x; # X', and
let u be a path in X from x; to x'. Let s be a homeomorphism (X, x') — (X, x;)
such that sy = uy (Section 1), and let t' = st. Then tj; = syty. The lemma will be
proved if we show that syy is the identity. The canonical projections 7, and 7,
satisfy the conditions 7, = 71Uy, TSy =8y T,. Hence

T T TxtUgp = Tyt Sp = Sy Ty

this implies sy = id, since 7, is surjective.
Now suppose £~ f; . Then there is a homeomorphlsm t: (X, x) — (X, x') such
that fa = fa.tﬂr Now (4.1) implies that ha Ty = f and hz' Ty = f . Hence
a _ a _ a'
hg'TX—f 'TX'tﬂ'—h ItHTX.
Since T, is surjective, h = hZ. typ, that is, h ~ hai: . Conversely, suppose there is

a homeomorphism t: X — X such that ha = ha t;;. By Lemma (4.3), we may assume
that tx = x'. Then
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a

' '
h){ T = h?ltH Ty & hal Tx't‘ﬂ;

x z

therefore 7 =13,t;, that is, £ ~ £3,

5. In certain cases, Theorem (4.2) is valid when coefficients other than integers
are used for homology. Let G = Zr Zp X - (p a prime), and suppose that
H,(X) has a free basis e, - en. Then 1 ® el, -, 1® e, is a basis for the Z_-
module H;(X, Z_) =2 @H (X) With each element h of [H (X), G] we assomai?e
an element h{P)'in [H|(X, Z o) Gle by the rule

hP1®e,) = h(e,).

The correspondence defined in this way is one-to-~one. The homeomorphisms

t: X — X induce automorphism groups £, « of H;(X), H;(X, Z ) and two elements
in [H;(X), G], are #-equivalent if and only if the correspondmg elements in

[H,(X, Z ) G, are «-equivalent. We now have the following modification of (4.2):

(5.1) THEOREM. If G Z and if H1(X) is free and finitely genevated, then the
corvespondence f — (ha) (p) defmes a bijective map from the equivalence classes of

A(X, G) to the d equivalence classes of [H (X, Z ) G), , where A consists of the
automovphisms of Hi(X, Z ) induced by homeomorphzsms X — X.

We state also a modification of (3.1):

(5.2) Let G=2ZF ps and let H,(X) be free and finitely genevated. Let

fe [Hl(X Z ) G] . Let u be an oviented, simple closed cwve in X vepresenting
the element c of HI(X Z ) and let u be any component of ¢~1u. Then f(c) =0 if
and only if the stability group of u is trivial.

SYMPLECTIC AUTOMORPHISMS

6. For n> 1, let U™ be the totality of sequences (x, y) = (X1, ***, X, Y1, ***» Yn)
where the x’s and y’s are elements of a vector space over a field F, the dimension
of which will be clear in each context.

Let E|, ---, Eg be the sets {E;}, ---, {E5ij} of maps U"— U", where E;, --
are defined as follows:

E ;% = x, +Ay;,

Byt vy — ¥; 2%y,

E313'x = X; +AX5, V5 V5 - Ay i+ i),

E4ij: X — Xi+hyj’ Xj - Xj’f‘)tyi (i ?&j),

E5ij: yi A +>\.XJ,yJ +>‘.Xi (i#]),
where A is an element of F. For example, E;; is the map that, in each (x, y), re-
places x; by x; + Ayji, leaving the remaining elements unchanged. Let
E=E; U--UEs. Each e € E has a 2n X 2n—matrix over F that is independent

of the space in which the sequences (x, y) are taken. If A is the matrix of an ele-
ment e € E, then A is the matrix of an element of E denoted by te.
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Let V be a vector space of dimension 2n (n > 1) over F, and let u-v be a non-
degenerate, alternating bilinear form on V. The form having been chosen, V is
symplectic over F, and the automorphisms of V that leave the form invariant are
the symplectic automorphisms of V, and they form a group that we shall denote by
Sp(n, F). Let (a, b)=(a;, -*-, a,, by, -, by) be a symplectic basis for V, in other
words, a basis such that

aj"bj = 8, a;'a;=0, bi'bj=0 (i,j=1,-,n).
The dual V* of V is symplectic with symplectic dual basis (a*, b*), and the
symplectic automorphisms of V* are the duals of those of V.

Let V be a vector space of dimension 2n (n > 0) over F, and let (a, b) be a
basis. For a given operation e € E, there is an automorphism T: V — V uniquely
defined by T(a, b) = e(a, b). Call T an automorphism of type E relative to the
basis (a, b). The matrix of E relative to (a, b) is precisely the matrix of e. Sup-
pose now that V and (a, b) are symplectic. Then it can immediately be verified that
the automorphisms of type E relative to (a, b) are symplectic; let Sp°(n, F, a, b)
be the subgroup of Sp(n, F) that they generate.

(6.1) PROPOSITION. Let (a, b) be a symplectic basis for a symplectic space V
over F, and let v, +-+, vy be linearly independent elements of V. There exists an
automorvphism T € Sp°(n, F, a, b) such that the component matvix of Tvy, -+, Tv,
relative to (a, b) is (J, Q), where J is an r X n-matvix with 1’s in the main diago-
nal and 0’s elsewheve, and wherve Q = (qij) is an r X n-mailvix overy F with qij = 0
when 1 <j. The elements Qi with 1> j arve uniquely detevmined by the elements v,
by the velations

(6.2) QG = Vie i>1j).

