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Dedicated to R. L, Wilder on his seventieth birthday.

INTRODUCTION AND RESULTS

The purpose of this paper is to show that n-dimensional absolute neighborhood
retracts that admit £-maps onto closed orientable n-manifolds, for arbitrarily small
g > 0, are necessarily orientable generalized n-manifolds in the sense of Wilder. In
a sequel to this paper we shall show that if one omits the orientability hypothesis,
then one obtains locally orientable generalized n-manifolds.

All spaces considered are subsets of compact metric spaces. Amap f: X — Y of
a space X onto Y is an £-map (¢ > 0) provided diam f-1(y) < ¢, for each y € Y. If
II is a class of compact polyhedra, we say that X is II-/ike provided for each €¢ > 0
there exist a polyhedron P € II and an g-mapping f: X — P onto P (P and f de-
pend on &) (see [14, Definition 1]). By a (closed) n-manifold we mean a (compact)
triangulable manifold without boundary having covering dimension n. We are inter-
ested here in II-like continua, where II = M™ is the class of all closed, connected,
orientable n-manifolds.

Homology and cohomology modules H, and H' are taken in the sense of éech,
based on arbitrary open coverings as in [8]. Given a principal ideal domain L, we
say that a compact space X is khomology locally connected up thvough dimension n
over L (written lcl) provided for each x € X and each open set U C X about x
there exists an open set V about x (V C U) such that

1¥U=0 (0<r <n),
where

VU, . .
ifo: HI(V, L) — H_(U; L)
is the homomorphism induced by inclusion iyy: V — U. In dimension zero we use

augmented homology. It is well known that every locally contractible space X, and
a fortiori every ANR, is lcl- for each L.

For open sets U of a compact space X we consider cohomology modules with
compact supports
H_(U; L) = H (X, X\ U; L)
(see for example [20, p. 248]). For open sets U and V (V C U), the inclusion map
iyy: V— U induces homomorphisms i{y: HE(V; L) — HY(U; L).

The rth local co-Betti number at x € X over L, denoted by p* (%, X; L), is de-
fined as follows: p¥(x, X; L) = k means that for each open set U about x there exist
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open sets W and V (x € W C V C U) such that for every open set W' (x € W'C W)
the modules

i, HXWS L) and  iZ, (HXW; L)
coincide and are free L-modules of rank k (see for example [2, p. 7, Definition
2.1]). In case L is a field F, the space X is of finite cohomology dimension
dimy X =n, and X is lcf | then pZ(x, X; F) is simply the dimension of the limit of
the inverse system {HZ(U; F); iy}, where the sets U range over all open neigh-
borhoods of x in X (see [21] and [2, Section 2, pages 7 and 8] ).

By an orientable, n-dimensional, generalized closed manifold over L (n-gcmj,)
we mean a continuum X with the following properties:

(i) dim; X is finite,
(i) p*(x, X; L)=0 (r #n),
(iii) p™(x, X; L) = 1,
(iv) H*(X; L) = L. and each x € X has a basis of connected open neighborhoods

U for \iv)hich igx(Ho(U; L)) = H(X; L) (see [20, pp. 244, 250] and [2, pp. 9
and 12]).

The following is our main result,

THEOREM 1. Let X be an n-dimensional absolute neighborhood vetvact that is
Mmno-like., Then X is an ovientable n-gcmy, over every principal ideal domain L.

This theorem gives a positive answer (in the orientable case) to a problem
raised by T. Ganea [11] and also by H. Cartan (private communication from Ganea).
In case n = 2, a well-known theorem of R. L. Wilder [20, p. 272, Theorem 2. 3] im-
plies that X is actually a 2-manifold. This was previously d1scovered by Ganea [9].
We point out that in [11] Ganea produced a 3-dimensional absolute neighborhood re-
tract that is like the 3-sphere S3 but fails to be a manifold.

In the case when X is a polyhedron and L is the ring Z of integers, Theorem 1
yields the following result.

