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1. INTRODUCTION

For many years, algebraic topologists have been laboring under the handicap of
not knowing in which category of spaces they should work. Our need is to be able to
make a variety of constructions and to know that the results have good properties
without the tedious spelling out at each step of lengthy hypotheses such as countably
paracompact, normal, completely regular, first axiom of countability, metrizable,
and so forth. It may be good research technique and an enjoyable exercise to analyse
the precise circumstances for which an argument works; but if a developing theory is
to be handy for research workers and attractive to students, then simplicity of the
fundamentals must be the goal.

The demands which a convenient category should satisfy are first that it be large
enough to contain all of the particular spaces arising in practice. Second, it must be
closed under standard operations; these are the formation of subspaces, product
spaces X X Y, function spaces YX, decomposition spaces, unions of expanding se-
quences of spaces, and compositions of these operations. Third, the category should
be small enough so that certain reasonable propositions about the standard opera-
tions are true. These state that the order of performing two operations can be re-
versed. We adopt the following as test propositions.

(1) (Yxz)X = Y¥xzX.

(2) 7 VXX - (7 V)X

(3) A product of decomposition spaces is a decomposition space of the
product.

(4) A product of unions is a union of products.

(5) A decomposition space of a union is a union of decomposition spaces.

It is well known that (1), (2), and (3) are valid for compact metric spaces, but the
category of these is not closed, under several ‘standard operations. It is also known
that these propositions do not hold in the category of all Hausdorff spaces. In fact,
arguments have been given which imply that there is no convenient category in our
sense [13, Appendix]. The arguments are based on a blind adherence to the custom-
ary definitions of the standard operations. These definitions are suitable for the
category of Hausdorff spaces, but they need not be for a subcategory. The categori-
cal viewpoint enables us to defrost these definitions and bend them a bit.
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In this paper, we propose as convenient the category of spaces we shall call
compactly genevated. Such a space is a Hausdorff space with the property that each
subset that intersects every compact set in a closed set is itself a closed set. These
spaces are called k-spaces, in the book of Kelley [7]. Subsequent development of
the concept by Spanier [12], Weingram [14], and R. Brown [1], [2] has demonstrated
its utility. In Sections 2 through 5, we shall present propositions which taken together
assert that the category is convenient. A principal reason for this success is that we
use a modification of the cartesian product; the cartesian product is categorical for
all topological spaces but not for the subcategory of compactly generated spaces;
however the modified product is categorical in the subcategory. Similar modifica-
tions are made in the definitions of subspace and function space. Sections 2 through
5 are mainly expository; most of the results can be found in the above references.

Next we take up the question of a convenient category of pairs of spaces (X, A).
We require of course that X be compactly generated and that A be closed in X. In
addition, we shall require that A be a neighborhood deformation retract in X (ab-
breviated NDR). Sections 6, 7, and 8 present the evidence supporting our claim that
this category is convenient.

From pairs one passes to triples, quadruples, and eventually to filtered spaces.
This is not an automatic generalization. There are a variety of circumstances in
algebraic topology in which one wants to form the union of an expanding sequence of
spaces; this passage to a limit is highly nontrivial. It is customary to assign the
weak topology to the limit, but this leads to various difficulties involving the Haus-
dorff property, normality, and behavior under products. In Sections 9 and 10, we
show that if our filtered spaces are built as unions of NDR pairs, all compactly
generated, then these difficulties disappear.

In Section 11 we compire briefly our category with three others: quasi-topologi-
cal spaces (Spanier [13]), 8,-spaces (Michael [8]), and spaces having the homotopy
types of CW-complexes (Milnor [9]).

Most of the material in Sections 6 to 10 was developed during joint work with M.
Rothenberg on classifying spaces of topological groups (see [11]).

2. COMPACTLY GENERATED SPACES

We denote by CG the category of compactly generated Hausdorff spaces and
their continuous maps. The Hausdorff property is imposed to insure that compact
subsets are closed. A useful test for a space to be in CG is the following.

2.1. If X is a Hausdovff space, and if for each subset M and each limit point x
of M there exists a compact set C in X such that x is a limit point of M N C, then

X € CQG,

Briefly, if each limit relation in X takes place in some compact subset of X,
then X € CG. For the proof, assume M meets each compact set in a closed set, and
let x be a limit point of M. By the assumption, there exists a compact C such that
x is a limit point of M N C. Since M N C is closed, we have the relation
x € MNC, hence x € M. So M is closed and X € CG.

2.2. The category CG includes all locally compact spaces and all spaces satisfy-
ing the fivst axiom of countability (for example, metvizable spaces).
These facts are stated in Kelley’s book. They are corollaries of 2.1: if X is lo-

cally compact, we take C to be the compact closure of a neighborhood of x, and if X
is first countable, C is taken to consist of x and a sequence in M converging to x.
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These results show that CG is large enough to contain most of the standard
spaces. Perhaps the simplest example of a Hausdorff space not in CG is the follow-
ing.

2.3. Example. Let Y denote the ordinal numbers preceding and including the
first noncountable ordinal €. Give to Y the topology defined by its natural order.
Let X be the subspace obtained by deleting all limit ordinals except Q. The only
compact subsets of X are the finite sets, because each infinite set must contain a
sequence converging to a limit ordinal of the second kind. Therefore the set X - Q
meets each compact set in a closed set, but is not closed in X, because it has Q as
a limit point.

Remark. The condition in the hypothesis of 2.1 is not equivalent to X € CG;
there is an example of a space in CG for which the condition does not hold.

The example 2.3 shows that a subspace (X) of a compactly generated space (Y)
need not be compactly generated. However, the following results show that certain
subspaces are in CG.

2.4. If X is in CG, then every closed subset of X is also in CG. An open set U
of X isin CG if it is a “vegular® open set, that is, if each point x € U has a neigh-
borvhood in X whose closure lies in U.

Suppose A is closed in X and B C A meets each compact subset of A ina
closed set. Let C be a compact set in X. Then A N C is a compact set of A; hence
BN(ANC)=BNC is closed in A. Since A is closed, B N C is closed in X. Be-
cause X € CG, it follows that B is closed in X, hence also in A. So A € CG.

Let U be a regular open set in X, suppose B C U meets each compact set of U
in a closed set, and let x € U be a limit point of B. By assumption, there is a
neighborhood V of x in X with closure V c U. If C is compact in X, then V N C
is a compact set of X in U. Since it is also compact in the relative topology of U, it
follows that B N V N C is closed first in U, then in V N C, and finally in X. Be-
cause C is any compact set in X and X € CG, it follows that B N V is closed in X.
Since x is a limit point of BN V, we see that x € BN V, hence x € B, so B is
closed in U.

2.5. Definition. If X and Y are topological spaces, a mapping f: X — Y is
called proclusive (or a proclusion) if X =Y and a set U is open in Y whenever
£f-1U is open in X.

