CONCORDANCE OF DIFFERENTIABLE STRUCTURES--
TWO APPROACHES

James R. Munkres

Dedicated to Professor R. L. Wilder on his seventieth birthday.

The following two basic problems in differential topology have attracted consid-
erable attention in the last few years.

I. Given a piecewise-linear manifold K, find for it a compatible differentiable
structure «.

II. Classify such structures, up to diffeomorphism or some other suitable equiva-
lence relation.

A piecewise-linear manifold is a complex K that is locally piecewise-linearly
homeomorphic to euclidean space R®. Compatibility means that for some subdivi-
sion of K, each simplex 0 of the subdivision inherits its usual differentiable struc-
ture; we restrict ourselves to structures that are compatible.

There are several possible equivalence relations one might study; the one of
particular interest to us is that of concordance: Two differentiable structures «
and B on K are said to be concordant if there exists a differentiable structure y on
K X I that equals @ on K X0 and 8 on K X 1. (The structure y is called a con-
cordance between a and f; it is a sfrong concordance if each level manifold K X t
is a differentiable submanifold of (K X I)y .) Concordance is a natural equivalence
relation, in the sense that it establishes a connection between our two problems—
constructing a concordance is simply the problem of finding a differentiable struc-
ture on K X I that extends a preassigned differentiable structure on the boundary.
The question of the relation of concordance to diffeomorphism we leave in abeyance
for the moment.

Our purpose is to give a brief survey of the subject, to outline the two main at-
tacks that have been made on these problems, to indicate the connections between
them, and to suggest some promising directions for future investigation.

1. THE GEOMETRIC APPROACH

The first of these attacks is the geometric one we made a few years ago on
Problem II [17]. It involves the groups I',, defined earlier by Thom in his own at-
tacks (not completely successful) on these problems. I', is defined as the group of
diffeomorphisms of S™-!, modulo the subgroup consisting of those extendable to dif-
feomorphisms of the ball B™; it is abelian, and it has been proved to vanish for
n <4 [2], [16], [22].

Our general approach is the following: We attempt to classify differentiable
structures on K — up to diffeomorphism for the moment. Our way of proceeding is
to take a fixed structure o on K, and any other structure g, and to try to construct
a diffeomorphism of Ky with Kg. The obstructions that occur provide some
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measure at least of the number of distinct differentiable structures admitted by K.

More specifically, we begin with the identity map f: K4 — Kg and seek to modify
it so that it becomes a diffeomorphism. Passing to a subdivision of K, if necessary,
we may assume that each simplex of K inherits its usual differentiable structure
under both @ and 8. Then f is a diffeomorphism on all but the (n - 1)-skeleton of
K; the problem is to make it a diffeomorphism everywhere.

It is more convenient to consider the dual cell decomposition of K rather than
its simplicial decomposition. The homeomorphism f is a diffeomorphism in a
neighborhood of the dual 0-skeleton of K. At the general step of our construction,
we assume we have a homeomorphism f' that is a diffeomorphism in a neighborhood
of the dual (p - 1)-skeleton of K, and we seek to alter it to a diffeomorphism in a
neighborhood of the dual p-skeleton. For descriptive purposes, we imagine the gen-
eral dual p-cell c, to be a smooth ball in K, that f' maps onto itself. Now
f '|Bd ¢, defines a diffeomorphism of the (p - 1)-sphere with itself; if this diffeo-
morphism is extendable to a diffeomorphism of the ball ¢, then it seems likely
(and is in fact the case) that f' may be altered so as to be a diffeomorphism in a
neighborhood of ¢,. We define the obstruction cochain APf' as the function that as-
signs to each dual cell Cp the element of I‘p represented by f'| Bd c;,.

Now this obstruction, which arises in the process of “smoothing” { to a diffeo-
morphism, may depend on the various choices made in the passage from f to f'.
Upon examining the effect of these choices, we find the following: Altering the
choice one step back alters APf', which is a cocycle, within its class in the coho-
mology group HP(K; I‘p). Altering two steps back alters this cohomology class by
an element in the image of a certain homomorphism

2 -2/1r. .
A HP4(K; I'po1) ™ HP(K; ry).