COROLLARY 1. Let X be an n-dimensional, M™-like polyhedvon. Then X is
an ovientable, n-dimensional h-manifold (as defined in [1, Vol. 3, p. 4]).

In [6], A. Deleanu has shown that an n-dimensional polyhedron that admits ¢-
maps onto closed n-manifolds, for all € > 0, is necessarily a closed pseudo-mani-
fold, and that if n < 3, then it is a manifold. On the other hand, it is known that an
n-dimensional h-manifold is a closed pseudo-manifold [1, Vol. 3, p. 5, Theorem
1.22], and that for n < 3 it is a closed manifold (see [1, Vol. 3, p. 7, 1.3]). Thus,
Corollary 1 is a considerable strengthening of Deleanu’s results (in the orientable
case). P. M. Rice has recently exhibited, for each n > 4, an n-dimensional poly-
hedron that is S™-like but fails to be a manifold [18].

An associated problem is that of quasi-embeddability. We say that a compact
space X quasi-embeds in Y provided for each £ > 0 there exists an £-mapping of
X into Y. Ganea [10] has shown that if an n- dlmensmnal polyhedron (n # 2) quasi-
embeds in Euclidean space R2™ then it embeds in R Zn - WWe have shown in [15] that
for n < 2, n-dimensional polyhedra embed in R™ if they quasi-embed in R™,

THEOREM 2. For each n > 4, therve exists an n-dimensional polyhedvon that
quasi-embeds in R™ but fails to embed in R™.

We do not know whether Theorem 2 is true for n = 3.
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PROOFS AND RESULTS

1. In view of recent results of F. Raymond [17, Theorems 1 and 2] it is sufficient
to prove Theorem 1 for the case when L is a field F. Moreover, since the covering
dimension dim X is n, we see that

dimp X < dimyz X = dim X = n,
so that (i) in the definition of an orientable n-gemgy is satisfied.

2. We next show that X satisfies (iv) and (iii). It is implicit in Ganea’s paper [9]
that
(1) H'(X; F) ~ F ~ H(X; F).
In the first place,
HY(X; Z) # 0
(see [9, (3.1.1) and 2.1]). Moreover, X being an ANR, every £-map of X onto an n-

manifold M € M™ has a left homotopy inverse, provided ¢ is small enough [7].
Therefore, H{(X; Z) is a direct summand of H*(M; Z) ~ Z, and thus

H'(X; Z) ~ Z.
Applying the universal coefficient formula
H(X; F) ~ H(X; Z) ® F

(see [9, 2.1]), we obtain (1).

Deleanu has proved [4, Theorem 1] that for each connected open set U C X the
homomorphism

iy HE(U; F) —» H%X; F)

is an isomorphism (onto). This and (1) establish (iv). Moreover, if V and U are
connected open sets in X (V C U), then

iyyg: Ho(V; F) — HY(U; F)

is an isomorphism, because iy y and ifjyx are isomorphisms and

1 .1 .
yx T luxtlvu:-
Therefore, if we restrict the inverse system {H_(U; F); iy} to the cofinal sub-
system determined by connected open neighborhoods U of x € X, we have a system
each term of which is F and each projection of which is an isomorphism. Hence,
the limit of the system is F, and this establishes (iii).

3. In order to show that (ii) holds, it is enough to prove that, for every r <n and
for every open neighborhood U of x € X, there exists an open neighborhood V of x
(V < U), such that the homomorphism

iyy: H(V; F) — HL(U; F)
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is zero. This proof will be given in several steps.