The name proclusion is justified by compariny; with an inclusion X — Y; in the
latter case, the topology of Y determines that of X, and in the former the topology of
X determines that of Y.

When { is proclusive, Y is equivalent to the decomposition space of X by the
family of inverse images of points of Y. Also, if a space X is decomposed into a
family Y of disjoint closed sets, the topology of the decomposition space Y is de-
fined so that the natural mapping X — Y is continuous and proclusive.

It is well known that if f: X — Y is continuous, X and Y are Hausdorff spaces,
X is compact, and fX = Y, then f is proclusive. ‘

2.6.. If f: X —» Y is proclusive, X € CG and Y is a Hausdovff space, then
Y € CG.

Suppose B C Y meets each compact sét of Y in a closed set. Let C be a com-
pact set in'X. Then fC is compact, hence B N fC is closed, so f~1(B N fC) is
" closed, and therefore f-1(B.N fC) N C is closed. Since this last set coincides with
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£-'B N C, it follows that £-!B meets each compact set of X in a closed set. Be-
cause X € CG, this means that £-1B is closed. Since f is proclusive, B must be
closed in Y. This shows that Y € CG.

The preceding results show that CG is large in the sense that it contains many
spaces. By definition, it contains all continuous maps between any two of its spaces.
The following proposition sometimes facilitates the recognition of the continuity of a
function.

2.7. If X € CG, Y is a Hausdovff space, and a function f: X — Y is conlinuous
on each compact subset of X, then { is continuous.

To prove this, let A be closed in Y, and let C be compact in X. Since Y isa
Hausdorff space and f I C is continuous, fC is compact, hence closed in Y. This
implies that A N {C is closed, hence also

gjc)ytaantc) = ¢ ta)ync.

Because X € CG, it follows that £-! A is closed in X, and this shows that f is con-
tinuous.

3. THE RETRACTION FUNCTOR

3.1. Definition. If X is a Hausdorff space, the associated compactly genevrated
space k(X) is the set X with the topology defined as follows: a closed set of k(X) is
a set that meets each compact set of X in a closed set. If f: X — Y is a mapping of
Hausdorff spaces, k(f) denotes the same function k(X) — k(Y).

3.2. THEOREM.
(i) The identity function k(X) — X'is continuous.
(ii) k(X) is a Hausdorff space.
(iii) k(X) and X have the same compact sets.
(iv) k(X) is compactly generated.
(v) If X € CG, then k(X) = X.
(vi) If f: X = Y is continuous on compact sets, then k(f) is continuous.

(vii) The identity mapping k(X) — X induces isomorphisms of homotopy groups
and singular homology and cohomology groups.

The theorem can be paraphrased by saying that k is a retraction of the category
H of Hausdorff spaces into CG. It is an adjoint of the inclusion of CG in H.

Proof. If A is closed in X, and C is compact in X, then C is closed in X,
hence also A N C. This means that A is also closed in k(X), and this proves (i).
Since X is a Hausdorff space, (i) implies (ii). If a set A is compact in k(X), then
(i) implies that A is compact in X. Suppose now that C is compact in X, and C'
denotes the set C with its relative topology from k(X). By (i), the identity map
C' — C is continuous; we must prove the continuity of its inverse. Let B denote a
closed set of C'. By definition, B meets every compact set of X in a closed set;
therefore BN C =B is closed in C. Thus C — C' is continuous; this shows that C'
is compact, and (iii) is proved. If a set A meets each compact set of k(X) in a
closed set, then, by (iii), it meets each compact set of X in a compact (hence, closed)
set; therefore A is closed in k(X), and (iv) is proved. (v) follows directly from (iv).
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To prove (vi), it suffices by 2.7 to prove that k(f) is continuous on each compact set
of k(X). Let C' be compact in k(X); by (iii), the same set with its topology in X
(call it C) is compact and the identity map C' — C is a homeomorphism. Since

f| C is continuous, fC is compact, and by (iii), so is the same set fC' with its topol-
ogy in k(Y). Thus the function k(f) | C': C' — fC' factors into the composition of

f | C and two identity maps: C' — C — fC — fC'. Hence k(f) | C' is continuous, and
(vi) is proved. By (vi), the maps of closed cells into X coincide with those into
k(X); this implies (vii), because the groups in question are derived from such map-
pings. In particular, X and k(X) have the same singular complex.

4. PRODUCT SPACES

Our second criterion for a convenient category of spaces is that it be closed
under standard operations—a construction applied to one or more spaces in the cate-
gory should give a space in the category. The category CG is nearly ideal in this
respect: in case a construction applied to spaces in CG gives a Hausdorff space
outside CG, we need only combine the construction with the retraction functor k to
obtain again a space in CG.

Consider the operation of forming the cartesian product X X_. Y of two spaces;
we find that CG is not closed under this operation. An example of this is due to
Dowker [3], who constructed CW-complexes X and Y such that the complex X XY
does not have the weak topology, and hence (as was shown by Spanier [12, 2.6]) can-
not be compactly generated.

4.1. Definition. If X and Y are in CG, their product X XY (in CG) is
k(X X. Y), where X. denotes the product with the usual cartesian topology.

4.2. THEOREM. The product defined in 4.1 satisfies the axioms for a product
in the category CG,

Proof. Since by 3.2 the identity function X X Y — X X, Y is continuous, and
since the projections X X. Y into X and Y are continuous, their compositions pro-
jecting X XY into X and Y are continuous and, hence, belong to CG. Let W € CG,
and let f and g be maps W —X and W — Y in CG. As usual, f and g are the
components of a unique mapping (f, g): W — X X. Y. Applying k and using the facts
k(W) =W and k(X X_.Y)=X XY, we obtain a unique mapping k(f, g): W - X XY
which, when composed with the projections, gives f and g.

The above proof can be omitted by appealing to the general proposition that any
adjoint functor {such as k) must preserve products.

It follows from 4.2 that the product X X Y in CG satisfies the usual commutative
and associative laws. We can extend the construction to products having any number
of factors, by applying k to the usual product.

Having modified the concept of product space, we should note what effect this has
on other concepts that are based on products such as topological group G
(G X G — @G), transformation group G of X (G X X — X), and homotopy (I X X — X).
If we restrict ourselves to G and X in CG, any multiplications G X G — G or ac-
tions G X_ X — X that are continuous in the old sense remain continuous when we
apply k. Thus the effect of the new definition is to allow an increase in the number
of groups and actions. The following theorem asserts that in many cases there is no
change; in particular, the concept of homotopy is unaltered.
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4.3, THEOREM. If X is locally compact and Y € CG, then X X. Y is in CG;
that is X XY = X % Y.