Altering three steps back alters the resulting class by an element in the image of a
homomorphism

A3; HP-3(K; I‘p_z) N (kernel A2) — HP(K; I‘P)/(image A2),
and so on. The class of APf' in the group
(--- ((HP(K; I‘P)/image A%)/image A3)/ ---)/image AP

depends only on f; we denote it by oP(f), and we call it the obstruction in dimension
p to smoothing f. The map f may be smoothed to a diffeomorphism if and only if
every obstruction oP(f) vanishes.

We have not yet done what we set out to do; for oP(f) is not the obstruction to
constructing a diffeomorphism between Ko and Kg, but rather the obstruction to
constructing a diffeomorphism in a specific way--as a smoothing of the identity map
f. We have a new equivalence relation between differentiable structures: two are
equivalent if the identity map f may be smoothed to a diffeomorphism. We need to
clarify the connection between this relation and the one we have promised to dis-
cuss—that of concordance. The answer is that they are the same.

In one direction, this follows as a corollary of the obstruction theory just out-
lined; it is embodied in the following theorem.

I-COBORDISM THEOREM [18]. If v is a concordance between o and B, then
theve exists a diffeomovphism
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g: (Kx1I), — KgXI.

(Much stronger results than this hold when K is compact and n > 5; see the h-
cobordism theorem of Smale [15], [23] and the s-cobordism theorem of Barden,
Mazur, and Stallings [6], [11], [12].)

For the proof, we merely note that the identity map f: (K X I)-y — Kg X1 is al-
ready a diffeomorphism when restricted to K X 1, so that the obstructions to smooth-
ing f lie in the cohomology of K X I modulo K X 1, which vanishes. Hence the dif-
feomorphism g not only exists, but may be chosen as a smoothing of the identity
map. Restricting attention to the bottom face, we have the following result:

COROLLARY. If a is concovdant to B, then the identity map Ko — KB may be
smoothed to a diffeomovphism.

This shows in particular that concordance implies diffeomorphism. Concordance
is in fact strictly stronger than diffeomorphism, as such a simple example as SixRIJ
shows [4], [20]. S x §J is another example.

The proof in the other direction requires a careful geometrical argument, which
we have but recently carried out; in [21] we prove the following:

STRONG CONCORDANCE THEOREM. If the identity map Ko — Kg may be
smoothed to a diffeomovphism, then a is stvongly concovdant to B.

These two theorems show that our classes oP(f) are actually obstructions to the
existence of a concordance between & and 3. As a consequence, we can get an upper
bound on the number of distinct concordance classes that K may have. If C(K) de-
notes the set of concordance classes of differentiable structures on K, then

order C(K) < order 22 (HP(K; I';)/image A%/image A3/ --+)
P

Questions about possible equality reduce to questions about the realizability of cer-
tain cohomology classes as obstructions. We can answer these questions in some
cases.

For example,
order C(S™) = order T, .

The computation in this case is particularly simple, for there is only one nonvanish-
ing group, and all possible obstructions are realizable. The facts here are stronger
than this, however. For C(S") is a group if we use the connected sum of manifolds
[7] as the operation. And there is a monomorphism I'y, — C(S™) defined by assigning
to ea.ch element of I',, (represented by an orientation-preserving diffeomorphism ¢
of S"-1) the dlfferenhable structure on S™ that we obtain by pasting two balls to-
gether along their boundaries by the map ¢. Our computation shows that this mono-
morphism is an isomorphism.

We should note here that for n > 5, Smale has proved something far stronger
than this [15], [23]: not only is I, isomorphic to C(S™), but it is also isomorphic to
the group @, of h-cobordism classes of homotopy spheres. The importance of this
result lies in the fact that a good deal of information about ®, is known; Milnor and
Kervaire have computed it in low dimensions (for example, &5 = @4 = 0 and
®., = Z,4), and they have shown it to be finite for n # 3 [7].