Proof. Assuming that T exists, we obtain 6.2 by a trivial computation.

Let (%, y) = (X3, ***, Xn, Y1, "**, Yn) be the component vector of an element v of
V. Then, if T is the element of Sp°(n, F, a, b) defined by e € E, the component
vector of Tv is fe(x, y). More generally, if (X, Y) = (X, =+, X, Y1, **-, Yy) is
the component matrix of vy, -+, v (where Xj, --- are columns), then the compon-
ent matrix of Tv;, ---, Tv, is te(X, Y). Hence, it is sufficient to prove that (X, Y)
can be reduced to the form (J, Q) by a finite number of operations e € E on
columns.

It is easy to verify that (X, Y) can be reduced to, say, (J, Y') by elements of E3
on columns, provided X is of vank r, and that (J, Y') can then be reduced to the
form (J, Q) by elements of E, U E5. It is therefore sufficient to show that (X, Y)
can be reduced to, say, (X', Y'), by elements e € E, where rank X'=r,

Let M be an r X 2n-matrix. If C is an r X r-submatrix of M, denote by cM
the matrix consisting of the columns of C that lie in the right half of M; if there are
none, write C = @. Similarly, MC consists of the columns of C that lie in the left
half of M.

Now let M = (X, Y), and assume that rank M =r. Let E(M) be the totality of
matrices obtained from M by operations e € E on columns. The matrices of E(M)
are of rank r. Let the number of columns of a matrix be denoted by k. There is an
integer kg > 0 such that (1) for some member K of E(M) and some nonsingular
r X r-submatrix C of K, k(C) =k, and (2) kg is maximal with respect to (1). It is
sufficient to prove that kg =r.
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We suppose ky <r and force a contradiction. Choose K and C satisfying (1)
and (2). Say K, given by its column vectors, is (X}, -, X,, Yy, ==, Y,). If
y=(, j, -, £) is a subset of the ordered set (1, ---, n), write X, and Y,, for
(Xi, Xj, -+, Xg) and (%, Yj, -+, Yp). Let a, B be subsets of (1, -, n) such that
Kc =Xy and CK =Yg, so that C = (Xy, Yp).

Suppose a N B =¢. Let j € B, and let L. be the matrix obtained from K by re-
placing X; by X;+ Y;. Then L € E(M). We shall show that L contains a nonsingu-
lar r X r-submatrix D such that k(*D) = k + 1, which contradicts the maximality of
kog. Let g =8 - {j} and

Dl = (Xa,Xj‘l‘Yj,YBI).
It will be seen that L, contains an r X r-submatrix D such that
D~ D;, D~ (Xy,X;+Y;),

where D ~ D; means that D; is obtainable from D by a permutation of the columns.
Since k(D) = kg + 1, it remains only to prove that det D # 0. It is sufficient to show
that det D; # 0. We see that

det D} = det(Xy, Xj, Ygi) +det(Xy, Yj, Ygi).

Except for sign, the second determinant equals det C # 0. As for the first, its
columns are in K. Since j ¢ @, (Xy, Xj, Yg') is a submatrix N of K and

KN = (X, X;), k(KN) =k + 1, hence det N = 0 by maximality of ko . It follows
that det D; # 0.

Suppose a N B#@. Let je aNB, a'=a - {j}, B'=p-{j}, andlet £ € B,
Let L be obtained from K by replacing Xy by X¢ + Yj and Xj by Xj +Yy. Then
L € E(M). We shall show that L contains a nonsingular r X r-submatrix D such
that k(D) = ky + 1, a contradiction. Let

D, =(Xa"X,Q+Yj!Xj+Y£!YB')'
It will be seen that L. contains an r X r-submatrix D such that
D~ Dy, D~ (Xgr,Xg+Yj,X;+7Y).

Since k(I'D) = kg + 1, it is sufficient to show that det D # O, hence that det D; # 0.

We have the relation
det D; = det (Xj, Xy, Xj s Yﬁ.) + det (X1, YJ-, Xj , YBt)
+ det Xy, XQ, Yy, YB-)+det(Xa-, Yj, Yy, YB')‘

The third and fourth determinants are zero, since Yy occurs twice in each. The
first is zero since its columns are distinct columns of K and kg -+ 1 of them are in
the left half of K. The second determinant equals +det C. Hence det D; #0.

COROLLARY. Sp°(n, F, a, b) = Sp(n, F).

That is, Sp(n, F) is generated by the elementary automorphisms; a proof of this
is also given in [1]. Let T € Sp(n, F). The vectors Ta,, :--, Ta, are linearly in-
dependent. Let S be an element of Sp® such that the coefficient matrix of
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STa;, -**, STa, is (J, Q), which in this case is (I, Q) (I denotes the identity matrix).
The coefficient matrix of the images of a;, ---, a,, under the identity automorphism
is (I, 0). Hence, by the uniqueness of Q, we see that Q = 0, so that ST leaves each
a; of the basis (a, b) fixed. One verifies readily that ST is therefore a product of
automorphisms of type E |, hence ST € Sp® and T € Sp°.

ACTIONS ON 2-MANIFOLDS

7. From here on we shall be concerned with actions of Z* = Zp X s XDy (where
p is a prime) on 2-manifolds. As a group, Zp denotes the additive group of the
Jfield Z,, = Z/pZ. Matrices and vector spaces are always undeystood to be over the
field Z,.