Proof. Let A be a subset of X X, Y that meets each compact set in a closed set,
and let (xq, yp) be a point of its complement. By local compactness, xg has a
neighborhood whose closure .N is compact. Since N X_ yq is compact, A N (N X_ yg)
must be closed. It follows that xg has a smaller neighborhood U such that U X, y,
does not meet A. Let B denote the projection in Y of A N (U X, Y). K C is a com-
pact set in Y, then A N (U X, C) is compact, and therefore B N C is closed. Since
Y € CG, B must be closed in Y. Since yg is not in B, it follows that U X, (Y - B)
is a neighborhood of (x,, y,) not meeting A. This proves that A is closed; hence
X Xc Y is in CG.

In the category of compact spaces, it is well known that a product of decomposi-
tion spaces has the topology of the decomposition space of the product. It is not dif-
ficult to find counterexamples involving noncompact spaces. However, the following
theorem asserts that each such uses either spaces not in CG or the wrong product.

4.4, THEOREM. If f: X - X' and g: Y — Y' are proclusive as mappings in CG
(see 2.5), then £ X g: X XY — X'X Y' is also proclusive in CG.

Proof. Since f X g factors into the composition (f X 1)(1 X g), and since a com-
position of proclusions is a proclusion, it suffices to prove the special case where
Y =Y' and g is the identity. Suppose then that A € X' XY and that (fx 1)-1A is
closedin X X Y. Let C be a compact set in X' XY, and let D and E denote its
projections in X' and Y, respectively. Then D X E is compact. If we can show that
A N (D X E) is closed, it will follow that A N C is closed, and since X'X Y is in
CG, this will show that A is closed, and the proposition will be proved. Since
Ex1)-1(DxE)=f"!DXE is closed in X X Y, it follows that (f x1)"1(A N (D x E))
is closed in £-1D X E. Substituting X, X', Y for f-1D, D, E, respectively, we have
reduced the proof to the case where X' and Y are compact. Then, by 4.3,
X'XY=X"'X.,Y and XXY=XX.Y.

Suppose then that W € X'x Y, (X 1)"1W is open in X X Y, and (x(, yo) € W.
Choose x € X so that fxy = x(. Since (xg, yo) is in the open set (fx 1)-1W and Y
is compact, there exists a neighborhood V of yy such that x5 X V_lies in
(fx1)-1W. Let U denote the set of those x € X such that (fx) X V ¢ W. To see
that U is openin X, let x; € U. We can cover x; X V by products of open sets con-
tained in (f X 1)-1W, and we can select a finite subcovering; then the intersection of
the X-factors of these products is a neighborhood N of x; such that N X V ljes in
(f x 1)-1W. Therefore U is open. By its definition, U = f-1fU; hence fU is open in
X', because f is proclusive. Since (xb, yo) is in fU X V, and since fU X V is open
and contained in W, it follows that W is open.

4,5. LEMMA. If X and Y ave Hausdovff spaces, then the two topologies
(kX) X (KY) and k(X X. Y) on the product space coincide.

Proof. Since the identity maps kX — X and kY — Y are continuous, so also is
the identity map g: (kX) X (kY) — X X, Y; hence each compact set of (kX) X. (KY) is
compact in X X_ Y. Let A be a compact set of X X, Y. Since its projections B and
C in X and Y, respectively, are compact, they are also compact in kX and kY, re-
spectively. Therefore B X. C is a compact set of (kX) X (kY); hence g | B X. C is
bicontinuous. Since A C B X, C, it follows that A is compact in (kX) X, (kKY). Be-
cause (kX) X, (kY) and X X, Y have the same compact sets, it follows from Defini-
tion 3.1 of k that their associated topologies in CG coincide.

4.6, Definition. If X is a subset of a space Y € CG, it may happen that X with
its usual relative topology X, is not in CG (see Example 2.3); in any case, we



A CONVENIENT CATEGORY OF TOPOLOGICAL SPACES 139

define the subspace X of Y to be the set X with the topology k(X,). A mapping
f: X - Y in CG is called énclusive (or an inclusion) if f is a homeomorphism of X
with the subspace fX of Y.

This concept of an inclusion f: X — Y has the following property, which charac-
terizes inclusions in a category of sets: if g: Z — Y is a map in CG such that
gZ C fX, then g factors into the composition fg', where g': Z — X is in CG (that is,
g'=f-1g is continuous). In analogy with 4.4, we have the following result (the proof
is routine, and we omit it).

4.7. THEOREM. If f: X —» X' and g: Y — Y' are inclusive in CG, then
IXg: XXY—->X'XY' is also inclusive in CG.

5. FUNCTION SPACES

Most of the results of this section are contained in essence in the paper of R.
Brown [2]. Since his formulations do not accord with our viewpoint, we review the
material in detail.

For Hausdorff spaces X, Y, let C(X, Y) denote the space of continuous mappings
X — Y with the compact-open topology. We recall the definition: if A is a compact
set of X and U is an open set of Y, let W(A, U) denote the set of f € C(X, Y) such
that fA C U; then the family of W(A, U) for all such pairs (A, U) forms a subbasis
for the open sets of C(X, Y). Although X and Y are in CG, it may happen that
C(X, Y) is not in CG; for example, take X to be two points; then C(X, Y) =Y X_ Y,
and Dowker’s example shows that this need not be in CG. So again we must apply
the retraction k.

5.1. Definition. For Hausdorff spaces X, Y, define Y% = kC(X, Y).

5.2. LEMMA. The evaluation mapping e: C(X, Y) X. X — Y, defined by
e(f, x) = fx, is continuous on compact sets (see [2, Lemma 1.3]). If X and Y are in
CG, then e is continuous as a mapping YXxX > Y.

Proof. Since any compact set of the product is contained in the product of its
projections, it suffices to show that e is continuous on any set of the form F X A,
where F is compact in C(X, Y), and A is compact in X. Let (fg, x¢) € F X A, and
let U be an open set of Y containing fpxg. Since f( is continuous, there exists a
neighborhood N of x( in A whose closure satisfies f oN C U. Therefore
(W(N, U) N F) X N is open in F X A, it contains (fo, X¢), and it is mapped by e into
U. This shows that e is contmuous on compact sets.

By 3.2vi, if we apply k to e: C(X, Y) X X — Y, we obtain a continuous mapping.
When X € CG, the left side gives, by 4.5,

K(C(X, Y) X, X) = kC(X, Y) xkX = Y¥ X X;

and when Y € CG, the right side becomes kY =Y. This proves the lemma.

5.3. LEMMA. If X is in CG, and Y is a Hausdorff space, then C(X, KY) and
C(X, Y) are equal as sets, and tlze two topologies have the same compact sets,
hence kC(X, kY) = kC(X, Y) as spaces in CG (see [2, Proposition 3.4]).

Proof. K f: X — KY is continuous, so is its composition with kY — Y, and
therefore f € C(X, Y). Conversely, if f: X — Y is continuous, then kf: kX — kY is
continuous from X to kY. Thus C(X, kY) and C(X, Y) coincide as sets of functions.
Since kY — Y is continuous, it follows that the identity map C(X, kY) — C(X, Y) is
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continuous. This implies that each compact set in C(X, kY) is also compact in
C(X, Y).