A second example is the following:
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order C(S*x SJ) = order I';® ]."J-(-B Titje

This case is also simple. One proves easily that all possible obstructions are
realizable, and that all the A' are zero.

2. OTHER APPROACHES

There have been other geometric approaches to these problems, of varying de-
grees of completeness and success. One of the first was that of Thom, whose work
we have already mentioned [24]. The difficulty with his approach was that he needed
to assume the asphericity of certain spaces L, in order to construct his obstruction
theory; this assumption has since been proved to be false [8]. The space L, has ap-
peared elsewhere in differential topology; it is the space of piecewise-linear hom-
eomorphisms of the standard n-simplex A™ with itself that equal the identity on the
boundary. It is topologized as follows: Let Lg be the subspace of L, consisting of
all maps that are linear with respect to the subdivision Ag of A; give Lg the com-
pact open topology; and let a set be closed in L, if it is a closed subset of some Ly .
Asphericity of L, then means that every map S* — Ls is homotopic to a constant
in Lg, for some subdivision A of Ag .

J. H. C. Whitehead has also attacked these two problems [26]. Because his work
also involved the asphericity of the spaces L, (known to hold only for small n), his
results were of importance primarily for 3- and 4-dimensional manifolds.

In [8], N. Kuiper studied Problem II using a different equivalence relation, that
of homotopy of differentiable structures. In the proof of the strong concordance
theorem mentioned above, we show that if ¢ and B are concordant, then the con-
dordance y between them may be assumed to be induced by a level-preserving
piecewise-smooth triangulation

g KXI - Kg xI.

If it should happen that g is smooth on each cell ¢ X I for each closed simplex o of
some subdivision K' of K, then v is called a homotopy between o and B.

In [19], we constructed an obstruction theory for Problem I, that of imposing a
differentiable structure on a manifold. The obstructions appeared in the groups
HP(K; I'p-1). The theory was algebraically awkward; and at the time we did not
know whether the differentiable structures obtained are compatible. We have since
proved that they are compatible, but the algebraic awkwardness remains.

A metaphysical reason for this awkwardness is that we tackled the problems in
the wrong order; the basic problem should be that of imposing a differentiable struc-
ture. Using this insight, M. Hirsch outlined in [4] an obstruction theory for Problem
I that included II as a special case; the obstructions appeared in the same cohomology
groups as before.

Hirsch’s theory, however, is desiined to remain only in outline form. For simul-
taneously with Hirsch’s work, Milnor was constructing his theory of microbundles,
and Hirsch and B. Mazur soon saw how they could utilize this theory to obtain an
even better way of approaching the problems. We now turn to a consideration of
this approach.
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3. THE BUNDLE-THEORETIC APPROACH

It seems hardly necessary to remind the reader of the fundamental importance
of Milnor’s theory of microbundles [13], [14] for the study of the relationship between
topological, PL (piecewise-linear), and differentiable manifolds. Nor need we recall
the definition of this concept. It will suffice for descriptive purposes to think of a
PL microbundle as simply a fibre bundle whose fibre is R™ and whose group is the
group PL_ of all PL. homeomorphisms of R™ that preserve the origin.

The relevance of microbundles to differentiable structures is based on three
facts: First, any vector bundle 77 over a complex has an underlying PL microbundle
ln |, which one can think of as having been obtained from 7 by expanding the group
of the bundle from the orthogonal group O, to PL,. Second, any PL manifold K
has a tangent PL microbundle ty . And third, any differentiable manifold K, has a
tangent vector bundle T, whose underlying PL microbundle is txk.