We first apply Theorem 1 of [14] to obtain an inverse sequence {Xi; wij}
(i=1, 2, --+) of closed orientable n-manifolds X; € M® with maps 7;;: X;— Xy
onto X; (i <j). This sequence is kept fixed for the rest of the proof. As usual,
7; ¢ X — X, denotes the projection of X onto X;. For each ¢ > 0, the projections
7; ¢ X — X; are e€-maps, for sufficiently large i. Therefore, for large i, the maps
7m; have left homotopy inverses, and therefore

7% HY(X;; F) - H'(X; F) and 74 H (X; F) - H (X;; F)
are isomorphisms.
Since
Ty = Tk (1 <G),
we see that the mappings
Mt Hy(X55 F) = Hy(X 3 F) (1 <9,

are also isomorphisms, for sufficiently large i. This enables us to select, for each
large i, an orientation class

o, e H(X;; F) = F (o #0)
in such a way that

(2) T @ = O G <j).

1

4, We denote by B the basis for the topology of X consisting of all sets of the
form ﬂ{l(Ui), where U; is open in X, (i=1, 2, -+). Given a (nonempty) set U € 3
of the form

I | .
U = ﬂiO(UiO) (Uio open in Xio)’
we consider the open sets
Uy = nii(U; ) (g <9)

in X;. We obtain thus the inverse sequence
{X;, X3\ U); 755}

of compact pairs (X;, X; \ U;), whose limit is the pair (X, X\ U).
Open sets U; C X; are orientable n-manifolds (not necessarily connected).

For each sufficiently large i, we choose an orientation class B; # 0 from the
infinite homology group

-S:Jn(Ui; F) = Hn(Xi, Xi\ U;s F)
(see [20, p. 248]) in such a way that

(3) Bi = .“L(ai)i
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where
p:H (X;; F) > H (X, X, \ U;; F)
is the homomorphism induced by the inclusion X; C (X;, X; \ U;). Furthermore, the

commutativity of the diagram

H (X5 F) 2 Hy(X;; F)

| b o

Hu(%y X\ U5 F) o (5, X5\ U5 ),

together with relations (2) and (3), implies that
(4) B; = Tij% Bj (i < i).

In other words, the maps 7. ij« preserve the orientation classes B; € § (U F) of
U.

ie

5. The cap product on an open manifold such as U; pairs infinite homology
$,(U; ; F) and compact cohomology H(U;; F) to yield homology H,_.(U;; F) (see

[20, p. 248, 2. 9]). Furthermore, it is known that the cap product with the orientation
class

Bi € @n(Ul; F) of Ui
defines the Poincaré duality isomorphism
B; N HL(U; F) » H___(U,; F),

(see [20, p. 260, 5.16] or [12]). Moreover, the cap product is a natural operation;
that is, for

he H(U;; F) and B € .(;)n(Uj; F)
we have the relation

(5) B;~ ;¥ h) = (m,BN AR (1<)

1_] * 1_}*
(see for example [20, p. 157, Theorem 17.1a]).

By (4), the relation (5) becomes

™55 By N *h) B,Nh (i<j, he HY(U,; F)),

which proves that the diagram

%k
ﬂ'..
r . 1) r .
Hc(Ui’ F) = Hc(Uj 5 F)

(6) B | | 850
LU, B) — H (U F)

ij*
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is commutative and that its vertical arrows are isomorphisms.

6. Let V € 8 be another open set of X from the basis 8, and let VC U, V # @.
Everything said about U applies as well to V with the roles of U;, U;, B;, B; taken
by Vi, Vi, v, 75, so that we obtain a diagram like (6) for the latter.

Moreover, the diagram

. r
iUy

H (V,; F) H(U; ; F)

(D) % | | B

Hn-r(Vi; F) Hn-r(Ui; F)

il‘
Vi Uj

is commutative; here the vertical arrows are isomorphisms of the Poincaré duality
law (see [3, p. 20-04], or [19, p. 138]).