Now let F C C(X, Y) be a compact set in its relative topology in C(X, Y). Let
F' denote the same set with its relative topology in C(X, kY). We wish to prove that
F' is compact. It suffices to show that each open set W of C(X, kKY) meets F' in an
open set of F, because this implies that the inverse correspondence F — F' is con-
tinuous, whence F is compact. It obviously suffices to prove this when W is a sub-
basic open set W(C, U), where C is compact in X, and U is open in kY. Suppose
then that £y € W(C, U) N F. Since F X C is compact, and since by 5.2, the evalua-
tion mapping e: F X C — Y is continuous, it follows from 3.2vi that it is also con-
tinuous as a mapping F X C — kY. Hence e-! U is an open set of F X C. Since C is
compact and £ X C C e-1 U, there exists an open set V of F containing f( such that
VX C C e-! U. It follows tha,t fgeVcC W(C, U). Hence W(C, U) N F is open in F.
This shows that F' is compact, and it completes the proof that the two topologies
have the same compact sets. It follows now from Definition 3.1 of k that their asso-
ciated topologies in CG are equal.

5.4, THEOREM. If X, Y,and Z ave in CG, then
(Yx2Z)X = Y¥xZX (see[2, Proposition 3.6]).

Proof. The correspondence associates with f: X — Y X Z the pair (pf, qf), where
p and q are the projections of Y X Z into Y and Z, respectively. Clearly, the con-
tinuity of f implies that of pf and qf. Conversely, if pf and qf are continuous, it
follows that f: X — Y X, Z is continuous; then, by 3.2, kf ={ is continuous from
kX =X to k(Y X. Z) =Y X Z. Thus the correspondence is one-to-one.

We prove first the equality of the CO-topologies:
(5.5) C(X, Y X, Z) = C(X, Y) X, C(X, Z).

Consider first a subbasic open set on the right, of the form W(C, U) X, W(D, V),
where C, D are compact in X, and U, V are open in Y, Z, respectively. This cor-
responds exactly to the open set W(C, U Xc Z) N W(D, Y X. V) on the right. Con-
versely, a subbasic open set on the left of the form W(C, U X V) corresponds ex-
actly to the open set W(C, U) Xc W(C, V) on the right. In the case of a general sub-
basic open set W(C, S) on the left, we choose a point £ € W(C, S), and proceed as
follows. Since f(C is compact and is contained in the openset SCY ><c Z, there
are compact subsets C; of C and open sets Ui X V; of YXc Z (i=1, r) such

that €=U, €y, and £oC; CU; X Vy € S for =1, =+, r. Then
T

i=1

Since each W(C;, U; X V;) is open in the topology on the right of 5.5, so also is their
intersection. Hence W(C, S) is open in the topology on the right. This proves 5.5.

We now apply k to both sides of 5.5. By 5.3, the left side gives
kC(X, Y X, Z) = kC(X, k(Y X Z)) = (Y x 2)%,

and the right side, by 4.5, becomes
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k(C(X, Y) X, C(X, Z)) = kC(X, Y) X kC(X, Z) = Y*x 2%,

This completes the proof.
. YX _ oY

5.6. THEOREM. If X, Y, and Z ave in CG, then Z° < = (2¥)*.

Proof. We shall prove first the natural equivalence
(5.7) p: C(Y X X,Z) = C(X, C(Y, Z)) (see [2, Theorem 1.6]).
Corresponding to an f € C(Y X X, Z), define uf: X — C(Y, Z) by ((uf)x)y = £(y, x).
To see that for each x, (uf)x is continuous from Y to Z, suppose it carries yg into
the open set U of Z. Then £(yg, x) € U, and the continuity of f gives an open set V

of Y containing yg such that f(V X x) C U; therefore (uf)x maps V into U. We must
now prove

(5.8) if f e C(Y XX, Z), then pf: X — C(Y, Z) is continuous.
Let W(B, U) be a subbasic open set of C(Y, Z), and suppose that (uf)xg € W(B, U).

Then (B X x5) C U. Since U is open and B is compact, there is a neighborhood N
of x( such that {(B X N) C U. This implies (uf)N C W(B, U), and it proves 5.8.

To prove the continuity of p, we start with the continuity of the evaluation map-
ping rearranged as

e YXXXC(YXX, 2) = Z (seeb.2).
If we apply 5.8 with X replaced by X X C(Y X X, Z), we find that
pe: X X C(Y X X, Z) — C(Y, Z)

is continuous. Apply 5.8 again, with X replaced by C(Y X X, Z), Y by X, and Z by
C(Y, Z); then

p(pe): C(Y XX, Z) — C(X, C(Y, Z))

is continuous. It is readily verified that p(re) coincides with p of 5.7.

To show that ¢ has a continuous inverse, let
e: XX C(X, C(Y, Z)) — C(Y, Z), e YXC(Y,Z) - Z
be evaluation mappings. By 5.2, the composition
e'(lXe) YXXXCEX, C(Y, 2)) — Z

is continuous. Applying 5.8, with X replaced by C(X, C(Y, Z)), Y by Y XX, and Z
by Z, we see that

ple'(l X e)): C(X, C(Y, Z)) - C(Y XX, Z)

is defined and continuous. It is readily verified that p(e'(l X e)) is the inverse of L
in 5.7.

We now apply the functor k to both sides of 5.7. On the right side we use 5.3 to
obtain
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kC(X, C(Y, 7)) = kC(X, kC(Y, 7)) = (zY)X.

On the left side we obtain kC(Y X X, Z) = zY*X | This completes the proof of 5.6.

5.9. THEOREM. For X, Y, and Z in CG, the composition of mappings
X — Y — Z is a continuous function Z¥ x YX — ZX,

Proof. By 5.2, the mappings

]
zYxyXxx e g¥yy & g

are continuous, hence e'(l X e) is also continuous. Applying 5.8 with X replaced by
ZYXYX, Y by X, Z by Z, and f by e'(1 X e), we see that

ple'(l xe)): 2¥ xY¥ — C(X, Z)

is continuous. Then ku(e'(l X €)): ZY x YX — ZX is also continuous.

5.10. Definition. We denote by C((X, A), (Y, B)) the space of continuous map-
pings of pairs (X, A) — (Y, B). It is the subspace of C(X, Y) of maps f such that
fA C B. We abbreviate kC((X, A), (Y, B)) by (Y, B)YX:A) A pointed space is a pair
(X, xq), where x( is a point of X called the base point. We abbreviate (X, x;) by
Xog. A mapping f: Xg — Y in the category of pointed spaces is a mapping of pairs
f: (X, xg) — (Y, yo). The smash product X A\ Y, is obtained from X X Y by col-
lapsing the wedge (X X yg) U (xg X Y) to a point that is the base point of Xg N\ Yg.
Define the function space of mappings of pointed spaces by

X0
Yo = kC((X, Xo), (Y, Yo)),

where its base point is the constant map ;X =y,.