Let
o T
(7.1) 0 -C—-V->W-20
be an exact sequence of vector spaces over Zy, and let ¢, ***, ¢, (m >'1) be ele-

ments that span C and satisfy the single relation 20 c¢; = 0. Assume that W is
symplectic of dimension 2n (n > 1). Identify C with a subspace of V. An automor-
phism T of V will be called canonical if it permutes the vectors c (thus leaving C
invariant) and induces a symplectic automorphism in W. The canonical automor-
phisms of V form a group K(V). Let (a, b, c) = (a1, -**, an, b1, ***, bn, €1, ***, Cpy)
be elements of V such that (7a, 7b) is a canonical basis for W and the ¢ are as
above. The elements (a, b, ¢) span V, and we shall refer to them as a canonical
generaling set. In terms of a canonical generating set (a, b, ¢), a canonical auto-
morphism T has the form

a; — Z)Aija'j_{-EBijbj_[_Ehikck (i=1, ---,n),

b; — EAi'jaj+EB{jbj+ Z)Aikck,
e, = Cony (=1,--, m),

where o is a permutation of (1, ---, m) and the coefficients of the a’s and b’s form
the matrix of a uniquely determined symplectic automorphism of a symplectic space
of dimension 2n relative to a symplectic basis. (The A are not unique, since the ¢
are not linearly independent.)

We now extend the action of e € E to sequences
(X) y, z) = (le Tty Xna Yis s Yas 215 s Zm)
by the rule e(x, y, z) = (e(x, y), z), and introduce new operations on such sequences:

E': X; — X3+ E?Liij, Vi 2 yit Z)?\{JZJ (i=1, "',1’1),

Z; — Zj (i=11 '"7m),

E": (X, Y) - (X, Y) z; — ZO- (1) (1 = 1, Tty m)’

where ¢ is a permutation of (1, -+-, m).



ABELIAN ACTIONS ON 2-MANIFOLDS 265

Let (a, b, ¢) be a canonical basis for V. Then, if e € E, the correspondence
(a, b, c) — ef(a, b, c) defines a canonical automorphism T of V whose matrix rela-
tive to (a, b, c) is that of e. We shall say that T is of iype E relative to (a, b, c).
Similarly, we have canonical automorphisms of types E', E" relative to (a, b, c).
From (6.1) and the general form for canonical autormophisms we see that every
canonical automorphisms is the product of automorphisms of types E, E', E" rela-
tive to a given canonical basis.

Note that if e, e', e" are elements of E, E', E", then
(7.2) ee" = e"e, e'e" = e"e(,
where e(') is a uniquely determined element of E'.

8. Let M consistently represent a compact oriented 2-manifold. It is easy to
see that if a € A¢(M, G) and G is finite, then p(a) is an oriented 2-manifold and
each element of G preserves orientation on u(a).

Since H;(M) is free and finitely generated, Theorem (5.1) is applicable.

Let n be the genus of M, and let y;, -+, Ym be the oriented boundary curves,
and ¢, ---, C,, the elements of H(M, Zp) represented by the y. Let N be the
closed oriented 2-manifold obtained from M by attaching an oriented disc at each vy,
and let

V=H;MZ), W=HN,Z).

V and W are vector spaces over Zp,, and dim V=2n+m - 1 if m > 0 and
dim V = 2n if m = 0, that is, if there are no boundary curves. The c; satisfy the

single relation 20 c; = 0; let C be the subspace of V that they span.

Let j be the inclusion M — N, and i, the injection C — V. The sequence

i .
0o—c X2v Ew o
is exact. W carries a nondegenerate alternating bilinear form u-v, namely the in-

tersection number, hence is symplectic over ZP. Thus we have associated with M
the situation described in Section 7.

Let (o, B, v) =(oy, =+, &g, B1, ***, Bn, V1, ***» Ym) be a system of oriented
simple closed curves on M such that (1) the y’s are the boundary curves of M,
(2) the only intersections between the curves are the points a; N B; (i=1, -+, n),
(3) each intersection number «;-B; is 1. Such systems exist; call them canonical.
If (o, B, v) is a canonical system on M, then the corresponding sequence (a, b, ¢) of
elements of H (M, Zp) is a canonical generating set in V.

(8.1) The canonical genevating sets in V are precisely the sets of elements of
H,;(M, Zp) vepresented by canonical systems of cuvves on M. The group H of
canonical automovphisms (Section 7) of V is the group « of automorphisms in-
duced by homeomorphisms M — M,

The proof of the first part is elementary, and we omit it. To prove the second
part, let t be a homeomorphism M — M. Then t permutes the boundary curves;
since it preserves orientation of M (as agreed) it preserves that of the boundaries.
Hence the automorphism t, of V permutes the c’s. Now t can be extended in an
obvious manner to a homeomorphism t: N — N, and t;: W — W is independent of the
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extension. One sees that t; is the automorphism of W induced by t,, and that it is
symplectic because t' preserves the orientation of N and therefore preserves in-
tersection numbers. Hence t_ is canonical.

Conversely, let T be a canonical automorphism of V. We need to prove the
existence of a homeomorphism t: M — M such that t,=T. Let (a, B, ) be a
canonical system of curves on M, and let (a, b, c) be the corresponding set of ca-
nonical generators. It is suff1c1ent to assume (Sect1on 7) that relative to (a, b, c)
the automorphism T is of type E, E', or E".