Putting these facts together, one sees that if K has a differentiable structure a,
then the tangent PL microbundle of K must be the underlying microbundle of some
vector bundle over K. The crucial connection between microbundle theory and
manifolds is afforded by the converse:

THEOREM (Milnor). If the tangent PL microbundle of K is the undevlying
microbundle of some vector bundle n over K, then K has a diffeventiable structure
@. [In fact, all that is required is that tx be sfably equivalent to |n[ for some 7
(in the sense of Whitney sum); and the conclusion can be strengthened to require that
Ty and 1 be stably equivalent. |

The proof involves the construction of a differentiable manifold E, depending on
1, such that K may be imbedded in E with trivial normal microbundle. The latter
specification means that there is a piecewise-differentiable homeomorphism of
K X R? onto an open subset of E. Hence K X R? inherits a differentiable structure
from this imbedding. One then applies the following theorem of Hirsch, which he had
proved as a tool in constructing his obstruction theory:

PRODUCT THEOREM [1], [3]. If K X RY nhas a differentiable structure, then so
does K.

Milnor’s existence theorem reduces Problem I to a microbundle-theoretic ques-
tion; its application to the concordance problem, however, demands a more careful
analysis of the way in which the differentiable structure o depends on the vector
bundle 5. Hirsch and Mazur have carried out this analysis, and have shown that the
concordance class of @ depends only on the stable class of 1. Using this, they have
proved the following [5]:

THEOREM. Thevre is an h-space T' (homotopy commutative and homotopy asso-
ciative) such that

(a) for each PL manifold K, theve exists a bundle &(x over K having fibve T
such that C(K) is in one-to-one corvrespondence with the homotopy classes of cross
sections of &y,

(b) If £ has a cross section, then it is fibve-homotopically trivial, and C(K) is
in one-to-one covvespondence with the set [K, T'] of homotopy classes of maps-of K
into the fibre T.

A plausibility argument for this theorem goes as follows: Let BPL and BO be
the classifying spaces for stable PL microbundles and stable vector bundles, re-
spectively. Then {: BO — BPL is a fibre bundle with fibre I"' = lim PLn/On . If
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f: K — BPL is the classifying map for the stable tangent microbundle of K, then
Milnor’s theorem says that K has a differentiable structure «@ if and only if { may
be lifted to a map of K into BO; the Hirsch-Mazur result says that the concordance
class of @ depends only on the homotopy class of this lifting. But a lifting of f is
equivalent to a cross-section of the bundle &x = £*(¢).

We must emphasize that this argument is a gross oversimplification of the situ-
ation. In particular, PL, is not the group we have described, but rather a semi-
simplicial analogue of it, which does not even contain the semi-simplicial analogue
of Op. As a result, one must replace PL, by the semi-simplicial analogue PD, of
the set of piecewise-differentiable homeomorphisms of (R™, 0) (it is not a group);
the fibre T will in fact be the space lim PD, /O, .

The work of Hirsch and Mazur is not yet available; but an independent proof of
the one-to-one correspondence stated in (b) of the theorem may be found in [10].

This theorem has some immediate consequences for the concordance problem.
One is that if C(K) is not empty, it may be given a group structure (not naturally),
since I' is an h-space. Another is that m;(T") = [Si, I'] is in one-to-one correspond-
ence with C(S); moreover, it is easy to show that the group operations are the same
in the two cases, so that 7i(T") ~ C(S'). Finally, it follows directly from homotopy-
theoretic arguments (and the fact that C(Si) ~ I';) that

C(sixsl) <> [s'x8), T] =~ T;® ;@ Tiyy;

one uses only the fa_,ct that T' is an h-space with ith homotopy group T';. This
computation of C(S*x SJ) was announced by Mazur at the Seattle conference.

4, CONNECTIONS BETWEEN THE THEORIES

It is clear that when the Hirsch-Mazur theory is worked out in complete detail
and published, it will have a far-reaching effect on the concordance problem, and
that it will take the center of the stage as more and more work is done. Let us
examine the connections between the two theories we have sketched, to see what
role the former theory may still have to play.