Our objective is to prove the analog of the exponential rule 5.6 in the category of
pointed spaces; but we need a preliminary result. Let X € CG, and let A be a closed
subspace of X such that the space X/A obtained by collapsing A to a point ag (the
base point) is a Hausdorff space. Let h: (X, A) — (X/A), denote the collapsing map.
Let Yy be a pointed space in CG. By composing a map f: (X/A)y — Yo with h, we
obtain fh € C((X, A), (Y, yg)), and this defines a mapping of function spaces

h*: C((X/A)o, Yo) — C((X, A), (Y, yo)).

5.11. LEMMA. The above mapping h* is continuous and one-to-one (bijective),
and it sets up a one-to-one corvespondence between compact subsets. Hence, apply-
ing the functor k, we obtain an induced natural equivalence

YE)X/A)O = (Y, y){X-A),

Proof. The continuity and bijective properties are readily proved. The crucial
point is to show that if F is a compact subset of C((X, A), (Y, yo)), then h*~I(F) is
compact. It suffices to show that h*-! is continuous on F. Suppose go € F and
W(C, U) is a subbasic open set of C((X/A)qy, Yg) containing h*-lg,. This means
that goh maps C into U. In case C does not contain the base point ag, then h-lc
is compact in X, and W(h-1 C, U) is an open set that contains g, and is mapped into
W(C, U) by h*-1,
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Suppose therefore that C contains ay. Since F is compact, the evaluation map-
ping e: FX X — Y is continuous, by 5.2. Since e(FX A) =ypo and F X (X/A) is the
decomposition space of F X X obtained by collapsing F X A to F X a (see 4.4), it
follows that e induces a continuous mapping e': F X (X/A) — Y. Since
e'(gg, ao) € U, there emst a nelghborhood V of g, in F and a neighborhood N of
ag in X/A such that e' maps V X N into U. Set C' C - CN N; then C' is com-
pact and does not contain aj. It follows that VN W(h-1C', U) is a neighborhood of
go in F, and any g in this neighborhood will map h-1N into U because g € V, and
it will map h-!C' into U because g € W(h~1C', U). Since C c C' U N, it follows
that h*-1g € W(C, U). This completes the proof of the lemma.

5.12. THEOREM. If Xg, Yo, Zg are pointed spaces in CG (see 5.10), then
Yo/ \X Yo X
DProof. Abbreviate the wedge (Y X xg) U (yg X X) by W. If in 5.11 we replace Y
by Z and (X, A) by (Y X X, W), we obtain the natural equivalence

(5.13) 2 0"K0 = (7 5 ) (VXX W),

The space on the right of 5.13 is a subspace of 7 YXX which, by 5.6, is equivalent to
(zY)X. It is readily verified that, under the latter equivalence, (Z, zy){Y*¥:W) cor-

responds exactly to (Z 0) 0. This completes the proof.
Remark. In the work of Fuks [5], [6] on duality in homotopy theory, the natural

X
equivalence of 5.12 plays a central role: the functors Y, © and Yy AN X for a fixed
Xp and variable Yy are adjoint.

6. NEIGHBORHOOD DEFORMATION RETRACTS AND THEIR PRODUCTS

Our objective is to define a category of pairs (X, A) (where X is in CG and A
is closed in X) having certain useful properties. Most important is that each (X, A)
should have the homotopy extension property; this restricts severely the possible
subsets A of X one may take. Also, we require that the category be closed under
the operations of forming products and adjunction spaces.

It is not enough to require that A be a neighborhood retract in X, because neigh-
borhood retracts do not behave well under products, as we now show,

6.1. Example. Let X bé the unit interval [0, 1] and A the point 1. Let Y be
the transfinite line [0, 2], where Q is the first uncountable ordinal, and let B = Q.
It is clear that A is a retract of X, and B of Y. We claim that in X X Y the subset
(X X B) U (A XY) is not even a neighborhood retract. For suppose
f: U—-XXBUAXY were a neighborhood retraction. Let

V=f(X-A)XxB) and W=f1AXx(Y-B)).

Then, in the space X X Y with the point A X B deleted, the sets V and W are dis-
joint open sets separating the closed subsets (X - A) X B and A X (Y - B). But this
is one of the standard examples of a nonnormal space and two closed subsets that
cannot be separated (see for example the book of D. W. Hall and G. L. Spencer,
Elementary Topology, p. 291, Ex. 3.5).

6.2. Definition. A closed subspace A of a space X in CG is called a neighbor-
hood deformation vetract in X (briefly, an NDR in X) if there exist a mapping
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u: X — I (I=[0, 1]) and a homotopy h: I X X — X such that A = u-1(0), and

h(0, x) = x for all x € X, h(t, x) =x for (t, x) € IXA, and h(l, x) € A for all x
such that ux < 1. The pair (X, A) is called an NDR pair. If, in addition, h may be
chosen so that h(1 X X) C A, we say that A is a deformation vetract (DR) of X and
(X, A) is a DR pair.

The existence of u such that A = u'l(O) implies that A is a closed Gg-set in X;
thus, in Example 6.1, (Y, B) is not an NDR. If U is the open set where ux < 1, then
the mapping g: U — A defined by gx = h(1, x) retracts U into A, and hence A is an
NR in X,

K @ denotes the empty set, the pair (X, ) is an NDR for any X, because we
may set ux =1 and h(t, x) =x for all x € X, t € I. Also, (X, X) is a DR, hence an
NDR, for any X, because we may set ux = 0 and h(t, x) = x for all x and t.

6.3. THEOREM. If (X, A) and (Y, B) are NDR pairs, then so is theiv product
(X, A)x(Y,B) = (XXY,XXBUAXY).

If one is a DR and the othey an NDR, then their product is a DR.

Proof. Let u: X — I and h: IXX — X represent A as an NDR in X, and let
viY—Iand j:IXY —Y represent B as an NDR in Y. Define w: X XY —1I by
w(x, y) = (ux)(vy). Clearly, w™1(0) is X x B U A X Y. Define the homotopy
Qg IXXXY—-XXY by

x, y) if xe A and y € B,
[ ux )
alt, x, y) = (h(t, x), 3(-;3; t, y)) if vy > ux and vy > 0,

(h({—i t, x), it, y)) if ux > vy and ux > 0.

The domains of definition of the last two lines intersect in the relatively closed set
where vy = ux > 0, and both definitions reduce to (h(t, x), j(t, y)); thus they define a
continuous function on IX (X XY - A X B). Hence the proof of continuity of q re-
duces to proving continuity at a point (t, x, y) in IX A X B. Let U, V be open sets
containing x, y in X, Y, respectively. Since x € A, we have the inclusion relation
Ix {x} ch-!U. Since I is compact and h-! U is open, there is an open set S of X
containing x such that IX S C h-1U. Similarly, there is an open set T of Y con-
taining y such that IX T C j-1V. It follows that q maps IX S X T into U X V. This
shows that q is continuous with respect to the standard topology of the products. By
3.2 vi, q remains continuous after the functor k is applied.