LEMMA. Let (a, B, v), (o', B', v') be canonical systems on M. There is a ho-
meomorphism t: M — M such that t maps each curve of the fivst system homeo-
movphically onto the corvesponding curve of the second.

This follows from the fairly elementary fact that M is homeomorphic to a
“standard” 2-manifold M* in such a way that the curves of each canonical system
correspond to the curves of a standard canonical system on M*. We shall describe
M*, since we need to use it later. Let S? be the extended z-plane, and let w;

(k =1, -+, n) be a circle of radius 1/4, center at z =k + i, and with clockw1se
orlentatmn Let wy be the image of wk under z — zZ. Let fk k=1, .-, m) bea
circle of radius 1/4, center at z =n + k. Let Py be the point of wk nearest the
axis of reals. Let 6y be the oriented linear segment PxPk. Now remove the in-
teriors of all the circles, and orient the resulting manifold SO so that the orienta-
tions received by the w’s and &’s as boundary curves are the original orientations
reversed. Identify corresponding points of wik and wk for each k. This gives an
oriented manifold M* in which the images of the w’s, the §’s, and the &’s form a
standard canonical system (a*, g*, +*).

Returning now to the proof of (8.1), suppose T is of type E;, say
Ta.l=a.1+a,2, Tblzbi’
Ta, =a,, Tby = by = by,

Ta,i———ai (i> 2), Tbizbi (i> 2).
By the lemma, it is sufficient to show the existence of a canonical system (a', 8', ')
in M such that the corresponding canonical generators are (Ta, Th, Tc). We may
assume that (o, B, y) are the “standard” curves (a*, g* y*) described above. In
SO, let Y be the oriented line segment P; P, and let 17 =Y - Y. The image of  in
M* is an oriented simple closed curve, call it 85 . In So , let £ be the simple closed
curve consisting of the linear interval joining z = 1/2 and z = 5/2 and the vertical
half-lines rising from these two points. Give ¢ the clockwise orientation. Let o]
be the image of S. Let

aj=a; (i+1), PBi=p;i(E=+2), vyi=yi(i=1, -, m).

It will be seen that (a', 8', ') is a canonical set of curves in M*. Moreover,
aj=a;+ap, bz =bz - b;. This last can be seen as follows. Keeping the end points
fixed, deform 7 in SS to the arc traced by a point P that drops vertically from
P, to the real axis, proceeds to the right, and rises vertically to P,. Simultan-
eously, let Y undergo the corresponding deformation. The resulting deformation of

1 defines in M* a deformation of 7 (whose homology class is bj) to a loop whose
homology class if b, - b;. Hence b =Db, - b;. We have now proved that for the
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case considered, canonical automorphisms are induced by homeomorphisms M — M.
The remaining cases can be treated in similar manner, but we omit the details.

To complete the proof of (8.1), we need to show that for each (a, b, ¢) there
exists a canonical system (a, 8, y) on M that represents (a, b, ¢). Let (o', 8', ¥')
be some canonical system of curves on M, and let (a', b', ¢') be the corresponding
generating set. Let T be the automorphism of V defined by a! — a;, bi — b,
cj; — cj. Since T is clearly canonical, it is induced, say, by t: M — M. Let
a; =taji, ---. Then (a, B, y) is a canonical system on M, and the corresponding
generating set is (a, b, c).

(8.2) COROLLARY. The equivalence classes of A{M, Z
correspondence with the oA -equivalence classes of [H M, Z
the group of canonical automovphisms of V = HI(M Z )

?

are in one-to-one
p7? Z

]e, wheve A is

9. In computations, it is more convenient to deal with bases than with generating
sets.

Let
(9.1) 0-C¢L Vv LW o
be an exact sequence, where W is a copy of W (Section 7), and let ¢y, >+, Cy bea

pasis for C. Identify C with a subspace of V and define canonical automorphlsms
of V just as for V (Section 7). Let & be the group of these automorph1sms Call
(2, b, &) a canonical basis for V if (74, 7b) is a canonical basis for W. Now let

(a, b, c) be a canonical generating set in V, and @ b ¢)a canomcal basis in V.

Let 6 be the epimorphism VoV defmed by a;— aji, 131 — bj, ¢; — ¢;, and let 0’
be the epimorphism W — W defined by 73; — 'ral, Tb1 — T7bij. Then 6 and 6' de-
fine a commutative diagram with (9.1) above, (7.1) below. To every canonical auto-
morphism T of V there corresponds a unique canonical automorpmsm T of V such
that 6T = T6. Let [V, Zr] consist of the elements of [V, ZZ% p] that vanish on ker 0.
The mapping

(9.2) v, z7], — [V, z3]1!

defined by f — £ is bijective. Since T(ker 6) c ker 6, [V, ZT ]0 is the union of A -
equivalence classes.

(9.3) The mapping (9.2) induces a one-to-one covvespondence between the ¥ -
equivalence classes of [V, Z% ]e and the H - ~equivalence classes of [V zr ]0

(9.4) COROLLARY. The equivalence classes of As (M, Z3 p) are in one-to-one

corvespondence with the H - equivalence classes of [v, Zr] , where K is the group
of canonical automorphisms of V.