Finally, from the naturality of cohomology and homology we have commutative
diagrams

*
m. .
HL(U;; F) 2L H{(U;; F)
(7) it iv. .
ViUi' t VJ UJ
H_(V,; F) ﬂ—”“* H{(V,; F)

and
H (U F) ¥ (U.; F)
ne~r i’ - “n-r‘\“j>?
Vi Ug ,Vj Uj
(8) 111-1‘ t 1 n-r

Hn-r(vi; F) 7;— Hn_r(VJ; F) .
ij*

7. Diagram (7), together with the equation
(9) H(U; F) = Dir lim {HI(U,; F); wij*}
(continuity of cohomology with compact supports) yields the commutative diagram
r . 7713’< r
HL(U;; F) TL HI(U; F)

(D,) iy, Uy 1 Pigy

r P 7 — .
HI(V;; F) —% HX(V; ).

1

Similarly, the inverse sequence {H'n-r(Ui; F); LES *} has an inverse limit
(10) H, (U; F) = Inv lim {H,__(U;; F); 755},

and the homomorphisms
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V: U:
i *"hH,_(V,; F) - H _(U;; F)

n-r
define a limit homomorphism

~VU, o Cw o .
(11) iyt Hy (V; F) H,_.(U; F)
(see (8)). We now obtain the commutative diagram

~

i

Hn..r(Ui; F) -~ ﬁn..r(U; F)
' Vi U; TVU
(Dz) i, 11 )

H, _.(V;; F) 7"7: H __(V;F).
1

Finally, the isomorphisms
. r L .
Bim . HC(UI, F) — Hn_r(Ui, F)
define an isomorphism
g:H (U; F) —» H _ (U; F)
as follows. By (9), each h € H¢(U; F) is of the form h = 7;*h;, where
h; € HL(U,; F).

It is enough to define 77J. «Bh, for j >1i. Such a definition is given by
From the diagram (6) we obtain the cummutative diagram

B (U, ; F) i HE(U; F)

cr1? e c 7’

(D3) 'Bim l ‘ B

Hyr(Uj; F) & H, .(U; F).
1%

Similarly, for V € 8, we obtain an isomorphism
v: H(V; F) -» H___(V; F),

and replacing U;, U, B;, B by V;, V, y;, v in (D3), we obtain a commutative dia-
gram (D3).

8. LEMMA 1. Let V C U C X be nonemply open sets from the basis B. Then
the diagram
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HE(V; F) - HE(U; F)
(D) 7 | | 8
(V3 F) ,;;U H___(U; F)

is commutalive, with the vertical ayvows B and vy, being isomovphisms (for r =n
we use nonaugmented homology in HO(U F) and HO(V F)).

Proof. We must show that
(12) BlVUh = 1VUyh

for each h € HZ(V). Since both sides of (12) are in the inverse limit H _+(U; F) (see
(10)), it is enough to show that

~ . ~ *VU
(13) Ty Biyyh = T, 1) vk

for sufficiently large i. On the other hand, HZ(V) is the direct limit of HE(V;) (see
(9)) so that there is no loss of generality in assuming that h is of the form

Using diagrams (D,) and (D3), we see that the left-hand side of (13) is
T Bum*hy = T Br*iy, g, by = BN (Y, u;hy) -

Using diagrams (D5) and (D3), we see that the right-hand side of (13) is

_ Vi Uj~ VU-
'y'n*h =i Tie ¥ ¥ hy ner v N hy).

n-r

~

ﬂ1* nr

Finally, by the diagram (D),
‘Bi m (i'%i U hi) = i{fi Ui(')’j_ m hi) .

9. LEMMA 2. Let xe€ Xand Ue B Lx e U); then there existsa V € B
(x € V C U) such that the homomovphism 1YY from (11) is zero (0 <r < n)
(for r = 0 we use augmented homology).

Proof. Choose an open set U' € 8 suchthat x € U'CCl1U'CU and C1U' is
compact. Since X is lcrl*;, there is an open set V' such that x € V! C U' and

(14) iv'U' =0 (0<r<n).

r

Furthermore, we can find anopen set Ve 8 (x € VCClV C V'), with C1V com-
pact, such that

(15) 'ni(V) C 'ni(Cl V) C ﬂi(Cl U') c m,(U).