When t = 0, all three lines defining q reduce to (%, y). When x € A, we have
ux = 0, so that q(t, x, y) is given by line 1 or 2, and line 2 reduces to
(h(t, %), j(0, y)) = (x, y). Hence q(t, x, y) = (x, y) whenever x € A, Similarly,
a(t, %, y) = (%, y) whenever y € B.

Now let t = 1, and suppose (X%, y) is such that 0 < w(x, y) < 1. There are two
similar cases, according as 0 <ux <1 or 0 <vy < 1. Consider the first. In the
subcase ux < vy, q(1, x, y) is given by line 2, and since h(1, x) € A, q(1, x, y) is in
A X Y. In the subcase vy < ux, we must use line 3, and since j(1, y) € B, it follows
that q(1, x, y) € X X B. This shows that w and q represent the product pair as an
NDR.
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Suppose now that u, h represent (X, A) as a DR. Replace u by u'= —zl-u; then

u', h also represent (X, A) as a DR. Make the above constructions with u' in place
of u. It follows that w(x, y) < 1 for all (x, y), hence q(1, x, y) € XXBUAXY,
Thus the product pair is a DR, and the theorem is proved.

7. THE HOMOTOPY EXTENSION PROPERTY

The following is a modification of a theorem of Dowker [4]; his assumption that
X is normal is replaced by our conditions on u: X — I (see also Young [15] and
Puppe [10]).

7.1. THEOREM. If X € CG and A is closed in X, then the following properties
are equivalent: “

(i) (X, A) is an NDR,
(ii) OXXUIXA isa DR of IXX,
(iii) 0 X X UIX A is a retract of I1X X,

(iv) (X, A) has the homotopy extension property (in other words, A — X is a
cofibration).

Proof. If we assume (i) and note that (I, 0) is a DR, then 6.3 asserts that
(I, 0) X (X, A) is a DR; therefore (i) implies (ii). It is trivial that (ii) implies (iii).
The equivalence of (iii) and (iv) is well known. Therefore it remains to prove that
(iii) implies (i). ,

Let r be a retraction of IX X into 0 X X U I X A, and let p: IX X — X be the

projection into the second coordinate. Let h: I X X — X be the composition
h(t, x) = pr(t, x). Then '

h(0, x) = pr(0,:x) = p(0, x) = x for all x.
If x € A, then h(t, x) = pr(t, x) = p(t, X) = x. Thus it remains to construct u: X — I

and to verify the last condition on h, Let w: I X X — I denote projection into the
first factor. For each x € X and for m =0, 1, 2, *--, set

v.,X = Min(1/2™, wr(1/2™, x)),

so that v_, is a mapping X — [0, 1/2™], Define u by

(>}

ux = 1 - 27 (vox)(vmx) = 2 (—l- - (vox)(vmx)) for all x € X,
m=1 m=1 2m

Since the product function vyv,, also maps X into [0, 1/2m ], the series converges,
and u is a mapping X — I. For an x € A, we have

wr(l/2™, x) = w(1/2™, x) = 1/2™,

hence v, x =1/2™ so that ux = 0. If x is not in A, there is a neighborhood V of
(0, x} in I XX such that rV € 0 X (X - A), and there is an m such that (1/2™, x) is
in V, whence v,,x = 0. By the second formula for ux above, this implies ux > 0.
Thus u-1(0) = A. If x is such that ux < 1, there is some m > 1 such that
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(vox)(v, x) > 0, hence vgx > 0; this means wr(1, x) > 0, implying r(1, x) € I XA,
and finally h(1, x) € A. This completes the proof.

7.2. LEMMA. If Ac BCX, and (B, A) and (X, B) are NDR’s, then (X, A) is
an NDR,

Proof. By 1.1, we have retractions
BIXX - 0XXUIXB and g:IXB —- 0XBUIXA,

Extend g to g2 O0XXUIXB —» 0XX UIXA by setting g*(0, x) = (0, x) for
x € X - B. Then g' is a retraction, and also g'f: IXX — 0 X X U I X A; hence, by
7.1, (X, A) is an NDR,

7.3. LEMMA. If (X, A) and (Y, B) arve NDR pairs, then so also are the nine
nontrivial paivs formed from the five spaces

XXY, XXBUAXY, X X B, AXY, A XB.
Proof., Theorem 6.3 applies directly to the five pairs
(X, A)x (Y, B), (X,@)x(Y,B), X, A)x(Y, ), X, A)x(B,d), (A, p)x(Y, B).

The preceding lemma applies now to X XY D XX B D A X B, and it shows that

(X XY, AXB) is an NDR. Choose a representation u, h of (XX B, A X B) as an
NDR. Extend the representation over A X (Y - B) by letting u be zero and h con-
stant, there. These extensions represent (XX BU A X Y, AXY) as an NDR. Sym-
metrically, (XX BU A XY, XX B) is an NDR. Finally apply the preceding lemma to

XXBUAXY D AXYD AXB

to conclude that (XX BU A X Y, A X B) is an NDR.

8. FURTHER PROPERTIES OF NDR’s

A space in CG need not be normal; the space in the Example 6.1 is nonnormal
and locally compact, hence 'belongs to CG. We observe now that this deficiency is
not important if we confine ourselves to subsets that are NDR’s.

8.1. LEMMA. Let A, B be closed disjoint subsets of X that are NDR’s in X
then A, B form a novmal paiv of sets in X; that is, theve exist open sets U, V in X
such that AC U, BCV,and UNV =¢,

Proof. The NDR-hypothesis gives us functions u, v: X — I such that u-1(0) = A
and v-1(0) = B. Let U (V) denote the set of x € X such that ux < vx (vx <ux). It
is readily verified that these are the required open sets.

8.2. LEMMA. Let Y be the decomposition space of a space X in CG by an
upper-semicontinuous collection of closed disjoint sets. If the sels of the collection
other than points ave NDR’s in X, then Y is a Hausdovff space.

Proof. Let f: X — Y be the natural map, let a, b be distinct points of Y, and let
A=1f-la B=f"lpb. If A, B are points, we use the Hausdorff property of X to ob-
tain open sets UD A and VD B such that UN V =@, Let U' (V') denote the union
of all elements of the collection contained in U (V). By upper-semicontinuity, U'
and V' are open sets. Since f-1fU' = U' and Y has the decomposition topology, fU'
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is open in Y. Similarly fV' is open in Y. These are the required open sets separat-
ing a and b.

Suppose now that A is a point and B is not, so that B is an NDR in X. Let
v: X — I bé such that v-1(0) = B. Then v(A)> 0. Let

U= {x|vg > (vA)/2} and V = {x]|vx < (vA)/2}.

Construct U', V' as in the preceding paragraph; then fU', fV' are the required open
sets.