10. We shall formulate (9.4) in terms of operations on matrices.

We identify [V, Zg] with V¥ X .- X V* (r factors), where V* is the dual of V.
Say f = (¥, ---, ¥V¥). If we write out the components of each ¥} relative to the dual
(8%, b*, &*) of the canonical basis (a, B ¢), we obtain, as matrix of f, an r-rowed
matrix (X, Y, Z2)= (X, =+, X, Y3, -, Y, Z4 5 ***» Zmy) in which Xl , --- are the
columns. The i-th row gwes the components of v* relative to the a*’s, the b*’s
and the c*’s respectively. The condition that f be an epimorphism is equlvalent to
the cond1t10n that (X, Y, Z) be of rank r. The condition that f vanish on ker 8 is
equivalent to the condition that 2 = (Z,, ---, Z,,) be a null-matrix, in other words,
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that the sum of the columns of Z be a column of zeros. Two eIements @, -, G%)
and (¥%, -+, #¥%) of [V, Zp]e are A -equivalent if and only if 4f = T*¥%, where

T* is the dual of a canonical automorphism T. Now, in terms of a canonical basis
(a, b, c) in V, T has the same form as T (see Section 7) and hence is the product
of elementary automorphisms of types E, E', E" relative to (a b, ¢). The matrix of
T* in terms of a dual basis is the transpose of the matrix of T. But if T* is ex-
pressed in terms of components, its matrix is the same as that of T. It follows
that (X', Y', Z') is the component matrix of (T* ¥}, ---, T*$¥) if and only if it can
be obtained from (X, Y, Z) by elements of E U E' E" acting on columns.

For m, n not both zero, let E(n, m, p, r) be the totality of r-rowed matrices
(X, Y, Z) of rank r, where X, Y are r X n-matrices and Z is an r X m-null-matrix.
We understand that if m = 0, the elements of E are of the form (X, Y), and that if
n = 0 they are r X m-null-matrices; in any case, they are of rank r. Evidently,

(10.1) En,m,p,r) =¢ if r>2n+m.

In view of (9.4), we can now state the following.

(10.2) THEOREM. The numbeyr of equivalence classes of A;(M, ZII;), where M
is an oviented compact 2-manifold of genus n and with m boundavy cuvves, equals
the number &(n, m, p, r) of equivalence classes of E(n, m, p, r) under the operation
e e EUE UE" on columns.

COMPUTATION OF &

11, Let 911; be the collection of subspaces of the vector space Zy. Let ¥(n, p, r)
consist of the matrices (X, Y), not necessarily of rank r, where X, Y are r X n-
matrices. ¥g is empty if n=0., For W € Qf) and n > 0, we introduce a set Ey of

operations on ¥g,:
E;}V:Xi - X;+ &, Yi—aYi-i-Ei i=1, -, n),

where the subscripts denote columns and £, & are elements of W. If ey € Ew
and e € E, there exists fy € EW such that

(11.1) ewew = ewfw.

Now let ¥ =¥ {n, p, r) consist of the elements of ¥ that have rank r. Call two ele-
ments of ¥ equivalent under E U Ey; if one can be obtained from the other by a se-
quence of operations each of which is in E U Ejy . (Except for the first and last, the
successive elements obtained during this process are not necessarily in ¥ .) Let
nw (n, p, r) be the number of equivalence classes of ¥(n, p, r) under E U Eyy.

Let T = T(m, p, r) be the totality of r X n-null-matrices over Z, (with T =¢ if
m = 0), and let ¢ = {(m, p, r) be the number of equivalence classes of T under oper-
ations E". For W ¢ 911;, let Tw = Tw(m, p, r) consist of the elements Z of T for
which w(Z) =W, where w(Z) is the element of 911; spanned by the columns of Z (T

is the disjoint union of the sets Ty, each of which is the union of equivalence
classes of T under E"). Let Cw(m, P, r) be the number of equivalence classes in

T . For any m, p, r,

(11.2) ¢ =2ty (We@l).
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For W € Qp, let By = BEw(n, m, p, r) consist of those elements (X, Y, Z) of &
for which Z € Tw. Ew is the union of equivalence classes of E (under
E U E' U E"); let their number be §W(n, m, p, r). £ is the disjoint union of the

Hw’s and £ = 27 &w . Obviously £(0, m, p, r) = {(m, p, r). Hence

£(0, m, p, r) = %v; Ew(m, p, ).

For any m, n, p, v with m>1 and n> 1, and for W € QF,

(11.3) Ew = Tw Cw -

Proof. Let L) be a set of 1y inequivalent elements (X, Y) in ¥, and L, a set
of ¢y inequivalent elements Z in Tw. L; and L, are nonempty, since m and n
are nonzero. It is sufficient to show that the set L3 of elements (X, Y, Z), where
(X, Y) € L and Z € L;, is a complete set of nonequivalent elements of Ew. Let
(X, Y, Z) €e Ew. We show that (X, Y, Z) is equivalent to an element of L3. We
may assume that (X, Y) is of rank r, hence an element of ¥, since the action on
(X, Y, Z) by a suitable element of E' will replace (X, Y) by (X;, Y)), say, of rank
r (see the proof of (6.1)). By (11.1), there exists a relation be{y(X, Y) € L;, where
ew € Ey and b is a product of elements in E. Since w(Z) = w(Z') =W, we can re-
gard ey as the restriction to ¥ of an element e' € E'. There is a relation
e" Z € L,, and e"be'(X, Y, Z) € L3 .--Next, let (X, Y, Z) and (X', Y', Z') be ele-
ments of L3, and suppose they are equivalent under E U E' U E". We must show
that they are identical. By (7.2), there is a relation e'be"(X, Y, Z) = (X', Y', Z'),
where e' € E', e" € E", and b is a product of elements in E. The elements Z and
Z' are equivalent under E", hence equal. Since w(Z) = w(Z') = W, we can regard e'
as an element ey of Ey, as far as the effect on (X, Y) is concerned. Therefore
(X, Y) and (X', Y') are equivalent under E U Ej;, hence equal.