The connection is made by means of the corresponding obstruction theories.
Given a map ¥: K — I', one may attempt to construct a homotopy between it and the
constant map. If an obstruction to this homotopy appears, it will be in the group
HP(K; 7,(T)) = HP(K; Tp), as expected. Homomorphisms AK can be defined by
homotopy-theoretic means, and they can be proved to represent the operations Ak
defined in the other theory. Then one has the relation

order C(K) < order 2J HP(K; T'p)/images AL,
p

as before. But one can do more. For any complex L, one can by homotopy-
theoretic means define homomorphisms

$2%; HP(L; T'p') — HPT2(L; Tp+1),

@3: HP(L; I‘p) N (kernel &%) — HP+3(L; I‘P+2)/(image ®2),
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and so on, such that the realizable obstructions are precisely those elements of
HP(K; T'p) that lie in the kernel of &k for all k. Hence the realizable obstructions
form a subgroup of HP, and we can write

C(K) <> 2o (HP(K; I‘p) N (kernels @i))/(images AY).
P

The Al and &1 are in fact related; Al is induced from &% vig the suspension iso-
morphism. For example, the diagram

2
P-2(x. AY qPKk-
HP-2(K; T, y) & HP(K; T)
! !
2
p-lrawe. ® ptligk.
HP-Y(sK; T,_;) % HPY(sK; Tp)

is commutative.

The problem of computing concordance classes now comes down to the problem
of computing the operations Al and &1 in the cohomology of K. At this point, the
older theory may still be useful. For the A! in the first theory are defined very
geometrically, and they have been computed in specific cases, as has the group of
realizable obstructions. These computations may at least provide future workers on
the concordance problem with some useful information, as they explore the mysteries
of the space T'.

5. A NONTRIVIAL EXAMPLE

We illustrate the point with an additional example of computations carried out
within the first theory. It is the next example one might consider after the space
St X §J; it has the same cohomology groups as that space, but the operators A! act
differently.

THEOREM. Let M be the total space of an SI-bundle over Si, whevre the char-
acteristic map o« of the bundle may be pulled back to lie in m;_1(SO(j - 1)). Then

C(M) <> T';® (T N kernel 74) @ (Ty/image 74),

wheve Ta: Im — 7T

m m+i-1 &S a certain ftwisting homomorphism defined for all m 2> j.

Milnor and Kervaire studied the homomorphism 7., in their work on the groups
® ., ; they showed it to be nontrivial in a number of cases [7], [9]. A specific case in
which something nontrivial occurs in both terms is the nontrivial S8_bundle over S%.
For according to Milnor, both 74,: I's = I'g and 7,: I'g — I'}; are nonzero homo-
morphisms, if @ is the nonzero element of 7(SO(7)).

To define Ty, one first defines a homomorphism

m(SO(m - D)X T, 5T s

the inclusion m (SO(j - 1)) — 7 (SO(m - 1)) followed by 7 defines Ty in general.
To construct 7, we proceed as follows:
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We represent an element of m (SO(m - 1)) by a differentiable map
f: Sk— SO(m - 1) and we represent an element of ", by a diffeomorphism
g: Rm™M-1 , Rm-1tphat is the identity outside a compact set. We then define diffeo-
morphisms F and G of Skx Rm-1 py the equations

F(x,y) = (x, f(x)-y) and G(x,y) = (x, g(y).

The diffeomorphism F-1GF of Skx R™-1 is the identity outside a compact set.
Via the standard imbedding of Skx Rm-1 in §mtk-1 that sends (x, y) into
(%, v)/ || (%, y)|| it induces a diffeomorphism of Smtk-1,

A final remark: The reader will observe that the definition of 7 looks suspi-
ciously similar to G. Whitehead’s definition of the J-homomorphism [25]

J: 1 (SO(m - 1)) — 7, (™).
The similarity is more than accidental. Using the equivalence of our obstruction

theory with that of Hirsch and Mazur, one can see that (up to sign) 7 is simply the
composite

- ﬂm+k(sm) ® 7Txn(]'-‘) 2 ’”m+k(r) ’

ﬂk(SO(m

where ¢ is the compos1t10n map carrying [f] @ [g] into [gf]. Alternatively, one can
replace 7,,(T') ~ ®,, by its image under the Milnor-Kervaire homomorphism
© . = Tmyj (8), and prove directly that 7 equals the composite of J&X)i and ¢ in

the stable homotopy groups of spheres. The latter method is in fact the one used by
Milnor in demonstrating the nontriviality of 7.
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