If neither A nor B is a point, then by 8.1 we have open sets UD A and VDO B
such that U NV = @. Construct U', V' as above; then fU', fV' are the required
open sets.

8.3. Definition. A mapping of pairs f: (X, A) — (Y, B) is called a relative ho-
meomovrphism if, as 2 map X — Y, f is proclusive (see 2.5), and | (X - A) is a
homeomorphism with Y - B.

8.4. LEMMA. If f: (X, A) — (Y, B) is a relative homeomovphism, and (X, A) is
an NDR pair, then (Y, B) is an NDR pair, and every representation u, h of (X, A)
as an NDR induces a vepresentation v, j of (Y, B) as an NDR so that the diagrams

IxX 2 x

fl I ]1><f 11‘
IXY - v

are commultative,

Proof. As required by commutativity, we define vy = u(f-ly) and
jt, y) = fh(t, -ly). When y € Y - B, then f-ly is single-valued, hence vy and
j(t, y) are also single-valued. When y € B, choose an x € f-1y C A; then
vy =ux =0 and j(t, y) = fh(t, X) = fx =y. Thus v and j are uniquely defined,
v-1(0) = B, and j leaves fixed the points of B. If y is such that vy <1, and fx =y,
then ux < 1, hence j(1, y) = fh(1, x) € fA = B. It remains to verify continuity. Sup-
pose V is open in Y. Since 1 X f is proclusive (see 4.4), j-1 V will be open if
(1 x£)-1j-1V is open. But this set coincides with f-! h-! V, which is open because
f and h are continuous. Similarly, since f and u are continuous, u = fv, and f is
proclusive, it follows that v is continuous.

8.5. LEMMA. Le! (X, A) be an NDR pair, and h: A — Y a mapping in CG; then
the space obtained by adjoining X to Y by the mapping h gives an NDR pair
(Y Up X, Y).

Proof. Form the disjoint union of X and Y, obtaining the pair (Y UX, Y U A).
Let u, h represent (X, A) as an NDR pair. Extend u over Y by setting u(Y) =0,
and extend h over I X Y by setting h(t, y) =y for all (t, y). It is trivial to verify
that (Y U X, Y U A) is an NDR pair. We obtain the adjunction space from Y U X by
collapsing to a point each set consistingof a y € Y and h-ly C A, and by giving
Y Uy X the decomposition space topology. Therefore the natural map
f: (YUX, YUA)—-(Y Uy X, Y) is a relative homeomorphism. It is readily seen
that Y Uy X is a Hausdorff space. The conclusion follows now from 8.4.
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9. UNIONS OF EXPANDING SEQUENCES OF SPACES

9.1. Definition. An expanding sequence of spaces {X,} consists of the indicated
sequence of spaces for n=0, 1, 2, -+, together with an inclusion map (or imbedding)

[>e]
for each n of X, in X, ;; as a closed subspace. The union X = U n=0 Xp is the in-
dicated set with the topology (called the fopology of the union or weak topology) de-
fined as follows: a subset A of X is closed if AN X  is closed in X, for every n.

It is readily verified that each X, is closed in X, hence also each closed subset
of X, ; thus X, is imbedded in X as a subspace with the relative topology.

9.2, LEMMA. Ifeach X, isin CG, and X is a Hausdovff space, then X is in
CG.

Proof. Suppose A C X meets each compact subset of X in a closed set. For any
n, let C be a compact set in X,,. Since X, is imbedded in X, C is also compact in
X. Therefore A N C = (AN X,) NC is closed in X, hence in X,. Since X, is in
CG, it follows that A N X, is closed in X,. Since this holds for each n, A is closed
in X. This proves that X is in CG.

9.3. LEMMA. If C is a compact subset of X, then theve is an integer n such
that C C X,.

Proof. Let A be a subset of X that is not contained in any X, . It suffices to
prove that A is not compact. By assumption, we may choose a definite point
X, € AN (X -X,). Let T, = {xn] n>m}. Then Ty, D Tyt for each m, and

m Tm = @. Now T,, meets every X, in a finite set, and this is closed because

Xn is a Hausdorff space (the Tj-axiom is enough). Since X has the topology of the
union, T, is closed in X; hence X - T, is open. Thus the {X-7T } form an ex-
panding sequence of open sets whose uhion is X. They cover A, but no finite number
of them can cover A, because any finite collection is contained in the largest, and no
single X - T,,, covers A. Hence A is not compact, and the lemma is proved.

9.4, THEOREM. Ifeach (X,+1, X,) is an NDR pair, then X is a Hausdovff
space, and each (X, X,)) is an NDR pair.

Proof, Given two distinct points x, y of X, we choose first an integer m such
that x, y € X, for n > m. Next we shall construct a sequence {U,, V,} of sets for
n > m such that Un, Vh areopen in X,, x€ U,, y€ Vo, U, NV, =@, and

Unt1 N Xy = Up, Va1 N Xy = V.

Using the Hausdorff property of X,,,, we select U,,, V,, as required. Suppose the

sequence has been constructed for m < n < p. Since (Xp+l , X ) is an NDR, there is
a retractmn g of a neighborhood W of X, in X, into X, Set Upr1 =8~ 1U and
Vor1 =8~ V Since W is open in X, these sets are open and separate x and v,

as required. Now let U = Un mUp and V = lJn m Vn. These sets are open, be-
cause they meet each X in open sets of X, . It is clear that they separate x and y
as required, hence X is a Hausdorff space, and, by 9.2, X is in CG.

By 7.1, the NDR hypothesis provides a retraction
rIXX .~ (0XX_ . )U(IxX,) for each m>0.

Extend r,, to a retraction



A CONVENIENT CATEGORY OF TOPOLOGICAL SPACES 149
S, (OxX)U (IxX_.;) = (0xX)U(IXX )
by setting s, (0, x) = (0, x) for x € X. Define
s: IXX - (0XxX)U (IXX,)

to be the composition s, Sn+i ***Sm-2Sm-1 when restricted to (0 X X) U (I X Xmm)

(m > n). It is trivial to verify that, as a function, s is a retraction. To prove that s
is continuous, let A be a closed set of (0 X X) U (IX X,,). For each m >n, s~1A
meets (0 X X) U (I X X,,) in a closed set, because the composition spSn+1***Sm-1

is continuous. Let C be a compact set in I X X, Its projection C' in X is compact,
hence, by 9.3, C' C X,,, for some m, and therefore C C I X Xp,. Since s-1 A meets
IX X, in a closed set, it meets C in a closed set. Inasmuch as this holds for each
compact set and IX X is in CG (see 4.3), it follows that s-1 A is closed, hence s is
continuous. Now 7.1 tells us that (X, X)) is an NDR.

9.5. THEOREM. Let f: X — Y be a proclusion (see 2.5), and let X be the
union of an expanding sequence {Xn} such that, for each n, £-1fX_ =X,. Then
{an} is an expanding sequence of closed subspaces of Y, and Y has the topology of
theiv union.