12, For n>r and dim W = 0, we have the equation
(12.1) nw(n’ p, r) = pr(r-—l)/Z.

For, since W is the vector 0, operations Ej are trivial, and the equivalence
classes of ¥(n, p, r) under E U Ey; are simply those under E. Each of the latter
contains an element (J, Q) (6.1), where Q is uniquely determined by the class. But
Q is also uniquely determined [(see (6.1)] by its r(r - 1)/2 elements a;; (1> 7).

We shall evaluate nw(n, p, 3) (n > 3). Let p C ¥(n, p, 3) be the totality of
3 X 2n-matrices (J, Q) as defined in (6.1). For (J, Q) € p, call (a7, 431, 932) the
chavacteristic of (J, Q).

(12.2) If dim W = 2, every element of p is W-equivalent to the element whose
characteristic is (0, 0, 0).

Proof. Let C, D be vectors in W. We perform the operation ey € Eyy,
Yi“"Yi‘I',U,iC‘l'ViD (i=1, ---,n),

on (J, Q), obtaining (X', Y'), say, which is of rank 3. Let uj, uj, uj be the vectors
whose component matrix is (X', Y'). By operations e € E on columns, we transform
(X', Y') to (J, Q') with characteristic set (u]-u3, uj-u3, uz-u3). The elements

uj -u, and so forth are linear expressions in u, Ly, M3, YV, V,, V3, A2}, 431, 432
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in which the coefficients of the q;; are 1 and the coefficients of u;, -+, v3 are
given by the matrix

(12.3) c3 0 -c; d; 0 -d; |,

where t{(c;, ¢z, c3)=C and td,;, dz, d3) = D We wish to show that the p; and v;
can be chosen so that uj -u) = uj-uz =uy-usz = 0. A sufficient condition for this is
that the rank of (12.3) be 3, which we show is the case if C and D are properly
chosen. Suppose W contains W!, where Wl =(Z,, 0, 0). Since dim W = 2, we may
take C = (1, 0, 0) and D = ¥(0, dz , d3), where at Teast one of the d; is not zero.
Then the matrlx consisting of columns 2, 3, 6 in (12.3) has determinant -d2, and
the matrix consisting of columns 2, 3, 5 has determmant d3. Hence (12.3) is of
rank 3 The argument 1s similar When W contains W2 or W3 Suppose then that
W C Z {W w2, W } Let C and D be nonzero vectors in W N W2 and

w N W23, respectlvely, where Wij = Wix WJ, We see that C = ¥c,, c,, 0), where
c; #0 and c, # 0, since W would otherwise contain W! or W2, Similarly,

D = %0, d,, d3) with d; # 0, d3 # 0. The matrix consisting of columns 1, 4, 5 of
(12.3) has determinant c,d§ # 0.

(12.4) Let C =Yc;, c,, c3) be a vector in W. Every element of p is W-
equivalent to an element whose charactevistic is of the form (0, 0, q) if c; #0,
(0, q, 0) if c2 #0, and (q, 0, 0) if c3 #0. In each case, q depends only on the
equivalence class of the given element.

Proof. A sufficient condition that there exist values for uj;, -+, v3 such that
uj-ub =uj-uj =0 (see proof of (12.2)) is that the first two rows of (12.3) be linearly
independent, which is the case if ¢} # 0. A similar argument applies in the other two
cases. This proves the first half. To prove the second half, we suppose, for exam-
ple, that ¢} # 0, and we consider two equivalent elements (J, Q), (J, Q') of p with
characteristics (0, 0, q) and (0, 0, g'). We are to prove that q =q'. By (11.3) we
may assume that passage from (J, Q) to (J, Q') is effected by an operation
ey € Ey followed by operations e € E. Since dim W = 1, ey is given by

Xi'—-)X]-_"}‘?\.iCi, Yi_)Yi_'_TiCi'
Let u}, uy, uj be the vector whose component matrix is ew(J, Q). We find that

uj-ruy = 7)€z - TpCy,

uj -usz Tyc3 - T3€] +2Az¢Cy4,

u'z-ué (1+>\202)q+’fzc3—7302.

Now these quantities equal 0, 0, q', respectively. Hence, if we multiply them by
c3, -€2, €1, respectively, and add, we obtain the equation

-caazc1q+ci(l+2azce)q =cyq’,

and since c; # 0, this implies that q = q".
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13. For W € Q%, dim W = 1, let i(W) be the smallest index i such that W con-
tains a vector C = ¥c;, c,, ¢3) with ¢; #0. Let (X, Y) € ¥(n, p, 3) (n> 3). We as-
sign to (X, Y) the “normal form” (J, Q) with characteristic

(0, 0, q), (0, q, 0), (q, 0, 0) according as i(W) is 1, 2, or 3.
Suppose for example, that i(W) = 2. Then, under E U Ev, each (X, Y) is equivalent
to (J, Q), where the characteristic of (J, Q) is (0, q, 0) and q is uniquely deter-
mined by the equivalence class of (X, Y) [see (12.4)]. Hence the number of equiva-

lence classes equals the number of possible values of q, namely p. Therefore we
see that

(13.1) nw(®m, p,3) =p when dimW =1, n> 3.
We also see from (12.2) that
(13.2) nwm, p, 3) =1 when dim W > 2, n> 3.