Now consider the commutative diagram of inverse sequences (where the vertical
columns are induced by (15))
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H,(m;(U); F) « -+ « Hy(m;(U); F) — -

7 T
H,(m,(C1U"); F) « -+ « Hr(ﬂj(Cl U'); F) «— -

(16) T T
Hr(ﬂi(Cl V); F) « =+ <« Hr('irj(Cl V); F) « .-

T 1

H (r(V); F) < - = H (1 (V); F) — -

The limits of the second and third rows are the Cech homology groups
H,(C1 U'; F) and H.(Cl V; F), respectively, because of the continuity of (fec}Ltheory
for compact spaces. The limits of the first and fourth rows are the groups H.(U; F)
and H,.(V; F), respectively, defined in (10).

We thus obtain from (16) homomorphisms

(17) f.(v; F) - HL(C1V; F) - H,(C1U'; F) — H_(U; F).
Their composition is the homomorphism TIY U

However,
(18) Clvcvicu cciu',

so that the homomorphism
(19) H.(Cl1V; F) —» H.(CLU'; F)

induced by inclusion C1 V € C1 U' decomposes into homomorphisms

1] 1
iy'u

(20) H_(C1 V; F) — H(V'; F) H_(U'; F) - H_(C1U'; F),

all induced by corresponding inclusions (18). Using (14) and (20), we conclude that the
homomorphism (19) is zero, which together with (17) proves that the homomorphism

iIYU is zero.

10. We now prove that X satisfies condition (ii) of the definition of an n-gcmy .
Given any X € X and any open neighborhood U; of x, we choose a set U € B
(xe UC Ul)- By Lemma 2, thereisa V € 8 (x € V C U), such that iXEJr =0

(0 < r < n). We may therefore conclude from diagram (D) that iyy =0 (0 < r <n),
and therefore

iy = iggriyy =0 (0<r<n).
This concludes the proof of (ii) and Theorem 1.
11. In order to exhibit the n-dimensional polyhedra P required for the proof of
Theorem 2, we use the fact that for every n > 4 there exists a combinatorial n-

manifold M with boundary oM having the properties that

M is contractible,
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7, (0M) #1,
MXI= In+1

(see [16] and [4]).

We define P as the cone C(0M) over M. (Note that the sphere-like polyhedra
described by Rice and mentioned in the introduction are the suspensions Z(3M)

[18].)

We now show that P is not embeddable in R™. Suppose on the contrary that
there exists an embedding ¢: P — R™. Since

H _,(0M; Z) = Z,

it follows from the Alexander duality theorem that R™ \ ¢(0M) consists of two com-
ponents U and V. The open cone P\ oM, being connected, maps into one of these
components, say U. Since P is contractible, the complement of ¢(P) is connected
(Alexander’s duality theorem) and does not meet ¢(dM). Therefore, R™\ ¢(P) must
be contained in V. Thus,

#(P\ oM) = U.

This proves that the vertex of the cone P = C(2M) has a Euclidean neighborhood,
contrary to the fact that 7;(aM) # 1.

12. To show that P quasi-embeds in R™, we consider for each ¢ (0 <g <1)
the decomposition

P =P, UQg,
where
P, = @M Xx[1-¢, 1])/oM x 1,
Q = oM Xx [0, 1-¢].
Let

he: Qg — M X1
be the homeomorphism given by

he(x, t) = (x, t/(1 - €)).
Let
get P » M X1

be a map that agrees with h; on
P, NQg =dMXx {1-¢}.

Such a map exists, because M is contractible and P, is a cone over Pg N Qg . The
maps gg and hg define a map

f: P — (M XI)U (Mx1)
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with the property that any nondegenerate counterimage (under fg) of a point is con-
tained in Pg.

Finally, (0M X I) U (M X 1) is a proper subset of 9(M X I) = S™ and can therefore

be considered as a subset of R®. The maps fz: P — R™ prove that P is quasi-
embeddable in R™,

11.
12.

13.

14.

15.

16.

117.
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