Proof. Since f is proclusive and f-1fX, = X, is closed in X, it follows that X,
is closed in Y. Suppose B C Y meets each fX, in a closed set. Since

f-1B)nX, =f1Bnt1X, = £-1(Bn £X,),

f is proclusive, and B N fX, is closed, it follows that -1 B N X, is closed for
every n. Since X has the topology of the union, f-1B is closed in X. Since f is
proclusive, it follows that B is closed in Y. This shows that Y has the topology
of the union.

10. FILTERED SPACES

10.1. Definition. A filteved space X consists of a space X in CG and a se-

0
quence of closed subspaces Xg C X; C ++- C X, C +++ such that X = UO Xp and X
has the topology of the union (see 9.1). If X and Y are filtered spaces, a mapping
f: X — Y is a mapping of spaces such that X, ¢ Y, for each n > 0.

Clearly, the subspaces {Xn} form an expanding sequence, as in 9.1, and X co-
incides with their union. By 9.4, any expanding sequence of NDR’s has a union that
is a filtered space in the above sense.

10.2. Definition. If X = {Xn} and Y = {Yn} are filtered spaces, their product
is the space X X Y filtered by

n

(XXY)n-_- U XiXYn—i (n=07 1’ 23 "')-
i=0

10.3. THEOREM. The product space X XY of filtered spaces has the topology
of the union {(X X Y),}; hence the product is a filteved space.,

Proof. We must prove that a set A in X X Y that meets each (XX Y), ina
closed set is a closed set. Let C be any compact set of XX Y. The projections
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C', C" of C in X and Y are compact. By 9.3, there are integers p and q such that
C' CcXpand C" C Yq; hence C C (X X Y)ptq. Since A N (X X Y)piq is closed, it
follows that A N C is closed. Because C is any compact set and X X Y is in CG, it
follows that A is closed, and the theorem is proved.

Remark. The above definition of product is modelled on the product of two com-
plexes filtered by skeletons. It is also the natural product to use in work with geo-
metric resolutions over H-spaces (see [8]). It should be noted that this product is
not a product in the categorical sense; for example, the diagonal mapping of X into
X X X carries X, not into (X X X),, but into (X X X),,,.

10.4. Definition. A filtration of X is said to be a filtration by NDR’s if X, is
an NDR in X ;; for each n. By 9.4, each X, is also an NDR in X,

10.5. THEOREM. If X = {X,} and Y = {Y,} are filteved by NDR’s, then
X XY ={(XXY),} is also a filtration by NDR’s.

Proof. By 6.3, (X;, X;_1) X{(Ypn_i, Yh-;-1) is an NDR, hence by 7.1 there is a
retraction

ris IXX XY, 3 2 OXXy XY, ; UIX(X; XY, UX; (XY, ;)
for i=0, 1, --, n. (Interpret X_; as ¢.) Now
IX(XXY), - (0x(XXY),UIX(XXY),_1)
is the union of the disjoint open sets
I-0)XX;-X; )X (Yo;-Y,5.1) (=0,1,--, n).
We define a retraction
rrIX(XXY), > 0XXXY),UIX(XXY), ;

by setting r equal to the identity on the subspace, and equal to r; on the ith open set
for i=0, 1, ---, n. Then r coincides with r; on IXX; XY, _; for each i; since
each r; is continuous and I X (X X Y),, is the union of these closed sets, it follows
that r is continuous. By 7.1, (XX Y),_; is an NDR in (X X Y),, and the theorem is
proved.

11. COMPARISONS WITH OTHER CATEGORIES

Spanier has developed the notion of a quasi-topological space, for the purpose of
solving some of the difficulties outlined in our introduction [13]. A quasi-topology on
a set X is a rule assigning to each compact Hausdorff space C a family of functions
from C to X that satisfy four conditions. In case X is a topological space, all con-
tinuous maps C — X satisfy these conditions, hence X has an associated quasi-
topology. This gives a functor T — QT from the category T of topological spaces
and continuous maps to the category of quasi-topological spaces and quasi-continuous
maps.

Simce QT is very large, it satisfies the first two of the three conditions for a
convenient category. As to the five parts of the third condition, it seems likely that
they also hold; in fact, Spanier’s Propositions 3.2 and 4.1 are parts (3) and (2), re-
spectively. In evaluating these propositions, we must keep in mind that the functor
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T — QT is many-to-one; if the initial spaces are in T, and the constructions appear-
ing on the two sides of an equality are carried out in T, then the conclusion is not
that the resulting topological spaces are the same, but that they have the same asso-
ciated quasi-topologies.

It would therefore appear that our results in the category CG are definitely
sharper than Spanier’s. This is not the case, however, in view of the fact that the
functor T — QT restricted to CG — QT is injective and imbeds CG in QT as a full
subcategory. (The proof of this is an easy exercise.) Thus our result 5.6 on the ex-
ponential law follows from Spanier’s Theorem 4.1. However, our result 4.4 on a
product of proclusions does not follow from Spanier’s 3.2, because the definitions of
a proclusion in CG and QT do not agree under the functor (see Spanier’s Note on
page 4).

Recently, Michael [8] has defined and studied a category of spaces he calls §-
spaces. It is a subcategory of the category of regular Lindeldf (paracompact)
spaces. It includes separable metric spaces and countable CW-complexes. It
neither includes CG nor is included in CG. Michael shows that it is closed under
the formation of countable cartesian products and of function spaces with the CO-
topology (see [8, Propositions 6.1, 9.3]). It is also closed under the formation of
unions of expanding sequences, because any compact set of the union lies in some
space of the sequence. As for decomposition spaces, Michael shows that a regular
decomposition space of a separable metric space is in the category (see 2.1), and he
gives a counterexample to a stronger statement.

Thus Michael’s category satisfies rather well our first two criteria for a con-
venient category. But Michael gives no results to indicate that it satisfies any part
of our third criterion. In fact, it seems to us that parts (3) and (4) cannot hold if
product spaces are given the cartesian topology, and part (2) cannot hold if function
spaces have the CO-topology.

In 1959, Milnor [9] called attention to the advantages of the category W (Wg) of
spaces having the homotopy types of (countable) CW-complexes. Its chief advantage
is that a mapping of the category that induces an isomorphism of homotopy groups
is a homotopy equivalence. The disadvantages are, first, that it does not contain
certain simple spaces (for example, Cantor sets), and, second, that it is difficult to
show that W is closed under certain standard operations. A main part of Milnor’s
paper is devoted to showing that YX is in W when Y is in W and X is compact
metric.

Milnor’s W should not be regarded as a competitor of our category CG. Since
the objective in using W is to have a semieffective theory of homotopy type, its dis-
advantages are acceptable and probably necessary. Those who use W would have
no objection to restricting themselves to the intersection of W and CG. Indeed, this
might be advantageous, since it is not clear that W has a product.
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