It follows from (12.1), (13.1), (13.2) that if n > 3, then nw(n, p, 3) depends only
on dim W. This is also true of {y(m, p, r), as can be shown directly. Hence we
may let

n;(n, p, 3) = nwn, p, 3) (dim W =i, n > 3),
¢;(m, p, 3) = 7w(m, p, 3) (dim W = i).
From (12.1), (13.1), (13.2) we see that for n > 3,
no(n, p, 3) =p*, n1(n,p,3) =p, nkln,p 3) =1 whenk>2,

14, It is trivial that
(14.1) £,(0, p, r) = 0,

(14.2) o(m, p,r) =1 if m>0.

Let Z € Ty(m, p, r). Since Z is null, dim W = dim W(Z) < m. Hence Tw = ¢
if dim W > m, and so

(14.3) ¢.(m, p,r) =0 if i>m.

Further values of {; are

(14.4) £,(2,p, ) = (p-1)2,
(14-5) 51(3’ 3, r) = 3)
(14.8) £,(3,3, r)=9.

To prove (14.4), take W = W! . Then the elements of Tyw have first rows of the
form (%, -x) (x # 0), the remaining rows consisting of zeros. A complete set of
nonequivalent elements is represented by (1, -1), (2, -2), ---, (£, -£), where

2 =(p - 1)/2. For (14.5), take W = W! . Then the elements of Ty consist of zeros,
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except that the first rows are of the form (x, y, z) with x+y+2z =0 and x, y, z not
all zero. A complete set of nonequivalent elements is represented by

(14.7) (1,1, 1), (1, 2, 0), (2, 2, 2).

For (14.6), take W = W12  The elements of Ty consist of zeros, except that the
first two rows are

Y1 Yz V3

with 27 X; = 2 y; = 0, the two rows being linearly independent. A complete set of
nonequivalent elements is represented by

1 1 1 2 2 2 1 2 0 1 2 0
1 2 o0, 1 2 o, 1 1 1, 2 2 2,
(14.8)
1 2 0 1 2 0 1 2 0 1 2 0 1 2 0
o 1 2, 0 2 1, 1 0 2, 2 1 0, 2 0 1

15. We shall now determine some values of £. From (10.1) and (10.2) we see
that

(m, m,p,r) =0 if r>2n+m,
I‘::(n, pr:r) =0 ifr>2n’

and (12.1) implies that

£(n, 0, p, r) = nin, p, r) = p*r-1)/2

when n>r.
By (11.3) we have for m > 0, n > 0 the relations

£(n, m, p, ) = %ﬂw Cw = 27dim; &,

1

where 7; =7;(n, p, r), & =& (m, p, r), and d; is the number of elements of dimen-
sion i in Q. ¥ r = 3, then

dop=1, d;=dp,=1+p+p?%, dz=1.
Using (12.1) and (14.2), we find for n > r that
£(n, 1, p, ¥) = 0,0, p, )¢ (1L, p, r) = prE-1/2,
For n > 3, (14.3) implies that
£, 3,p,3) =ngé+ @A +p+pA (M, 8 +7128),

where n; = n;(m, p, 3), & = (3, p, 3). Using the values of 7, { listed above, we
obtained for n > 3 the values
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£(m, 2, 3, 3) = 1'33+(1+3+32)(3-1+1.0) = 66,

£, 3,3,3) =1-3+(1+3+3%)(3-3+1-9) = 261.

EFFECTIVE ACTIONS ON SURFACES

16. Let M be a closed oriented 2-manifold, and G a finite group. Denote by
A.(M, G) the totality of effective orientation-preserving actions a = (G, M) with
orbit space M such that 93» is itself a closed oriented 2-manifold. For a = (G, M),
denote by S(a) the totality of points S of M such that gb;l has fewer than [G: 1]
points, and let B(a) = ¢-1S(a) C M. The points of S will be called the singular
points of a, those of B the branch points. A point 8 is a branch point if and only if
the stability group Gz is nontrivial. An equivalence between a and a' induces a
one-to-one correspondence between S(a) and S(a') and between B(a) and B(a'). The
sets B and S are known to be finite.

Let a € A, (M, G). For 3 € B(a), let D3 be a topological disc on p(a) which is a
neighborhood of 3. The discs D3 can be chosen so that

(1) they are disjoint,
(2) Dgzg=gDs (g € G, 3 € B),
(3) ¢D3s is a disc in M which is a neighborhood of ¢3.

Call {D3} afreeing system of discs if it satisfies (1), (2), (3). Let {D3} bea
freeing system for a, and let

me = ,u(a)-UIntD , M°-= SJIO—UIntque.
8 3

M° and M© are compact oriented 2-manifolds, and a induces a free action
a® e A(M°, G) such that pu(a® = M°. We shall say that a® is obtained by freeing
a.

The proof of the following proposition about A (M, G) is a straight-forward
exercise in surface topology, and we shall omit it. (General reference: [3, pp. 223-
230].)

(16.1) Let a{, a5 be obtained by freeing a;, a,. Thern a{ ~ a$ if and only if
aj~ apz.

Let a° come from freeing a € A (M°, G) by means of a freeing system {Dj3}.
If ¥ is a boundary curve of p(a®), it is also a boundary curve of one of the discs, say
D3. Obviously G, = Gz, hence G, is not trivial. Conversely, if a©® € A{MP°, G)
and if the stability group of each boundary curve of p(a®) is nontrivial, then a®°
comes from freeing some a € A (M, G). For let M be formed from p(a®) by iden-
tifying each boundary curve of p(a°) to a point, and let M be formed from M©° in
similar manner. There is an obvious induced action a € A (M, G) with p(a) = m,
and the images of the boundary curves of (a®) are simply the branch points of a.
One sees that a® is equivalent to the actions obtained by freeing a.

Let a® € A;(MP°, Z;), and let h be an epimorphism H (M, Zp) — Zf, character-
izing a® (Section 8). A necessary and sufficient condition that a® comes from free-
ing some a € A (M, Z) is that

(16.2) hic;)# 0 (i=1, ---, m),
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where cy, ***, ¢, ave the elements of Hi(M, Z,) vepresented by the boundary
curves of n(a®). If (X, Y, Z) is the matrix of h (Section 10), then (16.2) is equiva-
lent to the condition that Z contain no column of zevos.

For given m, n, p, r, let T' consist of the elements of T that have no columns
of zeros, and let H' consist of the elements (X, Y, Z) of § suchthat Z € T'.
Then T' and E' are unions of equivalence classes (under E U E' U E"). Let the
numbers of these classes be £', {'. In view of (10.2), (16.1), (16.2), and the defini-
tion of “freeing”, we have the following result.

(16.3) THEOREM. Let G be a finite group, and let A%(M0 , G) consist of those
elements a of A{(M°, G) such that the stability groups of the boundary curves of a
are nontrvivial, Let n be the genus of M°, and m the number of boundary curves of
M. Let M be a closed oviented manifold of genus n, and let A (G, M) consist of
the elements a of A.(G, M) that have m singular points. The process of freeing
establishes a one-to-one correspondence between the equivalence classes of
A{M°, G) and A (M, G). If a® and a are representatives of corresponding equiva-
lence classes, then the number of bvanch points of a equals the numbey of boundary
curves of a°. If G = 23, then the number of equivalence classes in Ag(M, G) is
£'(n, m, p, r).

If we now define ¢} just as ¢; was defined, we have for m > 1 and n > 1 [see
(6.1)] the formula

g = 27d;m; L.
Some values of €' are
{o(m, p, r) = 0,
¢ (m, p, r) = 0 if m <k,
£1(2, p, ) = (2, p, 7) = (r - 1)/2,
£5(3,3,r) =2,
£5(3, 3,4) = 8.

To verify the last two values, look at (14.7) and (14.8) and delete each element that
has a column of zeros.

By (10.1) and (10.2), we see that

(16.4) £, m,p,r) =0 when r>2n+m,
(16.5) &'(Mm, 0, p, r) =0 when r > 2n.
For n > 3,

£(n, m, p, 3) = oty + (1 +p+p2)n, &1 +n285),

where 7; = 7;(n, p, 3), & = {i(m, p, 3). Hence, for n> 3,

£'(n, 2,3,3) =33-0+(1+3+32)(3-1+1-0) = 39,

(16.6)

1l

£'(n, 3,3,3) =3>-0+(1+3+3%)(3-2+1-8) = 182,
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17. It is possible to obtain some information about effective actions of ZII; ona
closed surface of given genus.

Let a € A (M, Z]), and free a to obtain 2° € Af(M®, Z7). Let n=genus M°,
let m be the number of boundary curves of M = p(a®), and let m be the same for
M. We assert that

m=p~-lm.

Indeed, let 6 be a component of ¢$-1y, and y a boundary curve of M®. The stabil-
ity group Gg of 6 is nontrivial, and since the induced action (G, &) is free, Gg
must be cyclic, hence of order p. Hence ¢-ly has p¥/p = p¥-! components,*and M
has mp*-! boundary curves.

Let k and f be the Euler characteristics of M® and °. Then
I =2-2n-m =2-2n-p°1Im,
k=2-2n-m.
Since I = pTk, we see that
n=1+@- Dp’ + (m/2) (" - p* 7).
Assume now that p=3, r = 3. Then
(17.1) n=1+27n-1)+9m.

(Since 3 < 2n+ m (10.1), (n, m) can not be (0, 2), and so n will not be negative.)

Z';’ can not act effectively on a closed oriented surface of genus n unless n is
given by (17.1) for some n, m with 2n+ m > 3 (10.1).

The only values of n, m (2n+ m > 3) that give n =1 are n=0, m = 3, Since
£'(0, 3, 3, 3) = 0, there are no effective actions of Z3 on a torus.

The only values of n, m (2n+ m > 3) giving n=73 are n=3, m=2 and n = 2,
m = 5. Hence, on a closed oriented surface of genus 73, there are just
£'(3, 2, 3, 8) = 39 effective actions of Z3 with 18 branch points, and £'(2, 5, 3, 3)
actions with 45 branch points. We do not have the value of £'(2, 5, 3, 3), since it
does not lie in the range n > r under consideration.
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